# Nonlocal School on Fractional Equations **NSFE 2017** School Booklet

Department of Mathematics Iowa State University

August 17–19, 2017

# Courses

#### Regularity theory for fractional diffusion

Luis A. Caffarelli

The University of Texas at Austin

We will discuss some of the main ideas of fractional diffusion: quasilinear and fully non linear equations, and some phase transition problems, and how they connect to the second order theory.

#### Numerical methods for fractional diffusion

Ricardo H. Nochetto University of Maryland, College Park

We present and analyze three finite element methods (FEMs) for the numerical approximation of fractional diffusion in bounded domains in any dimensions. The first FEM deals with the fractional spectral Laplacian and hinges on the extension to an infinite cylinder in one more dimension. The second FEM concerns the integral formulation of fractional Laplacian in the entire space. The third FEM is a Dunford-Taylor approach which applies to both definitions. We discuss rather delicate numerical issues that arise in the construction of reliable FEMs and in the a priori and a posteriori error analyses of such FEMs for both steady and evolution fractional diffusion, show illustrative simulations, and mention challenging open questions.

# Conferences

#### An optimization-based coupling strategy for classical and nonlocal elasticity

Marta D'Elia

Sandia National Laboratories

The use of nonlocal models in science and engineering applications has been steadily increasing over the past decade. The ability of nonlocal theories to accurately capture effects that are difficult or impossible to represent by Partial Differential Equations (PDEs) motivates and drives the interest in this type of simulations. However, the improved accuracy of nonlocal models comes at the price of a significant increase in computational costs. As a result, it is important to develop local-to-nonlocal coupling strategies, which aim to combine the accuracy of nonlocal models with the computational efficiency of PDEs. We develop an optimization-based method for the coupling of nonlocal and local problems in the context of nonlocal elasticity. The approach formulates the coupling as a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the nonlocal and local domains, and the controls are virtual volume constraints and boundary conditions. Numerical results for nonlocal diffusion and nonlocal elasticity in three-dimensions illustrate key properties of the optimization-based coupling method; these numerical tests provide the groundwork for the development of efficient and effective engineering analysis tools.

# Hölder and Schauder estimates. Pointwise and semigroup strategies.

Marta de León-Contreras Universidad Autónoma de Madrid

In this talk we shall give Hölder and Schauder estimates for discrete fractional derivatives as well as for the fractional parabolic harmonic oscillator.

We present the discrete fractional derivatives and integrals, and we show some regularity results when the space is a mesh of length h. In this case, see [1], Hölder and Schauder estimates are obtained by means of pointwise estimates. This kind of results have been obtained recently for the fractional discrete Laplacian, see [2].

For the parabolic harmonic oscillator, the estimates are obtained by using semigroup theory. In fact the "adapted spaces" to this operator are defined by

$$\Lambda_{t,\mathcal{H}_x}^{\alpha/2,\alpha} := \left\{ f \in L^{\infty}(\mathbb{R}^{n+1}) : \left\| \frac{\partial^k}{\partial y^k} P_y f \right\|_{L^{\infty}(\mathbb{R}^{n+1})} \le C y^{-k+\alpha}, \ y > 0, \right\}, \alpha > 0.$$

Here  $k = [\alpha] + 1$  and  $P_y$  is the Poisson semigroup associated with the operator. When the operator is the Laplacian, the parabolic "adapted spaces"  $\Lambda_{t,x}^{\delta/2,\delta}$  are defined in [4], where it is shown that they coincide with the parabolic spaces  $C^{\delta/2,\delta}$  introduced by Krylov in [3], when  $\delta$  is not an integer. In our case, when  $\alpha$  is not an integer, the spaces  $\Lambda_{t,\mathcal{H}_x}^{\alpha/2,\alpha}$  coincide with a version of parabolic spaces  $C^{\delta/2,\delta}$  defined as in Krylov, but adapted to the harmonic oscillator. In addition, if the function f does not depend on t, the spaces coincide with the Hermite Hölder spaces defined in [5].

Finally we shall show an approximation theorem of the discrete fractional derivatives to the continuous fractional derivatives, for functions in the discrete Hölder spaces. This result also allows us to prove the coincidence, for good enough functions, of the Marchaud and Grünwald-Letnikov fractional derivatives at every point and the speed of convergence to the Grünwald-Letnikov fractional derivative, see [1].

#### References

- L. ABADÍAS, M. DE LEÓN-CONTRERAS, J. L. TORREA, Non-local fractional derivatives. Discrete and continuous, J. Math. Anal. Appl. 449 (2017), 734–755.
- [2] O. CIAURRI, L. RONCAL, P. R. STINGA, J. L. TORREA, J. L. VARONA, Nonlocal discrete diffusion equations and the fractional discrete laplacian, regularity and applications, arXiv:1608.08913.
- [3] N. V. KRYLOV, Lectures on Elliptic and Parabolic Equations in Hölder spaces, Graduate Studies in Mathematics, American Mathematical Society, 1996.
- [4] P. R. STINGA, J. L. TORREA, Regularity theory and extension problem for fractional nonlocal parabolic equations and the master equation, to appear in SIAM J. Math. Anal.

[5] P. R. STINGA, J. L. TORREA. Regularity theory for the fractional harmonic oscillator, J. Funct. Anal 260 (2011), 3097–3131.

#### Optimization with respect to order in a fractional diffusion model: analysis and approximation

Abner J. Salgado

The University of Tennessee, Knoxville

We consider an identification problem, where the state u is governed by a fractional elliptic equation and the unknown variable corresponds to the order  $s \in (0, 1)$  of the operator. We study the existence of an optimal pair  $(\bar{u}, \bar{s})$  and provide sufficient conditions for its uniqueness. We develop semi-discrete and fully discrete algorithms to approximate the solution and provide an analysis of their convergence properties. We present numerical illustrations that confirm and extend our theory. This is joint work with E. Otárola and H. Antil.

#### Nonlocal mechanics models for anisotropic media

Pablo Seleson

Oak Ridge National Laboratory

Peridynamics is a nonlocal reformulation of classical continuum mechanics, suitable for material failure and damage simulation. Originally, this nonlocal theory was presented as the bond-based peridynamics theory, for which the material response of an isotropic medium is limited by a fixed Poisson's ratio. To overcome this limitation, the state-based peridynamics theory was developed. Applications in peridynamics to date cover a wide range of engineering problems; however, the majority of those applications employ isotropic material models. Only recently, a limited number of anisotropic peridynamic models were developed. In this talk, we will first survey the different classes of anisotropic material models in classical linear elasticity, and we will present a peridynamic framework to represent anisotropic materials. We will then show a classification and a hierarchy of anisotropic peridynamic models, and we will discuss their relation to classical elasticity as well as restrictions arising from a bond-based interaction assumption.

#### Regularity theory for non local in time operators

Alexis F. Vasseur The University of Texas at Austin

In this talk, we will present new applications of the De Giorgi method to show the regularity of solutions to nonlocal operators. We will focus on the case of fractional derivatives in time. Those equations are important for the modeling of memory effects as hysteresis. This is a joint work with Mark Allen and Luis Caffarelli.

# What are the classical boundary conditions for the fractional Laplace operator?

Mahamadi Warma

University of Puerto Rico (Rio Piedras Campus)

In this talk we characterize all the classical boundary conditions (Dirichlet, Neumann and Robin) associated with the fractional Laplace operator or/and the regional fractional Laplace operator on bounded subsets of  $\mathbb{R}^N$ . We also give some well-posedness and regularity results of solutions to the associated elliptic and parabolic problems. Finally we introduce a fractional Dirichlet to Neumann operator associated with the regional fractional Laplacian.

#### Nonlocal School on Fractional Equations - NSFE 2017 Participants

Surname, Names

Institution

| 1  | Abedin, Farhan            | Temple University                           |
|----|---------------------------|---------------------------------------------|
| 2  | Antil, Harbir             | George Mason University                     |
| 3  | Bacharach, Max            | Iowa State University                       |
| 4  | Berry, Kileen             | The University of Tennessee, Knoxville      |
| 5  | Bezerra de Matos, Rodrigo | Michigan State University                   |
| 6  | Bhatnagar, Manas          | Iowa State University                       |
| 7  | Biala, Toheeb Ayinde      | Middle Tennessee State University           |
| 8  | Biswas, Animesh           | Iowa State University                       |
| 9  | Borthagaray, Juan Pablo   | Universidad de Buenos Aires                 |
| 10 | Bouck, Lucas              | George Mason University                     |
| 11 | Caffarelli, Luis A.       | The University of Texas at Austin           |
| 12 | Chen, Yanlai              | University of Massachusetts Dartmouth       |
| 13 | Choi, Brian Jongwon       | Boston University                           |
| 14 | D'Elia, Marta             | Sandia National Laboratories                |
| 15 | Daws, Joseph              | The University of Tennessee, Knoxville      |
| 16 | De León, Marta            | Universidad Autónoma de Madrid, Spain       |
| 17 | Du, Shukai                | University of Delaware                      |
| 18 | Duque, Luis               | The University of Texas at Austin           |
| 19 | Eruslu, Hasan Huseyin     | University of Delaware                      |
| 20 | Evans, James W.           | Iowa State University                       |
| 21 | Fazly, Mostafa            | University of Texas at San Antonio          |
| 22 | Gillcrist, David Joseph   | Missouri University of Science & Technology |
| 23 | Glusa, Christian          | Sandia National Laboratories                |
| 24 | Hansen, Scott             | Iowa State University                       |
| 25 | Herzog, David             | Iowa State University                       |
| 26 | Hudson, Joshua            | University of Maryland, Baltimore County    |
| 27 | Jiang, Yi (Jacky)         | Iowa State University                       |
| 28 | Khaliq, Abdul Q. M.       | Middle Tennessee State University           |
| 29 | Li, Tong                  | University of Iowa                          |
| 30 | Li, Xingjie Helen         | University of North Carolina at Charlotte   |
| 31 | Lin, Frank                | University of California, Irvine            |
| 32 | Liu, Hailiang             | Iowa State University                       |
| 33 | Logemann, Caleb           | Iowa State University                       |
| 34 | Lopez, Juan               | University of Houston                       |
| 35 | Luo, Songting             | Iowa State University                       |
| 36 | Mamikon, Gulian           | Brown University                            |
| 37 | Narayan, Akil             | The University of Utah                      |
| 38 | Nguyen, Xuan Hien         | Iowa State University                       |
|    |                           |                                             |

| 39 | Nochetto, Ricardo H.        |
|----|-----------------------------|
| 40 | Nuguid, Maria Eloisa        |
| 41 | O'Driscoll, Mary            |
| 42 | Plackowski, Kenneth         |
| 43 | Rodriguez Quinones, Leoncio |
| 44 | Rossmanith, James           |
| 45 | Sacks, Paul                 |
| 46 | Salgado, Abner J.           |
| 47 | Scott, James                |
| 48 | Shin, Jaemin                |
| 49 | Seleson, Pablo              |
| 50 | Shankar, Ravi               |
| 51 | Stinga, Pablo Raúl          |
| 52 | Tian, Xiaochuan             |
| 53 | Tong, Jiajun                |
| 54 | Valle-Martinez, Vicente     |
| 55 | Vasseur, Alexis F.          |
| 56 | Vivas, Hernán               |
| 57 | Wang, Chong                 |
| 58 | Wang, Lihe                  |
| 59 | Wang, Peiyong               |
| 60 | Warma, Mahamadi             |
| 61 | Weber, Eric                 |
| 62 | Weerasinghe, Ananda         |
| 63 | Wei, Peng                   |
| 64 | Wells, Kelsey               |
| 65 | White, Laura                |
| 66 | Wright, Cory                |
| 67 | Yan, Jue                    |
| 68 | Yin, Peimeng                |
| 69 | Zhang, Yuming               |
|    |                             |

University of Maryland, College Park San Francisco State University Iowa State University University of Arizona Iowa State University Iowa State University Iowa State University The University of Tennessee, Knoxville University of Tennessee, Knoxville Hanbat National University (Korea) Oak Ridge National Laboratory University of Washington Iowa State University Columbia University Courant Institute New York University Iowa State University The University of Texas at Austin The University of Texas at Austin George Washington University University of Iowa Wayne State University Universidad de Puerto Rico, Río Piedras Iowa State University Iowa State University Texas A&M University University of Nebraska-Lincoln University of Nebraska-Lincoln University of Nebraska-Lincoln Iowa State University Iowa State University University of California, Los Angeles

## Sponsors

NSFE 2017 is supported by

- Institute for Mathematics and its Applications (IMA)
- Department of Mathematics, Iowa State University
- Department of Mathematical Sciences, George Mason University
- College of Liberal Arts and Sciences, Iowa State University
- College of Science, George Mason University
- Office of the Vice President for Diversity and Inclusion, Iowa State University
- Faculty Development Grant, Iowa State University (Stinga)
- Grant NSF-DMS-1521590 "Numerical Analysis of Partial Differential Equation Constrained Optimization Problems" (Antil)
- Research Grant, Iowa State University (Sacks)

NSFE 2017 holds the

"in Cooperation with the Association for Women in Mathematics  $\rm (AWM)$  " status

and supports its Non-Discrimination Statement.



WOMEN IN MATHEMATICS

# Consider joining AWM today!

The AWM offers Individual, Student, and Institutional Memberships and Corporate Sponsorships.

For details visit:

## www.awm-math.org



#### **AWM Advance**

**AWM Advance Grant** supports research networks for women through AWM workshops and conferences. awmadvance.org.

#### **Lectures and Workshops**

**AWM Workshops** give support for graduate students, junior and senior faculty to present at the JMM and SIAM meetings.

**AWM-AMS Noether Lecture**, given annually at the JMM.

**AWM-SIAM Sonia Kovalevsky Lecture**, given every year at the SIAM annual meeting.

**AWM-MAA Etta Z. Falconer Lecture**, given annually at the MAA MathFest.

#### **Mentoring and Community**

**Mentor Network** matches mentors with girls and women interested in a career in mathematics.

**AWM Student Chapters** support women in mathematics through local events at universities. **AWM** encourages women and girls to study and to have active careers in the mathematical sciences, and promotes equal opportunity and the equal treatment of women and girls in the mathematical sciences.

## **Consider joining AWM today!**

#### Awards, Prizes and Grants

Louise Hay Award to a woman with outstanding achievements in math education.

M. Gweneth Humphreys Award to recognize outstanding mentorship.

Essay Contest for K-12 students and undergraduates.

Alice T. Schafer Prize to an undergraduate woman who excels in mathematics.

Ruth I. Michler Memorial Prize to a recently tenured woman for a research semester in the Mathematics Department at Cornell University. **Dissertation Prize** for an exceptional dissertation in the mathematical sciences by a woman PhD candidate.

Student Chapter Awards to recognize outstanding achievements in chapter activities among the AWM student chapters.

Research Prizes for early career women

- AWM-Joan & Joseph Birman Research Prize in Topology and Geometry
- AWM-Microsoft Research Prize in Algebra and Number Theory
- AWM-Sadosky Research Prize in Analysis

Travel Grants for women to attend conferences or develop mentoring relationships.

*Visit us on the web at* http://www.awm-math.org For further information contact: awm@awm-math.org or (703) 934-0163

| Time            | August 17       | August 18    | August 19    |
|-----------------|-----------------|--------------|--------------|
| 9:00-10:00am    |                 | Caffarelli   | Nochetto     |
| 10:00-10:30am   |                 | coffee break | coffee break |
| 10:30-11:00am   |                 | Nochetto     | Salgado      |
| 11:00-11:30am   |                 |              | Warma        |
| 11:30-11:45am   |                 | short break  |              |
| 11:45am-12:15pm |                 | Vasseur      |              |
| 12:15-12:20pm   |                 | School photo |              |
| 12:20-1:15pm    |                 | lunch break  |              |
| 1:15-1:45pm     | Registration    | lunch break  |              |
| 1:45-2:00pm     | Opening remarks | lunch break  |              |
| 2:00-3:00pm     | Caffarelli      | Caffarelli   |              |
| 3:00-3:30pm     | coffee break    | coffee break |              |
| 3:30-4:00pm     | Nochetto        | De León      |              |
| 4:00-4:30pm     |                 | D'Elia       |              |
| 4:30-4:45pm     | short break     |              |              |
| 4:45-5:15pm     | Seleson         |              |              |

# NSFE 2017 Schedule