Isometric embedding via strongly symmetric positive systems

Jeanne N. Clelland, University of Colorado, Boulder

Joint with Gui-Qiang Chen, Marshall Slemrod, Dehua Wang, and Deane Yang

> Midwest Geometry Conference Iowa State University

> > September 7, 2019

A DIA K RIA K E A G A K RIA K LO A CA

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q O

Let (M, g) be an *n*-dimensional Riemannian manifold. A map $\mathbf{y}: M \to \mathbb{R}^N$ is called an *isometric embedding* if **y** is injective and, in local coordinates $\mathbf{x} = (x^1, \dots, x^n)$ on M,

$$
\partial_i \mathbf{y} \cdot \partial_j \mathbf{y} = g_{ij}, \qquad 1 \le i, j \le n,
$$
 (1)

A DIA K A B A B A B A A A A A B A A A A A

where $g = g_{ij} dx^i dx^j$ and ∂_i denotes $\frac{\partial}{\partial x^i}$.

Let (M, g) be an *n*-dimensional Riemannian manifold. A map $\mathbf{y}: M \to \mathbb{R}^N$ is called an *isometric embedding* if **y** is injective and, in local coordinates $\mathbf{x} = (x^1, \dots, x^n)$ on M,

$$
\partial_i \mathbf{y} \cdot \partial_j \mathbf{y} = g_{ij}, \qquad 1 \le i, j \le n,
$$
 (1)

KOD KAD KED KED E VOOR

where $g = g_{ij} dx^i dx^j$ and ∂_i denotes $\frac{\partial}{\partial x^i}$.

The local isometric embedding problem asks whether, given (M, q) and $\mathbf{x}_0 \in M$, there exists an isometric embedding of some neighborhood of \mathbf{x}_0 into \mathbb{R}^N —i.e., whether the PDE system [\(1\)](#page-1-0) has local solutions in some neighborhood of x_0 .

Let (M, g) be an *n*-dimensional Riemannian manifold. A map $\mathbf{y}: M \to \mathbb{R}^N$ is called an *isometric embedding* if **y** is injective and, in local coordinates $\mathbf{x} = (x^1, \dots, x^n)$ on M,

$$
\partial_i \mathbf{y} \cdot \partial_j \mathbf{y} = g_{ij}, \qquad 1 \le i, j \le n,
$$
 (1)

where $g = g_{ij} dx^i dx^j$ and ∂_i denotes $\frac{\partial}{\partial x^i}$.

The local isometric embedding problem asks whether, given (M, q) and $\mathbf{x}_0 \in M$, there exists an isometric embedding of some neighborhood of \mathbf{x}_0 into \mathbb{R}^N —i.e., whether the PDE system [\(1\)](#page-1-0) has local solutions in some neighborhood of x_0 .

This problem is overdetermined when $N < \frac{1}{2}n(n+1)$, underdetermined when $N > \frac{1}{2}n(n + 1)$, and determined when $N=\frac{1}{2}$ $\frac{1}{2}n(n+1).$

The underdetermined case:

The underdetermined case:

Nash (1956): If (M^n, g) is C^k with $3 \leq k \leq \infty$, then there exists a global C^k isometric embedding of M into some \mathbb{R}^N with $N \leq \frac{1}{2}$ $\frac{1}{2}n(n+1)(3n+11).$

The underdetermined case:

Nash (1956): If (M^n, g) is C^k with $3 \leq k \leq \infty$, then there exists a global C^k isometric embedding of M into some \mathbb{R}^N with $N \leq \frac{1}{2}$ $\frac{1}{2}n(n+1)(3n+11).$

Greene (1970): If (M^n, g) is C^{∞} , then every $\mathbf{x}_0 \in M$ has a neighborhood which has a C^{∞} isometric embedding into some \mathbb{R}^N with $N \leq \frac{1}{2}$ $\frac{1}{2}n(n+1)+n.$

The determined case:

The determined case:

Cartan-Janet (1927): If (M^n, g) is real analytic and $N=\frac{1}{2}$ $\frac{1}{2}n(n+1)$, then every $\mathbf{x}_0 \in M$ has a neighborhood which has a real analytic isometric embedding into \mathbb{R}^N .

If (M^2, g) is C^{∞} , then local isometric embeddings of varying regularity exist in a neighborhood of any point where:

KORK EX KEY KEY YOUR

If (M^2, g) is C^{∞} , then local isometric embeddings of varying regularity exist in a neighborhood of any point where:

KORK EX KEY KEY YOUR

• $K(\mathbf{x}_0) \neq 0;$

If (M^2, g) is C^{∞} , then local isometric embeddings of varying regularity exist in a neighborhood of any point where:

KORK EX KEY KEY YOUR

•
$$
K(\mathbf{x}_0) \neq 0;
$$

•
$$
K(\mathbf{x}_0) = 0
$$
 and $\nabla K(\mathbf{x}_0) \neq 0$;

If (M^2, g) is C^{∞} , then local isometric embeddings of varying regularity exist in a neighborhood of any point where:

- $K(\mathbf{x}_0) \neq 0;$
- $K(\mathbf{x}_0) = 0$ and $\nabla K(\mathbf{x}_0) \neq 0$;
- $K(\mathbf{x}_0)$ vanishes to finite order in certain precise ways.

(C.-S. Lin, Q. Han, J.-X. Hong, M. Khuri)

Bryant-Griffiths-Yang (1983): If (M^3, g) is C^∞ , then C^∞ local isometric embeddings exist in a neighborhood of any point where the rank of the Einstein tensor is at least 2.

KORK EX KEY KEY YOUR

Bryant-Griffiths-Yang (1983): If (M^3, g) is C^∞ , then C^∞ local isometric embeddings exist in a neighborhood of any point where the rank of the Einstein tensor is at least 2.

Nakamura-Maeda (1989): If (M^3, g) is C^∞ , then C^∞ local isometric embeddings exist in a neighborhood of any point where the Riemann curvature tensor is nonzero.

The case $n = 4, N = 10$:

K □ K K 레 K K B K K B K H X A G W K C H

The case $n = 4, N = 10$:

Bryant-Griffiths-Yang (1983), Goodman-Yang (1988): There exists a finite set of algebraic relations among the Riemann curvature tensor and its covariant derivatives, with the property that a local isometric embedding exists in a neighborhood of any point where these relations do not all hold.

KORK EX KEY KEY YOUR

K □ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q

• There exist "approximate solutions," i.e., local embeddings $\mathbf{y}_0: M \to \mathbb{R}^N$ so that the induced metric

$$
\bar{g}_{ij} = \partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{y}_0
$$

ADE ARE ARE ARE ADD

is "close" to g_{ij} .

• There exist "approximate solutions," i.e., local embeddings $\mathbf{y}_0: M \to \mathbb{R}^N$ so that the induced metric

$$
\bar{g}_{ij} = \partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{y}_0
$$

is "close" to g_{ij} .

• For any such y_0 , the linear PDE system obtained by linearizing the system [\(1\)](#page-1-0) at y_0 has a local C^{∞} solution $\mathbf{v}(\mathbf{x})$.

• There exist "approximate solutions," i.e., local embeddings $\mathbf{y}_0: M \to \mathbb{R}^N$ so that the induced metric

$$
\bar{g}_{ij} = \partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{y}_0
$$

is "close" to g_{ij} .

- For any such y_0 , the linear PDE system obtained by linearizing the system [\(1\)](#page-1-0) at y_0 has a local C^{∞} solution $\mathbf{v}(\mathbf{x})$.
- The solution $\mathbf{v}(\mathbf{x})$ to the linearized system satisfies "smooth tame estimates."

Approximate solutions are provided by the Cartan-Janet theorem:

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q O

Approximate solutions are provided by the Cartan-Janet theorem:

Let \bar{q} be a real analytic metric that agrees with q to high order at \mathbf{x}_0 ; then there exists a neighborhood $\Omega \subset M$ of \mathbf{x}_0 and a real analytic isometric embedding $\mathbf{y}_0 : \Omega \to \mathbb{R}^N$ for \bar{g} .

A DIA K RIA K E A G A K RIA K LO A CA

Approximate solutions are provided by the Cartan-Janet theorem:

Let \bar{q} be a real analytic metric that agrees with q to high order at \mathbf{x}_0 ; then there exists a neighborhood $\Omega \subset M$ of \mathbf{x}_0 and a real analytic isometric embedding $\mathbf{y}_0 : \Omega \to \mathbb{R}^N$ for \bar{g} .

By shrinking Ω if necessary, we can ensure that \bar{g} is sufficiently close to g.

KORK EX KEY KEY YOUR

The hard part:

The hard part:

The linearized system is generally not "nice," and showing that it has solutions that satisfy the necessary estimates can be very challenging.

KORK EX KEY KEY YOUR

The hard part:

The linearized system is generally not "nice," and showing that it has solutions that satisfy the necessary estimates can be very challenging.

In particular, for $n \geq 3$, the linearized system is never elliptic, so standard estimation techniques for elliptic systems don't work.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ - 코 - K 9 Q Q ·

• For $n = 3$ and the Einstein tensor having rank at least 2, the approximate embedding y_0 can be chosen so that the linearized system becomes either symmetric hyperbolic or strictly hyperbolic. They then show that any such system has a solution that satisfies smooth tame estimates.

A DIA K A B A B A B A A A A A B A A A A A A

- For $n = 3$ and the Einstein tensor having rank at least 2, the approximate embedding y_0 can be chosen so that the linearized system becomes either symmetric hyperbolic or strictly hyperbolic. They then show that any such system has a solution that satisfies smooth tame estimates.
- For $n = 3$ and $R(0) \neq 0$, or $n = 4$ and $(R(0), \nabla R(0))$ in some dense open set, the approximate embedding v_0 can be chosen so that this system has real principal type.

KORK EX KEY KEY YOUR

- For $n = 3$ and the Einstein tensor having rank at least 2, the approximate embedding y_0 can be chosen so that the linearized system becomes either symmetric hyperbolic or strictly hyperbolic. They then show that any such system has a solution that satisfies smooth tame estimates.
- For $n = 3$ and $R(0) \neq 0$, or $n = 4$ and $(R(0), \nabla R(0))$ in some dense open set, the approximate embedding v_0 can be chosen so that this system has real principal type.

Nakamura-Maeda and Goodman-Yang then showed that any system of real principal type has a solution that satisfies smooth tame estimates. Proving these estimates requires the use of sophisticated microlocal analysis and Fourier integral operators.

Our approach to a more straightforward proof:

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ - 코 - K 9 Q Q ·
1. Show that, for $n = 3$ and $R(0) \neq 0$, the approximate embedding y_0 can be chosen so that the linearized system becomes strongly symmetric positive after a carefully chosen change of variables.

KORK EX KEY KEY YOUR

- 1. Show that, for $n = 3$ and $R(0) \neq 0$, the approximate embedding y_0 can be chosen so that the linearized system becomes strongly symmetric positive after a carefully chosen change of variables.
- 2. Show that any such system has a solution that satisfies smooth tame estimates.

A DIA K RIA K E A G A K RIA K LO A CA

- 1. Show that, for $n = 3$ and $R(0) \neq 0$, the approximate embedding y_0 can be chosen so that the linearized system becomes strongly symmetric positive after a carefully chosen change of variables.
- 2. Show that any such system has a solution that satisfies smooth tame estimates.

A DIA K RIA K E A G A K RIA K LO A CA

Advantages:

- 1. Show that, for $n = 3$ and $R(0) \neq 0$, the approximate embedding y_0 can be chosen so that the linearized system becomes strongly symmetric positive after a carefully chosen change of variables.
- 2. Show that any such system has a solution that satisfies smooth tame estimates.

Advantages:

• Step (2) is fairly straightforward, requiring none of the sophisticated analysis needed for prior proofs.

- 1. Show that, for $n = 3$ and $R(0) \neq 0$, the approximate embedding y_0 can be chosen so that the linearized system becomes strongly symmetric positive after a carefully chosen change of variables.
- 2. Show that any such system has a solution that satisfies smooth tame estimates.

Advantages:

- Step (2) is fairly straightforward, requiring none of the sophisticated analysis needed for prior proofs.
- Step (1) requires only linear algebra.

Symmetric positive linear systems

(日) (日) (日) (日) (日) (日) 日 (9) Q O

Symmetric positive linear systems

Friedrichs (1958) introduced the notion of a symmetric positive linear system of s first order PDEs

$$
A^i \partial_i \mathbf{v} + B \mathbf{v} = \mathbf{h} \tag{2}
$$

KORK EX KEY KEY YOUR

for a function $\mathbf{v}: \mathbb{R}^n \to \mathbb{R}^s$, in order to handle some cases where the system does not fall into one of the standard types (elliptic, hyperbolic, parabolic).

Symmetric positive linear systems

Friedrichs (1958) introduced the notion of a *symmetric positive* linear system of s first order PDEs

$$
A^i \partial_i \mathbf{v} + B \mathbf{v} = \mathbf{h} \tag{2}
$$

for a function $\mathbf{v}: \mathbb{R}^n \to \mathbb{R}^s$, in order to handle some cases where the system does not fall into one of the standard types (elliptic, hyperbolic, parabolic).

The system [\(2\)](#page-41-0) is called *symmetric* if the coefficient matrices A^1, \ldots, A^n are symmetric $s \times s$ matrices.

K □ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q

ADE AFER A EX A GAR

In order to compute an $L^2(\bar{\Omega}, \mathbb{R}^s)$ estimate for a possible solution $\mathbf{v}(\mathbf{x})$, we might try the following:

In order to compute an $L^2(\bar{\Omega}, \mathbb{R}^s)$ estimate for a possible solution $\mathbf{v}(\mathbf{x})$, we might try the following:

Multiply the system [\(2\)](#page-41-0) on the left by \mathbf{v}^{T} to obtain the scalar equation

$$
\mathbf{v}^{\mathsf{T}} A^i \partial_i \mathbf{v} + \mathbf{v}^{\mathsf{T}} B \mathbf{v} = \mathbf{v}^{\mathsf{T}} \mathbf{h}.
$$
 (3)

ADE AFER A EX A GAR

In order to compute an $L^2(\bar{\Omega}, \mathbb{R}^s)$ estimate for a possible solution $\mathbf{v}(\mathbf{x})$, we might try the following:

Multiply the system [\(2\)](#page-41-0) on the left by \mathbf{v}^{T} to obtain the scalar equation

$$
\mathbf{v}^{\mathsf{T}} A^i \partial_i \mathbf{v} + \mathbf{v}^{\mathsf{T}} B \mathbf{v} = \mathbf{v}^{\mathsf{T}} \mathbf{h}.
$$
 (3)

After some straightforward manipulations using the product rule and taking into account the fact that the matrices A^i are symmetric, this can be written as

$$
\mathbf{v}^{\mathsf{T}}\Big(B+B^{\mathsf{T}}-\partial_iA^i\Big)\mathbf{v}=2\mathbf{v}^{\mathsf{T}}\mathbf{h}-\partial_i\left(\mathbf{v}^{\mathsf{T}}A^i\mathbf{v}\right).
$$
 (4)

A DIA K A B A B A B A A A A A B A A A A A

Definition (Friedrichs): The symmetric system [\(2\)](#page-41-0) is called symmetric positive if the quadratic form $Q_0(\mathbf{x}) : \mathbb{R}^s \to \mathbb{R}$ defined by

$$
Q_0(\xi) = \xi^{\mathsf{T}} \left(B + B^{\mathsf{T}} - \partial_i A^i \right) \xi
$$

KORK EX KEY KEY YOUR

is positive definite for all $\mathbf{x} \in \overline{\Omega}$.

Definition (Friedrichs): The symmetric system [\(2\)](#page-41-0) is called symmetric positive if the quadratic form $Q_0(\mathbf{x}) : \mathbb{R}^s \to \mathbb{R}$ defined by

$$
Q_0(\xi) = \xi^{\mathsf{T}} \left(B + B^{\mathsf{T}} - \partial_i A^i \right) \xi
$$

is positive definite for all $\mathbf{x} \in \overline{\Omega}$.

For a symmetric positive system, we have

$$
\mathbf{v}^{\mathsf{T}}\Big(B+B^{\mathsf{T}}-\partial_iA^i\Big)\mathbf{v}\geq\lambda_0|\mathbf{v}|^2
$$

KORK EX KEY KEY YOUR

for some $\lambda_0 > 0$.

$$
\lambda_0 |\mathbf{v}|^2 \leq \mathbf{v}^\mathsf{T} \Big(B + B^\mathsf{T} - \partial_i A^i \Big) \mathbf{v}
$$

$$
\lambda_0 |\mathbf{v}|^2 \le \mathbf{v}^\mathsf{T} \left(B + B^\mathsf{T} - \partial_i A^i \right) \mathbf{v}
$$

$$
\le 2\mathbf{v}^\mathsf{T} \mathbf{h} - \partial_i \left(\mathbf{v}^\mathsf{T} A^i \mathbf{v} \right)
$$

$$
\lambda_0 |\mathbf{v}|^2 \leq \mathbf{v}^\mathsf{T} \left(B + B^\mathsf{T} - \partial_i A^i \right) \mathbf{v} \n\leq 2 \mathbf{v}^\mathsf{T} \mathbf{h} - \partial_i \left(\mathbf{v}^\mathsf{T} A^i \mathbf{v} \right) \n\leq \frac{\lambda_0}{2} |\mathbf{v}|^2 + \frac{2}{\lambda_0} |\mathbf{h}|^2 - \partial_i \left(\mathbf{v}^\mathsf{T} A^i \mathbf{v} \right).
$$

$$
\lambda_0 |\mathbf{v}|^2 \leq \mathbf{v}^\mathsf{T} \left(B + B^\mathsf{T} - \partial_i A^i \right) \mathbf{v} \n\leq 2 \mathbf{v}^\mathsf{T} \mathbf{h} - \partial_i \left(\mathbf{v}^\mathsf{T} A^i \mathbf{v} \right) \n\leq \frac{\lambda_0}{2} |\mathbf{v}|^2 + \frac{2}{\lambda_0} |\mathbf{h}|^2 - \partial_i \left(\mathbf{v}^\mathsf{T} A^i \mathbf{v} \right).
$$

Integrating over Ω and applying Stokes' theorem yields

$$
\|\mathbf{v}\|_0^2 \le C_0 \|\mathbf{h}\|_0^2 - \frac{2}{\lambda_0} \int_{\partial\Omega} (\mathbf{v}^\mathsf{T} \beta(\mathbf{x}) \mathbf{v}) \, dS,
$$

where, for $\mathbf{x} \in \partial \Omega$, $\beta(\mathbf{x})$ is the *characteristic matrix*

$$
\beta(\mathbf{x}) = \nu_i(\mathbf{x}) A^i(\mathbf{x}).
$$

K □ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q

Definition: Given a symmetric positive linear operator

$$
P = A^i \partial_i + B
$$

on the closure of a domain $\Omega \subset \mathbb{R}^n$, we call the domain P-convex for the system [\(2\)](#page-41-0) if the characteristic matrix

$$
\beta(\mathbf{x}) = \sum_{i=1}^n \nu_i(\mathbf{x}) A^i(\mathbf{x}),
$$

where $\nu(\mathbf{x}) = (\nu_1(\mathbf{x}), \dots, \nu_n(\mathbf{x}))$ denotes the outer unit normal vector to $\partial\Omega$ at $\mathbf{x} \in \partial\Omega$, is positive definite at each point $\mathbf{x} \in \partial \Omega$.

A DIA K A B A B A B A A A A A B A A A A A

Theorem (Friedrichs, 1958): Suppose that the system [\(2\)](#page-41-0) is symmetric positive on $\overline{\Omega}$ and that Ω is P-convex. Then the system [\(2\)](#page-41-0) has a unique solution $\mathbf{v} \in L^2(\bar{\Omega}, \mathbb{R}^s)$. Moreover, we have a smooth tame estimate of the form

$$
\|\mathbf{v}\|_0 \leq C_0 \|\mathbf{h}\|_0,
$$

where the constant C_0 depends only on the minimum eigenvalue λ_0 of the quadratic form Q_0 on $\overline{\Omega}$.

Example: Consider the following ODE:

$$
(x - x_0)u' + bu = h(x).
$$
 (5)

Example: Consider the following ODE:

$$
(x - x_0)u' + bu = h(x).
$$
 (5)

It is straightforward to verify that [\(5\)](#page-57-0) is symmetric positive if $b > \frac{1}{2}$, and an interval $\Omega = (x_1, x_2)$ is P-convex if and only if $x_0 \in (x_1, x_2)$, i.e., if and only if the regular singular point of this ODE lies in the domain.

Example: Consider the following ODE:

$$
(x - x_0)u' + bu = h(x).
$$
 (5)

It is straightforward to verify that [\(5\)](#page-57-0) is symmetric positive if $b > \frac{1}{2}$, and an interval $\Omega = (x_1, x_2)$ is P-convex if and only if $x_0 \in (x_1, x_2)$, i.e., if and only if the regular singular point of this ODE lies in the domain.

The general solution of [\(5\)](#page-57-0) is

$$
u(x) = \frac{1}{(x - x_0)^b} \int_{x_0}^x (y - x_0)^{b-1} h(y) \, dy + \frac{C}{(x - x_0)^b},
$$

which is continuous at $x = x_0$ and satisfies the desired estimate if and only if $C = 0$.

Thus we see that:

Thus we see that:

• The P-convexity condition forces the uniqueness of a continuous solution of [\(5\)](#page-57-0) on Ω , without specifying any initial or boundary data for u.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q O

Thus we see that:

- The P-convexity condition forces the uniqueness of a continuous solution of [\(5\)](#page-57-0) on Ω , without specifying any initial or boundary data for u.
- Symmetric positivity on a domain Ω does not necessarily guarantee the existence of a P-convex neighborhood of $\mathbf{x}_0 \in \Omega$.

KORK EX KEY KEY YOUR

For our purposes, Friedrich's theorem has two important shortcomings:

For our purposes, Friedrich's theorem has two important shortcomings:

1. Recall that our starting point will be an approximate local embedding $\mathbf{y}_0: M \to \mathbb{R}^N$ that may be defined on an arbitrarily small neighborhood of a given point $\mathbf{x}_0 \in M$. So we have no way to guarantee that we have a P-convex domain for the linearized system.

A DIA K A B A B A B A A A A A B A A A A A

For our purposes, Friedrich's theorem has two important shortcomings:

- 1. Recall that our starting point will be an approximate local embedding $\mathbf{y}_0: M \to \mathbb{R}^N$ that may be defined on an arbitrarily small neighborhood of a given point $\mathbf{x}_0 \in M$. So we have no way to guarantee that we have a P-convex domain for the linearized system.
- 2. We need estimates for $\|\mathbf{v}\|_k$ for all $k \geq 0$, but even if the coefficients A^i , B and the inhomogeneous term **h** are all C^{∞} , Friedrichs's theorem does not guarantee any higher order regularity for the solution v.

A DIA K A B A B A B A A A A A B A A A A A

What happens if we try to compute a first-order estimate for the solution v?

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q O

What happens if we try to compute a first-order estimate for the solution v?

If we differentiate the system [\(2\)](#page-41-0) and perform manipulations similar to those above, we obtain

$$
\partial_j \mathbf{v}^\top (B + B^\top - \partial_i A^i) \partial_j \mathbf{v} + (\partial_j \mathbf{v}^\top) (\partial_j A^i + \partial_i A^j) (\partial_i \mathbf{v})
$$

= $2 \partial_j \mathbf{v}^\top (\partial_j \mathbf{h} - (\partial_j B) \mathbf{v}) - \partial_i (\partial_j \mathbf{v}^\top A^i \partial_j \mathbf{v}).$

KORK EX KEY KEY YOUR

Definition: The symmetric system [\(2\)](#page-41-0) is called *strongly* symmetric positive if the quadratic forms $Q_0(\mathbf{x}) : \mathbb{R}^s \to \mathbb{R}$ and $Q_1(\mathbf{x}) : \mathbb{R}^{ns} \to \mathbb{R}$ defined by

$$
Q_0(\mathbf{x})(\xi) = \xi^{\mathsf{T}} \left(B + B^{\mathsf{T}} - \partial_i A^i \right) \xi,
$$

$$
Q_1(\mathbf{x})(\xi_1, \dots, \xi_n) = \xi_j^{\mathsf{T}} \left(\partial_j A^i + \partial_i A^j \right) \xi_i
$$

KORK EX KEY KEY YOUR

are positive definite for all $\mathbf{x} \in \overline{\Omega}$.

For a strongly symmetric positive system on the closure of a P-convex domain Ω , a similar argument to that above yields a smooth tame first-order estimate of the form

$$
\|\mathbf{v}\|_1 \leq C_1 \left(\|\mathbf{h}\|_1 + \|\mathbf{h}\|_0 \|B\|_{2 + \left[\frac{n}{2}\right]} \right),
$$

A DIA K A B A B A B A A A A A B A A A A A

where the constant C_1 depends only on the minimum eigenvalues λ_0, λ_1 of the quadratic forms Q_0, Q_1 on $\overline{\Omega}$. Perhaps surprisingly, it turns out that higher-order estimates require no further assumptions.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q ①

Perhaps surprisingly, it turns out that higher-order estimates require no further assumptions.

Successive differentiations of the system [\(2\)](#page-41-0) lead to expressions of the form

$$
\sum_{j_1,\dots,j_k=1}^n Q_0(\partial_{j_1,\dots,j_k}^k \mathbf{v}) + k \sum_{j_1,\dots,j_{k-1}=1}^n Q_1(\partial_{j_1,\dots,j_{k-1},1}^k \mathbf{v}, \dots, \partial_{j_1,\dots,j_{k-1},n}^k \mathbf{v}).
$$

KORK EX KEY KEY YOUR
Perhaps surprisingly, it turns out that higher-order estimates require no further assumptions.

Successive differentiations of the system [\(2\)](#page-41-0) lead to expressions of the form

$$
\sum_{j_1,\dots,j_k=1}^n Q_0(\partial_{j_1,\dots,j_k}^k \mathbf{v}) + k \sum_{j_1,\dots,j_{k-1}=1}^n Q_1(\partial_{j_1,\dots,j_{k-1},1}^k \mathbf{v}, \dots, \partial_{j_1,\dots,j_{k-1},n}^k \mathbf{v}).
$$

If the system [\(2\)](#page-41-0) is strongly symmetric positive on the closure of a P-convex domain Ω , then we can obtain smooth tame estimates for $\|\mathbf{v}\|_k$ for all $k \geq 0$. In particular, the solution **v** promised by Friedrichs's theorem is C^{∞} .

By applying Nash-Moser, this leads to the following theorem for nonlinear systems, proven for real analytic systems by Moser (1966) and for C^{∞} systems by K. Tso (1992):

KORK EX KEY KEY YOUR

By applying Nash-Moser, this leads to the following theorem for nonlinear systems, proven for real analytic systems by Moser (1966) and for C^{∞} systems by K. Tso (1992):

Theorem (Tso): Let $\Phi: C^{\infty}(\bar{\Omega}, \mathbb{R}^s) \to C^{\infty}(\bar{\Omega}, \mathbb{R}^s)$ be a C^{∞} , nonlinear first-order partial differential operator. Given a smooth function $f: \overline{\Omega} \to \mathbb{R}^s$, consider the PDE system

$$
\Phi(\mathbf{u}) = \mathbf{f}(\mathbf{x}).\tag{6}
$$

Suppose that the linearization of Φ at any function in some C^1 -neighborhood of \mathbf{u}_0 is strongly symmetric positive and that Ω is P-convex for the associated linear operators. Then there exist an integer β and $\epsilon > 0$ such that, for any C^{∞} function $f: \bar{\Omega} \to \mathbb{R}^s$ with $\|\Phi(\mathbf{u}_0) - \mathbf{f}\|_{\beta} < \epsilon$, there exists a C^{∞} solution $\mathbf{u}: \bar{\Omega} \to \mathbb{R}^s$ to the nonlinear system [\(6\)](#page-73-0).

Unfortunately, Tso's theorem isn't quite enough for us; we need a local version that can be applied to an arbitrarily small neighborhood of a point \mathbf{x}_0 , without the requirement of P-convexity.

KORK EX KEY KEY YOUR

Theorem 1 (Chen, C—, Slemrod, Wang, Yang): Let $\Phi: C^{\infty}(\Omega, \mathbb{R}^s) \to C^{\infty}(\Omega, \mathbb{R}^s)$ be a C^{∞} , nonlinear first-order partial differential operator. Given a smooth function $\mathbf{f}: \Omega \to \mathbb{R}^s$, consider the PDE system

$$
\Phi(\mathbf{u}) = \mathbf{f}(\mathbf{x}).\tag{7}
$$

Suppose that the linearization of Φ at any function in some C^1 -neighborhood of \mathbf{u}_0 is strongly symmetric positive at some point $\mathbf{x}_0 \in \Omega$. Then there exist a neighborhood $\Omega_0 \subset \Omega$ of \mathbf{x}_0 , an integer β and $\epsilon > 0$ such that, for any C^{∞} function $f: \overline{\Omega}_0 \to \mathbb{R}^s$ with $\|\Phi(\mathbf{u}_0) - f\|_{\beta} < \epsilon$, there exists a C^{∞} solution $\mathbf{u} : \bar{\Omega}_0 \to \mathbb{R}^s$ to the restriction of the nonlinear system [\(7\)](#page-76-0) to $\bar{\Omega}_0$.

Outline of proof:

K ロ ▶ K 레 ▶ K 로 K K 로 K - 로 - X 9 Q Q Q

Outline of proof:

WLOG, assume that $x_0 = 0$. Write the Taylor expansions for the coefficients of the linearized system at \mathbf{u}_0 :

$$
B(\mathbf{x}) = \bar{B} + \hat{B}(\mathbf{x}), \qquad A^{i}(\mathbf{x}) = \bar{A}^{i} + \sum_{j=1}^{n} x^{j} \bar{A}_{j}^{i} + \hat{A}^{i}(\mathbf{x}).
$$

K □ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q

Outline of proof:

WLOG, assume that $x_0 = 0$. Write the Taylor expansions for the coefficients of the linearized system at \mathbf{u}_0 :

$$
B(\mathbf{x}) = \bar{B} + \hat{B}(\mathbf{x}), \qquad A^{i}(\mathbf{x}) = \bar{A}^{i} + \sum_{j=1}^{n} x^{j} \bar{A}_{j}^{i} + \hat{A}^{i}(\mathbf{x}).
$$

Strong symmetric positivity at $x = 0$ is equivalent to the assumption that the quadratic forms $\overline{Q}_0 : \mathbb{R}^s \to \mathbb{R}$, $\bar{Q}_1 : \mathbb{R}^{ns} \to \mathbb{R}$ defined by

$$
\overline{Q}_0(\xi) = \xi^{\mathsf{T}} \left(\overline{B} + \overline{B}^{\mathsf{T}} - \sum_{i=1}^n \overline{A}_i^i \right) \xi,
$$

$$
\overline{Q}_1(\xi_1, \dots, \xi_n) = \sum_{i,j=1}^n \xi_j^{\mathsf{T}} \left(\overline{A}_j^i + \overline{A}_i^j \right) \xi_i
$$

ADE AFER A EX A GAR

are positive definite.

Step 1: Restriction to a small ball

K □ ▶ K @ ▶ K 콜 X K 콜 X _ 콜 _ ④ Q Q ^

Step 1: Restriction to a small ball

Choose $r > 0$ so that $\bar{B}_r \subset \Omega$ and the restrictions of the remainder terms $\hat{B}(\mathbf{x})$ and $\hat{A}^i(\mathbf{x})$ to \bar{B}_r are sufficiently small.

Restrict the system [\(7\)](#page-76-0) to the closure of the domain $\Omega_0 = B_r$.

A DIA K A B A B A B A A A A A B A A A A A

Step 2: Extension to \mathbb{R}^n

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q O

Step 2: Extension to \mathbb{R}^n

We will apply the following variant of the Stein extension theorem:

Theorem (Stein): For any $r > 0$, there exists an extension operator $\mathcal{E}_r: L^1(\bar{B}_r) \to L^1(\mathbb{R}^n)$ and constants $M_{k,p}$, $1 \le p \le \infty$, $0 \le k < \infty$, such that, for all $f \in W^{k,p}(\bar{B}_r)$,

 $\|\mathcal{E}_{r}f\|_{k,n} \leq M_{k,n} \|f\|_{k,n}.$

Moreover, the constants $M_{k,p}$ are independent of r.

Apply this theorem to the remainder terms $\hat{B}(\mathbf{x})$, $\hat{A}^i(\mathbf{x})$, and $h(\mathbf{x})$ on \bar{B}_r .

Apply this theorem to the remainder terms $\hat{B}(\mathbf{x})$, $\hat{A}^i(\mathbf{x})$, and $h(\mathbf{x})$ on \bar{B}_r .

This allows us to extend the system [\(7\)](#page-76-0) on \bar{B}_r to a new system

$$
\tilde{A}^i \, \partial_i \mathbf{v} + \tilde{B} \, \mathbf{v} = \tilde{\mathbf{h}} \tag{8}
$$

ADE AFER A EX A GAR

on all of \mathbb{R}^n , where

$$
\tilde{B}(\mathbf{x}) = \bar{B} + (\mathcal{E}_r \hat{B})(\mathbf{x}), \n\tilde{A}^i(\mathbf{x}) = \bar{A}^i + x^j \bar{A}^i_j + (\mathcal{E}_r \hat{A}^i)(\mathbf{x}), \n\tilde{\mathbf{h}}(\mathbf{x}) = (\mathcal{E}_r \mathbf{h})(\mathbf{x}).
$$

(日) (日) (日) (日) (日) (日) 日 (9) Q O

Consider the restriction of the extended system [\(8\)](#page-84-0) to a large ball \bar{B}_R .

K □ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q

Consider the restriction of the extended system [\(8\)](#page-84-0) to a large ball \bar{B}_R .

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q O

The normal vector to ∂B_R is $\nu(\mathbf{x}) = \frac{1}{R}\mathbf{x}$.

Consider the restriction of the extended system [\(8\)](#page-84-0) to a large ball B_R .

The normal vector to ∂B_R is $\nu(\mathbf{x}) = \frac{1}{R}\mathbf{x}$.

Therefore, the characteristic matrix for $\mathbf{x} \in \partial B_R$ is

$$
\beta(\mathbf{x}) = \nu_i(\mathbf{x}) \tilde{A}^i(\mathbf{x}) = \frac{1}{R} x^i \tilde{A}^i(\mathbf{x}) \n= \frac{1}{R} \left(x^i \bar{A}^i + x^i x^j \bar{A}^i_j + x^i (\mathcal{E}_r \hat{A}^i)(\mathbf{x}) \right) \n\approx \frac{1}{R} x^i x^j \bar{A}^i_j
$$

KORK EX KEY KEY YOUR

for large R.

Proposition: As $R \to \infty$, the quadratic form

$$
Q_{\beta}(\mathbf{x})(\xi) = \xi^{\mathsf{T}} \beta(\mathbf{x}) \xi
$$

defined by $\beta(\mathbf{x})$ is asymptotic to

$$
\frac{1}{2R}\tilde{Q}_1(\mathbf{x})(x^1\xi,\ldots,x^n\xi)\geq \frac{1}{2}\lambda_0R|\xi|^2,
$$

A DIA K A B A B A B A A A A A B A A A A A

where $\lambda_0 > 0$ is the minimum eigenvalue of $\tilde{Q}_1(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^n$.

Proposition: As $R \to \infty$, the quadratic form

$$
Q_{\beta}(\mathbf{x})(\xi) = \xi^{\mathsf{T}} \beta(\mathbf{x}) \xi
$$

defined by $\beta(\mathbf{x})$ is asymptotic to

$$
\frac{1}{2R}\tilde{Q}_1(\mathbf{x})(x^1\xi,\ldots,x^n\xi)\geq \frac{1}{2}\lambda_0R|\xi|^2,
$$

where $\lambda_0 > 0$ is the minimum eigenvalue of $\tilde{Q}_1(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^n$.

It follows that, for sufficiently large R , the characteristic matrix $\beta(\mathbf{x})$ is positive definite for all $\mathbf{x} \in \partial B_R$. Therefore, B_R is a P-convex domain for the extended system [\(8\)](#page-84-0).

K □ ▶ K @ ▶ K 콜 X K 콜 X _ 콜 _ ④ Q Q ^

Tso's theorem guarantees the existence of smooth tame estimates for the extended function $\tilde{\mathbf{y}} : \bar{B}_R \to \mathbb{R}^s$, in terms of the Sobolev norms of the function \tilde{A}^i , \tilde{B} , and $\tilde{\mathbf{h}}$ on \bar{B}_R .

A DIA K RIA K E A G A K RIA K LO A CA

Tso's theorem guarantees the existence of smooth tame estimates for the extended function $\tilde{\mathbf{y}} : \bar{B}_R \to \mathbb{R}^s$, in terms of the Sobolev norms of the function \tilde{A}^i , \tilde{B} , and $\tilde{\mathbf{h}}$ on \bar{B}_R .

These, in turn, are bounded in terms of the Sobolev norms of the functions A^i , B, and **h** on \bar{B}_r .

Tso's theorem guarantees the existence of smooth tame estimates for the extended function $\tilde{\mathbf{y}} : \bar{B}_R \to \mathbb{R}^s$, in terms of the Sobolev norms of the function \tilde{A}^i , \tilde{B} , and $\tilde{\mathbf{h}}$ on \bar{B}_R .

These, in turn, are bounded in terms of the Sobolev norms of the functions A^i , B, and **h** on \bar{B}_r .

Thus we obtain estimates for the solution $\mathbf{v} : \overline{B}_r \to \mathbb{R}^s$ as follows:

$$
\begin{aligned} \|\mathbf{v}\|_{k} &\leq \|\tilde{\mathbf{v}}\|_{k} \leq C_{k} \left(\|\tilde{\mathbf{h}}\|_{k} + \|\tilde{\mathbf{h}}\|_{0} \|\mathbf{u}_{0}\|_{k+3+\lfloor \frac{n}{2} \rfloor} \right) \\ &\leq \tilde{C}_{k} M_{k,2} \left(\|\mathbf{h}\|_{k} + \|\mathbf{h}\|_{0} \|\mathbf{u}_{0}\|_{k+3+\lfloor \frac{n}{2} \rfloor} \right). \end{aligned}
$$

Tso's theorem guarantees the existence of smooth tame estimates for the extended function $\tilde{\mathbf{y}} : \bar{B}_R \to \mathbb{R}^s$, in terms of the Sobolev norms of the function \tilde{A}^i , \tilde{B} , and $\tilde{\mathbf{h}}$ on \bar{B}_R .

These, in turn, are bounded in terms of the Sobolev norms of the functions A^i , B, and **h** on \bar{B}_r .

Thus we obtain estimates for the solution $\mathbf{v} : \overline{B}_r \to \mathbb{R}^s$ as follows:

$$
\begin{aligned} \|\mathbf{v}\|_{k} &\leq \|\tilde{\mathbf{v}}\|_{k} \leq C_{k} \left(\|\tilde{\mathbf{h}}\|_{k} + \|\tilde{\mathbf{h}}\|_{0} \|\mathbf{u}_{0}\|_{k+3+\lfloor \frac{n}{2} \rfloor} \right) \\ &\leq \tilde{C}_{k} M_{k,2} \left(\|\mathbf{h}\|_{k} + \|\mathbf{h}\|_{0} \|\mathbf{u}_{0}\|_{k+3+\lfloor \frac{n}{2} \rfloor} \right). \end{aligned}
$$

Theorem 1 then follows from Nash-Moser.

And now, back to isometric embedding!

(日) (日) (日) (日) (日) (日) 日 (9) Q O

And now, back to isometric embedding!

Theorem 2 (Chen, C—, Slemrod, Wang, Yang): Let (M, q) be a C^{∞} Riemannian manifold of dimension $n = 2$ or $n = 3$; let $N=\frac{1}{2}$ $\frac{1}{2}n(n+1)$; let $\mathbf{x}_0 \in M$, and suppose that the Riemann curvature tensor $R(\mathbf{x}_0)$ is nonzero. Then there exists a neighborhood $\Omega \subset M$ of \mathbf{x}_0 for which there is a C^{∞} isometric embedding $\mathbf{y}: \Omega \to \mathbb{R}^N$.

ALL AND AREA CREW BE VIOLA

Strategy for the proof:

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Strategy for the proof:

• Choose local coordinates $\mathbf{x} = (x^1, \dots, x^n)$ on M so that $\mathbf{x}_0 = \mathbf{0}$. Given a C^{∞} metric q on a neighborhood Ω of $x = 0$, choose a real analytic metric \bar{q} on Ω that agrees with g to sufficiently high order at $x = 0$. By the Cartan-Janet theorem, there exists a real analytic isometric embedding (possibly on a smaller neighborhood) $\mathbf{y}_0 : \Omega \subset M \to \mathbb{R}^N$ of (Ω, \bar{g}) into \mathbb{R}^N .

Strategy for the proof:

- Choose local coordinates $\mathbf{x} = (x^1, \dots, x^n)$ on M so that $\mathbf{x}_0 = \mathbf{0}$. Given a C^{∞} metric q on a neighborhood Ω of $x = 0$, choose a real analytic metric \bar{q} on Ω that agrees with g to sufficiently high order at $x = 0$. By the Cartan-Janet theorem, there exists a real analytic isometric embedding (possibly on a smaller neighborhood) $\mathbf{y}_0 : \Omega \subset M \to \mathbb{R}^N$ of (Ω, \bar{g}) into \mathbb{R}^N .
- The linearization of the isometric embedding system at y_0 is a first-order PDE system of N equations for the unknown function $\mathbf{v}: \Omega \to \mathbb{R}^N$. This system decomposes into a system of n first-order PDEs for the tangential components of **v**, together with $(N - n)$ equations that determine the normal components of v algebraically in terms of the tangential components.

• We show that, under the hypotheses of Theorem 2, the embedding v_0 can be chosen so that the tangential subsystem becomes strongly symmetric positive after a fairly simple, but carefully chosen, change of variables. Consequently, it follows from the argument given in the proof of Theorem 1 that the tangential components of v satisfy the smooth tame estimates required for Nash-Moser.

KORK EX KEY KEY YOUR

- We show that, under the hypotheses of Theorem 2, the embedding v_0 can be chosen so that the tangential subsystem becomes strongly symmetric positive after a fairly simple, but carefully chosen, change of variables. Consequently, it follows from the argument given in the proof of Theorem 1 that the tangential components of v satisfy the smooth tame estimates required for Nash-Moser.
- The remaining algebraic equations will imply the necessary estimates for the normal components of v. Theorem 2 then follows directly from the Nash-Moser implicit function theorem .

A DIA K A B A B A B A A A A A B A A A A A

The linearized isometric embedding equations

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q O

The linearized isometric embedding equations

Set $y(x) = y_0(x) + v(x)$, where $v(x)$ is assumed to be small, and substitute into the isometric embedding system to obtain:

$$
\partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{y}_0 + (\partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{v} + \partial_j \mathbf{y}_0 \cdot \partial_i \mathbf{v}) + \partial_i \mathbf{v} \cdot \partial_j \mathbf{v} = g_{ij}.
$$

A DIA K A B A B A B A A A A A B A A A A A

The linearized isometric embedding equations

Set $y(x) = y_0(x) + v(x)$, where $v(x)$ is assumed to be small, and substitute into the isometric embedding system to obtain:

$$
\partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{y}_0 + (\partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{v} + \partial_j \mathbf{y}_0 \cdot \partial_i \mathbf{v}) + \partial_i \mathbf{v} \cdot \partial_j \mathbf{v} = g_{ij}.
$$

The linearization of the system at y_0 is obtained by eliminating the terms that are quadratic in v:

$$
\partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{v} + \partial_j \mathbf{y}_0 \cdot \partial_i \mathbf{v} = h_{ij}, \qquad 1 \le i, j \le n,
$$
 (9)

where $h_{ij} = g_{ij} - \bar{g}_{ij}$.

The linearized system

$$
\partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{v} + \partial_j \mathbf{y}_0 \cdot \partial_i \mathbf{v} = h_{ij}, \qquad 1 \le i, j \le n \tag{9}
$$

A DIA K A B A B A B A A A A A B A A A A A

can be reformulated as a system of n linear PDEs for the n tangential components of **v**, together with a system of $(N - n)$ algebraic equations for the normal components:
The linearized system

$$
\partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{v} + \partial_j \mathbf{y}_0 \cdot \partial_i \mathbf{v} = h_{ij}, \qquad 1 \le i, j \le n \tag{9}
$$

A DIA K A B A B A B A A A A A B A A A A A

can be reformulated as a system of n linear PDEs for the n tangential components of **v**, together with a system of $(N - n)$ algebraic equations for the normal components:

For $i = 1, \ldots, n$, let $\bar{v}_i(\mathbf{x})$ be the function

$$
\bar{v}_i(\mathbf{x}) = \partial_i \mathbf{y}_0(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}).
$$

The linearized system

$$
\partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{v} + \partial_j \mathbf{y}_0 \cdot \partial_i \mathbf{v} = h_{ij}, \qquad 1 \le i, j \le n \tag{9}
$$

can be reformulated as a system of n linear PDEs for the n tangential components of **v**, together with a system of $(N - n)$ algebraic equations for the normal components:

For $i = 1, \ldots, n$, let $\bar{v}_i(\mathbf{x})$ be the function

$$
\bar{v}_i(\mathbf{x}) = \partial_i \mathbf{y}_0(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}).
$$

Then the system [\(9\)](#page-104-0) can be written as

$$
\partial_i \bar{v}_j + \partial_j \bar{v}_i - 2\partial_{ij}^2 \mathbf{y}_0 \cdot \mathbf{v} = h_{ij}, \qquad 1 \le i, j \le n. \tag{10}
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q ①

Since y_0 is an embedding, the tangent vectors $\{\partial_1 y_0, \ldots, \partial_n y_0\}$ are linearly independent and span an n-dimensional subspace $T_\mathbf{x} \subset \mathbb{R}^N$.

ADE AFER A EX A GAR

Since y_0 is an embedding, the tangent vectors $\{\partial_1 y_0, \ldots, \partial_n y_0\}$ are linearly independent and span an n-dimensional subspace $T_\mathbf{x} \subset \mathbb{R}^N$.

We can therefore decompose the second derivatives $\partial_{ij}^2 \mathbf{y}_0$ as follows:

$$
\partial_{ij}^2 \mathbf{y}_0 = \Gamma_{ij}^k \partial_k \mathbf{y}_0 + H_{ij},
$$

ALL AND AREA CREW BE VIOLA

where, for each $1 \leq i, j \leq n$, the vector-valued function $H_{ij} = H_{ji} : \Omega \to \mathbb{R}^N$ satisfies $H_{ij} \cdot \partial_k \mathbf{y}_0 = 0$ for $1 \leq k \leq n$.

Since y_0 is an embedding, the tangent vectors $\{\partial_1 y_0, \ldots, \partial_n y_0\}$ are linearly independent and span an n-dimensional subspace $T_\mathbf{x} \subset \mathbb{R}^N$.

We can therefore decompose the second derivatives $\partial_{ij}^2 \mathbf{y}_0$ as follows:

$$
\partial_{ij}^2 \mathbf{y}_0 = \Gamma_{ij}^k \partial_k \mathbf{y}_0 + H_{ij},
$$

where, for each $1 \leq i, j \leq n$, the vector-valued function $H_{ij} = H_{ji} : \Omega \to \mathbb{R}^N$ satisfies $H_{ij} \cdot \partial_k \mathbf{y}_0 = 0$ for $1 \leq k \leq n$.

The quadratic form $H_{ij}dx^idx^j$ is the second fundamental form of the embedding v_0 .

Let $(\mathbf{e}_{n+1}, \ldots, \mathbf{e}_N)$ be a smoothly varying orthonormal basis for the normal bundle of the embedded submanifold $\mathbf{y}_0(\Omega) \subset \mathbb{R}^N$. Then we can write the second fundamental form of y_0 as

$$
H_{ij}dx^i\circ dx^j=\mathbf{e}_\alpha\otimes H_{ij}^\alpha dx^i\circ dx^j
$$

for scalar-valued functions H_{ij}^{α} on Ω .

Let $(e_{n+1},...,e_N)$ be a smoothly varying orthonormal basis for the normal bundle of the embedded submanifold $\mathbf{y}_0(\Omega) \subset \mathbb{R}^N$. Then we can write the second fundamental form of y_0 as

$$
H_{ij}dx^i\circ dx^j=\mathbf{e}_\alpha\otimes H_{ij}^\alpha dx^i\circ dx^j
$$

for scalar-valued functions H_{ij}^{α} on Ω .

Definition: The embedding $y_0: \Omega \to \mathbb{R}^N$ is nondegenerate if, for each $\mathbf{x} \in \Omega$, the $\frac{1}{2}n(n-1)$ matrices

$$
H^{\alpha}(\mathbf{x}) = [H^{\alpha}_{ij}(\mathbf{x})]
$$

are linearly independent, or equivalently, if the vectors $H_{ij}(\mathbf{x})$ span the normal space $T_{\mathbf{x}}^{\perp} \subset \mathbb{R}^{N}$.

Let $(e_{n+1},...,e_N)$ be a smoothly varying orthonormal basis for the normal bundle of the embedded submanifold $\mathbf{y}_0(\Omega) \subset \mathbb{R}^N$. Then we can write the second fundamental form of y_0 as

$$
H_{ij}dx^i\circ dx^j=\mathbf{e}_\alpha\otimes H_{ij}^\alpha dx^i\circ dx^j
$$

for scalar-valued functions H_{ij}^{α} on Ω .

Definition: The embedding $y_0: \Omega \to \mathbb{R}^N$ is nondegenerate if, for each $\mathbf{x} \in \Omega$, the $\frac{1}{2}n(n-1)$ matrices

$$
H^{\alpha}(\mathbf{x}) = [H^{\alpha}_{ij}(\mathbf{x})]
$$

are linearly independent, or equivalently, if the vectors $H_{ij}(\mathbf{x})$ span the normal space $T_{\mathbf{x}}^{\perp} \subset \mathbb{R}^{N}$.

We will assume henceforth that y_0 is nondegenerate.

Let II_x denote the span of the matrices H^{α} .

Let II_x denote the span of the matrices H^{α} .

Definition: The *annihilator* $\text{II}_{\mathbf{x}}^{\perp}$ of $\text{II}_{\mathbf{x}}$ is the subspace of the space S_n of symmetric $n \times n$ matrices defined by

$$
\Pi_{\mathbf{x}}^{\perp} = \{ A \in \mathcal{S}_n : \langle A, H^{\alpha} \rangle = 0, \quad n + 1 \le \alpha \le N \},
$$

where

$$
\langle A, H^{\alpha} \rangle = A^{ij} H_{ij}^{\alpha}.
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q O

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q O

• dim(II_{**x**}) =
$$
\frac{1}{2}
$$
n(*n* - 1) for all **x** $\in \Omega$.

- dim(II_x) = $\frac{1}{2}n(n-1)$ for all $\mathbf{x} \in \Omega$.
- dim($\text{II}_{\mathbf{x}}^{\perp}$) = n for all $\mathbf{x} \in \Omega$.

- dim(II_x) = $\frac{1}{2}n(n-1)$ for all $\mathbf{x} \in \Omega$.
- dim($\text{II}_{\mathbf{x}}^{\perp}$) = n for all $\mathbf{x} \in \Omega$.

Let $A^1, \ldots, A^n : \Omega \to \mathcal{S}_n$ be chosen so that for each $\mathbf{x} \in \Omega$, the matrices $A^1(\mathbf{x}), \ldots, A^n(\mathbf{x})$ comprise a basis of $\mathrm{II}_{\mathbf{x}}^{\perp}$.

A DIA K A B A B A B A A A A A B A A A A A

Write $A^k = [A^{kij}]$, where $A^{kij} = A^{kji}$.

• dim(II_{**x**}) =
$$
\frac{1}{2}
$$
n(*n* - 1) for all **x** $\in \Omega$.

• dim($\text{II}_{\mathbf{x}}^{\perp}$) = n for all $\mathbf{x} \in \Omega$.

Let $A^1, \ldots, A^n : \Omega \to \mathcal{S}_n$ be chosen so that for each $\mathbf{x} \in \Omega$, the matrices $A^1(\mathbf{x}), \ldots, A^n(\mathbf{x})$ comprise a basis of $\mathrm{II}_{\mathbf{x}}^{\perp}$.

Write $A^k = [A^{kij}]$, where $A^{kij} = A^{kji}$.

And now, back to the linearized isometric embedding system...

KOD ROOM AS AS AS STORE

The decomposition

$$
\partial^2_{ij} \mathbf{y}_0 = \Gamma^k_{ij} \partial_k \mathbf{y}_0 + H_{ij}
$$

allows us to write the linearized system

$$
\partial_i \bar{v}_j + \partial_j \bar{v}_i - 2\partial_{ij}^2 \mathbf{y}_0 \cdot \mathbf{v} = h_{ij}, \qquad 1 \le i, j \le n \tag{10}
$$

as

$$
\partial_i \bar{v}_j + \partial_j \bar{v}_i - 2(\Gamma^k_{ij} \bar{v}_k + H_{ij} \cdot \mathbf{v}) = h_{ij}, \qquad 1 \le i, j \le n. \tag{11}
$$

The decomposition

$$
\partial^2_{ij} \mathbf{y}_0 = \Gamma^k_{ij} \partial_k \mathbf{y}_0 + H_{ij}
$$

allows us to write the linearized system

$$
\partial_i \bar{v}_j + \partial_j \bar{v}_i - 2\partial_{ij}^2 \mathbf{y}_0 \cdot \mathbf{v} = h_{ij}, \qquad 1 \le i, j \le n \tag{10}
$$

as

$$
\partial_i \bar{v}_j + \partial_j \bar{v}_i - 2(\Gamma^k_{ij} \bar{v}_k + H_{ij} \cdot \mathbf{v}) = h_{ij}, \qquad 1 \le i, j \le n. \tag{11}
$$

By pairing each of the (symmetric!) matrices A^k with the system (11) , we obtain a system of n equations for the functions $\bar{\mathbf{v}} = (\bar{v}_1, \ldots, \bar{v}_n)$:

$$
A^{kij}(\partial_i \bar{v}_j - \Gamma_{ij}^\ell \bar{v}_\ell) = \frac{1}{2} A^{kij} h_{ij}, \qquad 1 \le k \le n. \tag{12}
$$

Now, suppose that $\bar{\mathbf{v}}(\mathbf{x})$ is any solution of the reduced linear system [\(12\)](#page-124-1). The nondegeneracy assumption guarantees that the algebraic equations

$$
\mathbf{v} \cdot \partial_i \mathbf{y}_0 = \bar{v}_i, \qquad 1 \le i \le n,
$$

-2
$$
\mathbf{v} \cdot H_{ij} = h_{ij} - \partial_i \bar{v}_j - \partial_j \bar{v}_i + 2\Gamma^k_{ij} \bar{v}_k, \qquad 1 \le i, j \le n
$$

A DIA K A B A B A B A A A A A B A A A A A

can be solved uniquely for $\mathbf{v}(\mathbf{x})$.

Now, suppose that $\bar{v}(x)$ is any solution of the reduced linear system [\(12\)](#page-124-1). The nondegeneracy assumption guarantees that the algebraic equations

$$
\mathbf{v} \cdot \partial_i \mathbf{y}_0 = \bar{v}_i, \qquad 1 \le i \le n,
$$

-2
$$
\mathbf{v} \cdot H_{ij} = h_{ij} - \partial_i \bar{v}_j - \partial_j \bar{v}_i + 2\Gamma^k_{ij} \bar{v}_k, \qquad 1 \le i, j \le n
$$

can be solved uniquely for $\mathbf{v}(\mathbf{x})$.

So it suffices to show that we can arrange for the reduced system [\(12\)](#page-124-1) to be strongly symmetric positive; this will imply all the necessary estimates required for the Nash-Moser Theorem.

Now, suppose that $\bar{v}(x)$ is any solution of the reduced linear system [\(12\)](#page-124-1). The nondegeneracy assumption guarantees that the algebraic equations

$$
\mathbf{v} \cdot \partial_i \mathbf{y}_0 = \bar{v}_i, \qquad 1 \le i \le n,
$$

-2
$$
\mathbf{v} \cdot H_{ij} = h_{ij} - \partial_i \bar{v}_j - \partial_j \bar{v}_i + 2\Gamma^k_{ij} \bar{v}_k, \qquad 1 \le i, j \le n
$$

can be solved uniquely for $\mathbf{v}(\mathbf{x})$.

So it suffices to show that we can arrange for the reduced system [\(12\)](#page-124-1) to be strongly symmetric positive; this will imply all the necessary estimates required for the Nash-Moser Theorem.

KORK EX KEY KEY YOUR

This is the hard part!

We can write the reduced system [\(12\)](#page-124-1) in the form

$$
\bar{A}^i \partial_i \bar{\mathbf{v}} + B \bar{\mathbf{v}} = \mathbf{h},
$$

where

$$
\bar{A}^{i} = [A^{kij}] = \begin{bmatrix} A^{1i1} & \cdots & A^{1in} \\ \vdots & & \vdots \\ A^{ni1} & \cdots & A^{nin} \end{bmatrix},
$$

$$
B = [B^{kj}] = [-A^{k\ell m} \Gamma^{j}_{\ell m}], \qquad \mathbf{h} = [\frac{1}{2} A^{k\ell m} h_{\ell m}],
$$

$$
A^{kij}H_{ij}^{\alpha} = 0, \quad 1 \le k \le n, \quad n+1 \le \alpha \le N.
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q O

We can write the reduced system [\(12\)](#page-124-1) in the form

$$
\bar{A}^i \partial_i \bar{\mathbf{v}} + B \bar{\mathbf{v}} = \mathbf{h},
$$

where

$$
\bar{A}^{i} = [A^{kij}] = \begin{bmatrix} A^{1i1} & \cdots & A^{1in} \\ \vdots & & \vdots \\ A^{ni1} & \cdots & A^{nin} \end{bmatrix},
$$

$$
B = [B^{kj}] = [-A^{k\ell m} \Gamma^{j}_{\ell m}], \qquad \mathbf{h} = [\frac{1}{2} A^{k\ell m} h_{\ell m}],
$$

$$
A^{kij} H^{\alpha}_{ij} = 0, \quad 1 \le k \le n, \quad n + 1 \le \alpha \le N.
$$

GOAL: Show that we can choose the approximate embedding $\mathbf{y}_0 : \Omega \to \mathbb{R}^N$ so that this system becomes strongly symmetric positive at $x = 0$. Then the local isometric embedding theorem follows from Theorem 1.

ADE ARE ARE ARE ADD

The Riemann curvature tensors for g and \bar{g} and their first derivatives agree at $x = 0$, so we need not distinguish between them.

The Riemann curvature tensors for q and \bar{q} and their first derivatives agree at $x = 0$, so we need not distinguish between them.

Choose a local coordinate system $\mathbf{x} = (x^1, \dots, x^n)$ based at $x = 0$ that is *normal* with respect to the metric q, i.e., $\Gamma_{ij}^k(\mathbf{0}) = 0$ for $1 \leq i, j, k \leq n$.

The Riemann curvature tensors for q and \bar{q} and their first derivatives agree at $x = 0$, so we need not distinguish between them.

Choose a local coordinate system $\mathbf{x} = (x^1, \dots, x^n)$ based at $x = 0$ that is *normal* with respect to the metric q, i.e., $\Gamma_{ij}^k(\mathbf{0}) = 0$ for $1 \leq i, j, k \leq n$.

Choose the basis $(\mathbf{e}_{n+1}, \ldots, \mathbf{e}_N)$ for the normal bundle so that

 $\nabla^{\perp}_{\mathbf{w}}\mathbf{e}_{\alpha}(\mathbf{0})=\mathbf{0}$

A DIA K A B A B A B A A A A A B A A A A A

for $n + 1 \leq \alpha \leq N$ and all $\mathbf{w} \in T_0M$.

K □ ▶ K @ ▶ K 콜 X K 콜 X _ 콜 _ ④ Q Q ^

Recall that we have $A^{kij} = A^{kji}$, but no other symmetry assumptions among the A^{kij} . Thus the coefficient matrices $\overline{A}^i = [A^{kij}]$ are not necessarily symmetric.

ADE ARE ARE ARE ADD

Recall that we have $A^{kij} = A^{kji}$, but no other symmetry assumptions among the A^{kij} . Thus the coefficient matrices $\bar{A}^i = [A^{kij}]$ are not necessarily symmetric.

Question: Can we always choose a basis A^1, \ldots, A^n for $\prod_{\mathbf{x}}^{\perp}$ for which the A^{kij} are symmetric in all their indices, and hence the matrices \bar{A}^i are symmetric?

Equivalently, can we always find a fully symmetric solution A^{kij} to the annihilator equations

$$
A^{kij}H_{ij}^{\alpha} = 0?
$$

ADE ARE ARE ARE ADD

Recall that we have $A^{kij} = A^{kji}$, but no other symmetry assumptions among the A^{kij} . Thus the coefficient matrices $\bar{A}^i = [A^{kij}]$ are not necessarily symmetric.

Question: Can we always choose a basis A^1, \ldots, A^n for $\prod_{\mathbf{x}}^{\perp}$ for which the A^{kij} are symmetric in all their indices, and hence the matrices \bar{A}^i are symmetric?

Equivalently, can we always find a fully symmetric solution A^{kij} to the annihilator equations

$$
A^{kij}H_{ij}^{\alpha} = 0?
$$

Answer: Yes if $n = 2$ or $n = 3$; No if $n \ge 4$.

K ロ ▶ K 레 ▶ K 로 K K 로 K - 로 - X 9 Q Q Q

• When $n = 2, N = 3$, the annihilator equations are a system of 2 homogeneous linear equations for the 4 components of a symmetric tensor A^{kij} **e**_i \circ **e**_i, so there is a 2-dimensional solution space.

A DIA K RIA K E A G A K RIA K LO A CA

- When $n = 2, N = 3$, the annihilator equations are a system of 2 homogeneous linear equations for the 4 components of a symmetric tensor A^{kij} **e**_i \circ **e**_i, so there is a 2-dimensional solution space.
- When $n = 3, N = 6$, the annihilator equations are a system of 9 homogeneous linear equations for the 10 components of a symmetric tensor A^{kij} **e**_i \circ **e**_i, so there is a 1-dimensional solution space.

 \overline{z} (\overline{z}) \overline{z}) \overline{z}) \overline{z}) \overline{z}

 OQ

- When $n = 2, N = 3$, the annihilator equations are a system of 2 homogeneous linear equations for the 4 components of a symmetric tensor A^{kij} **e**_i \circ **e**_i, so there is a 2-dimensional solution space.
- When $n = 3, N = 6$, the annihilator equations are a system of 9 homogeneous linear equations for the 10 components of a symmetric tensor A^{kij} **e**_i \circ **e**_i, so there is a 1-dimensional solution space.
- When $n \geq 4$, there are more equations than components of a symmetric tensor, and so generically there are no solutions. (e.g., for $n = 4, N = 10$, there are 24 equations for 20 components.)

- When $n = 2, N = 3$, the annihilator equations are a system of 2 homogeneous linear equations for the 4 components of a symmetric tensor A^{kij} **e**_i \circ **e**_i, so there is a 2-dimensional solution space.
- When $n = 3, N = 6$, the annihilator equations are a system of 9 homogeneous linear equations for the 10 components of a symmetric tensor A^{kij} **e**_i \circ **e**_i, so there is a 1-dimensional solution space.
- When $n \geq 4$, there are more equations than components of a symmetric tensor, and so generically there are no solutions. (e.g., for $n = 4, N = 10$, there are 24 equations for 20 components.)

Henceforth, we will assume that $n \leq 3$ and the A^{kij} are fully symmetric.
Main issue: Strong symmetric positivity

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q O

Main issue: Strong symmetric positivity

Henceforth, we will only be concerned with the values of H_{ij}^{α} , A^{kij} , and their derivatives at $\mathbf{x} = \mathbf{0}$. We will denote the derivatives by

$$
h_{ijk}^{\alpha} = \partial_k H_{ij}^{\alpha}, \qquad a_{\ell}^{kij} = \partial_{\ell} A^{kij},
$$

and we will write

$$
h_k^{\alpha} = \begin{bmatrix} h_{ijk}^{\alpha} \end{bmatrix}, \qquad a_{\ell}^{k} = \begin{bmatrix} a_{\ell}^{kij} \end{bmatrix}.
$$

ADE AFER A EX A GAR

Main issue: Strong symmetric positivity

Henceforth, we will only be concerned with the values of H_{ij}^{α} , A^{kij} , and their derivatives at $\mathbf{x} = \mathbf{0}$. We will denote the derivatives by

$$
h_{ijk}^{\alpha} = \partial_k H_{ij}^{\alpha}, \qquad a_{\ell}^{kij} = \partial_{\ell} A^{kij},
$$

and we will write

$$
h_k^{\alpha} = \begin{bmatrix} h_{ijk}^{\alpha} \end{bmatrix}, \qquad a_{\ell}^{k} = \begin{bmatrix} a_{\ell}^{kij} \end{bmatrix}.
$$

The Cartan-Janet theorem implies that these values may be chosen arbitrarily, subject only to the nondegeneracy condition on the H_{ij}^{α} and the following constraints:

Gauss equations and their first derivatives:

$$
\sum_{\alpha=n+1}^{N} (H_{ik}^{\alpha} H_{j\ell}^{\alpha} - H_{i\ell}^{\alpha} H_{jk}^{\alpha}) = R_{ijk\ell};
$$

$$
\sum_{\alpha=n+1}^{N} (H_{ik}^{\alpha} h_{j\ell m}^{\alpha} + H_{j\ell}^{\alpha} h_{ikm}^{\alpha} - H_{i\ell}^{\alpha} h_{jkm}^{\alpha} - H_{jk}^{\alpha} h_{i\ell m}^{\alpha}) = \partial_m R_{ijk\ell};
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q ①

Gauss equations and their first derivatives:

$$
\sum_{\alpha=n+1}^{N} (H_{ik}^{\alpha} H_{j\ell}^{\alpha} - H_{i\ell}^{\alpha} H_{jk}^{\alpha}) = R_{ijk\ell};
$$

$$
(H_{ik}^{\alpha} h_{ik}^{\alpha} + H_{ik}^{\alpha} h_{ik}^{\alpha} - H_{ik}^{\alpha} h_{ik}^{\alpha} - H_{ik}^{\alpha} h_{ik}^{\alpha}) = \partial_{im}
$$

$$
\sum_{\alpha=n+1} (H_{ik}^{\alpha} h_{j\ell m}^{\alpha} + H_{jl}^{\alpha} h_{ikm}^{\alpha} - H_{il}^{\alpha} h_{jkm}^{\alpha} - H_{jk}^{\alpha} h_{ilm}^{\alpha}) = \partial_m R_{ijk\ell};
$$

Codazzi equations:

N

$$
h_{ijk}^{\alpha} = h_{ikj}^{\alpha} = h_{jik}^{\alpha};
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q @

Gauss equations and their first derivatives:

$$
\sum_{\alpha=n+1}^{N} (H_{ik}^{\alpha} H_{j\ell}^{\alpha} - H_{i\ell}^{\alpha} H_{jk}^{\alpha}) = R_{ijk\ell};
$$

$$
\sum_{\alpha=n+1}^{N} (H_{ik}^{\alpha} h_{j\ell m}^{\alpha} + H_{j\ell}^{\alpha} h_{ikm}^{\alpha} - H_{i\ell}^{\alpha} h_{jkm}^{\alpha} - H_{jk}^{\alpha} h_{i\ell m}^{\alpha}) = \partial_m R_{ijk\ell};
$$

Codazzi equations:

$$
h_{ijk}^{\alpha} = h_{ikj}^{\alpha} = h_{jik}^{\alpha};
$$

Annihilator equations and their first derivatives:

$$
A^{kij}H_{ij}^{\alpha} = 0;
$$

$$
A^{kij}h_{ij\ell}^{\alpha} + H_{ij}^{\alpha}a_{\ell}^{kij} = 0.
$$

K □ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q

$$
B(\mathbf{0})=\mathbf{0}.
$$

$$
B(\mathbf{0})=\mathbf{0}.
$$

Thus, the quadratic forms $\bar{Q}_0 : \mathbb{R}^n \to \mathbb{R}$ and $\bar{Q}_1 : \mathbb{R}^{n^2} \to \mathbb{R}$ are given by

$$
\bar{Q}_0 = -a_i^i, \qquad \bar{Q}_1 = \begin{bmatrix} 2a_1^1 & \cdots & a_n^1 + a_1^n \\ \vdots & \cdots & \vdots \\ a_n^1 + a_1^n & \cdots & 2a_n^n \end{bmatrix}.
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q O

$$
B(\mathbf{0})=\mathbf{0}.
$$

Thus, the quadratic forms $\bar{Q}_0 : \mathbb{R}^n \to \mathbb{R}$ and $\bar{Q}_1 : \mathbb{R}^{n^2} \to \mathbb{R}$ are given by

$$
\bar{Q}_0 = -a_i^i, \qquad \bar{Q}_1 = \begin{bmatrix} 2a_1^1 & \cdots & a_n^1 + a_1^n \\ \vdots & \cdots & \vdots \\ a_n^1 + a_1^n & \cdots & 2a_n^n \end{bmatrix}.
$$

From this, strong symmetric positivity appears impossible.

$$
B(\mathbf{0})=\mathbf{0}.
$$

Thus, the quadratic forms $\bar{Q}_0 : \mathbb{R}^n \to \mathbb{R}$ and $\bar{Q}_1 : \mathbb{R}^{n^2} \to \mathbb{R}$ are given by

$$
\bar{Q}_0 = -a_i^i, \qquad \bar{Q}_1 = \begin{bmatrix} 2a_1^1 & \cdots & a_n^1 + a_1^n \\ \vdots & \cdots & \vdots \\ a_n^1 + a_1^n & \cdots & 2a_n^n \end{bmatrix}.
$$

A DIA K A B A B A B A A A A A B A A A A A

From this, strong symmetric positivity appears impossible.

Amazingly, a change of variables may save the day!

Lemma: Under a change of variables of the form

$$
x^{i} = \bar{x}^{i} + \frac{1}{2}c_{jk}^{i}\bar{x}^{j}\bar{x}^{k}, \qquad \bar{\mathbf{v}} = (I + \bar{x}^{i}S_{i})\bar{\mathbf{w}}, \tag{13}
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q O

where $c_{jk}^i = c_{kj}^i \in \mathbb{R}$ and S_1, \ldots, S_n are constant $n \times n$ matrices, the symmetric linear system [\(12\)](#page-124-0) is transformed to a symmetric system

$$
\tilde{A}^i \partial_i \bar{\mathbf{w}} + \tilde{B} \bar{\mathbf{w}} = \tilde{\mathbf{h}},
$$

with

$$
\tilde{A}^i = A^i + \bar{x}^k \left(S_k^{\mathsf{T}} A^i + A^i S_k - c_{jk}^i A^j \right) + O(\bar{x}^2),
$$

$$
\tilde{B} = B + A^i S_i + O(\bar{x}).
$$

Lemma: Under a change of variables of the form

$$
x^{i} = \bar{x}^{i} + \frac{1}{2}c_{jk}^{i}\bar{x}^{j}\bar{x}^{k}, \qquad \bar{\mathbf{v}} = (I + \bar{x}^{i}S_{i})\bar{\mathbf{w}}, \tag{13}
$$

where $c_{jk}^i = c_{kj}^i \in \mathbb{R}$ and S_1, \ldots, S_n are constant $n \times n$ matrices, the symmetric linear system [\(12\)](#page-124-0) is transformed to a symmetric system

$$
\tilde{A}^i \partial_i \bar{\mathbf{w}} + \tilde{B} \bar{\mathbf{w}} = \tilde{\mathbf{h}},
$$

with

$$
\tilde{A}^i = A^i + \bar{x}^k \left(S_k^{\mathsf{T}} A^i + A^i S_k - c_{jk}^i A^j \right) + O(\bar{x}^2),
$$

$$
\tilde{B} = B + A^i S_i + O(\bar{x}).
$$

So even if $B(0) = 0$ —which makes strong symmetric positivity impossible—the same may not be true of $\vec{B}(0)$ if the matrices S_i are chosen carefully.

Proof: Straightforward chain rule slog.

Proof: Straightforward chain rule slog.

The associated quadratic form $\tilde{\bar{Q}}_0$ for the transformed system is given by

$$
\begin{aligned}\n\tilde{\bar{Q}}_0 &= -a_i^i + c_{ij}^i A^j \\
&= \bar{Q}_0 + c_{ij}^i A^j,\n\end{aligned} \tag{14}
$$

and the (i, j) th block of \tilde{Q}_1 is given by

$$
(\tilde{Q}_1)_{ij} = (a_j^i + a_i^j) - (c_{jk}^i + c_{ik}^j)A^k + (S_i^{\mathsf{T}} A^j + A^j S_i) + (S_j^{\mathsf{T}} A^i + A^i S_j)
$$

= $(\bar{Q}_1)_{ij} - (c_{jk}^i + c_{ik}^j)A^k + (S_i^{\mathsf{T}} A^j + A^j S_i) + (S_j^{\mathsf{T}} A^i + A^i S_j).$
(15)

Theorem 2' (Chen, C-, Slemrod, Wang, Yang): Suppose that either $n = 2$ and $K(0) \neq 0$, or $n = 3$ and $R(0) \neq 0$. Then there exists a neighborhood $\Omega \subset M$ of $\mathbf{x} = \mathbf{0}$ and an approximate embedding $y_0: \Omega \to \mathbb{R}^N$ such that the linearized isometric embedding system can be transformed to a strongly symmetric positive system in a neighborhood of $x = 0$ via a change of variables of the form [\(13\)](#page-154-0).

Theorem 2' (Chen, C-, Slemrod, Wang, Yang): Suppose that either $n = 2$ and $K(0) \neq 0$, or $n = 3$ and $R(0) \neq 0$. Then there exists a neighborhood $\Omega \subset M$ of $\mathbf{x} = \mathbf{0}$ and an approximate embedding $y_0: \Omega \to \mathbb{R}^N$ such that the linearized isometric embedding system can be transformed to a strongly symmetric positive system in a neighborhood of $x = 0$ via a change of variables of the form [\(13\)](#page-154-0).

The existence of local isometric embeddings then follows from Theorem 1.

Outline of Proof:

Outline of Proof:

Step 1: Given any nonzero R, choose nondegenerate H_{ij}^{α} subject to the Gauss equations

$$
\sum_{\alpha=n+1}^{N} (H_{ik}^{\alpha} H_{j\ell}^{\alpha} - H_{i\ell}^{\alpha} H_{jk}^{\alpha}) = R_{ijk\ell},
$$

and fully symmetric A^{kij} subject to the annihilator equations

$$
A^{kij}H_{ij}^{\alpha}=0.
$$

A DIA K A B A B A B A A A A A B A A A A A

Step 2: Choose $\lambda, \mu > 0$, set

$$
\tilde{\bar{Q}}_0 = \lambda I_{n \times n}, \qquad \tilde{\bar{Q}}_1 = \mu I_{n^2 \times n^2},
$$

and solve as many of the equations

$$
\tilde{\bar{Q}}_0 = -a_i^i + c_{ij}^i A^j, \qquad (14)
$$

$$
(\tilde{\bar{Q}}_1)_{ij} = (a_j^i + a_i^j) - (c_{jk}^i + c_{ik}^j)A^k + (S_i^{\mathsf{T}} A^j + A^j S_i) + (S_j^{\mathsf{T}} A^i + A^i S_j).
$$

(15)

as possible for a subset of the c_{jk}^i and the entries of S_i .

Step 2: Choose $\lambda, \mu > 0$, set

$$
\tilde{\bar{Q}}_0 = \lambda I_{n \times n}, \qquad \tilde{\bar{Q}}_1 = \mu I_{n^2 \times n^2},
$$

and solve as many of the equations

$$
\tilde{\bar{Q}}_0 = -a_i^i + c_{ij}^i A^j, \qquad (14)
$$

$$
(\tilde{\bar{Q}}_1)_{ij} = (a_j^i + a_i^j) - (c_{jk}^i + c_{ik}^j)A^k + (S_i^{\mathsf{T}} A^j + A^j S_i) + (S_j^{\mathsf{T}} A^i + A^i S_j).
$$

(15)

KOD ROOM AS AS AS STORE

as possible for a subset of the c_{jk}^i and the entries of S_i .

The remaining equations determine an affine subspace A of "admissible" values for (a_{ℓ}^{kij}) $_{\ell}^{\kappa\imath\jmath}$.

Step 3: Find the values of (h_{ijk}^{α}) that satisfy the derivatives of the annihilator equations

$$
A^{kij}h_{ij\ell}^{\alpha} + H_{ij}^{\alpha}a_{\ell}^{kij} = 0
$$

KORK EX KEY KEY YOUR

for some (a_{ℓ}^{kij}) $\binom{\kappa\imath\jmath}{\ell}\in\mathcal{A}.$

Step 3: Find the values of (h_{ijk}^{α}) that satisfy the derivatives of the annihilator equations

$$
A^{kij}h_{ij\ell}^{\alpha} + H_{ij}^{\alpha}a_{\ell}^{kij} = 0
$$

for some (a_{ℓ}^{kij}) $\binom{\kappa\imath\jmath}{\ell}\in\mathcal{A}.$

These values determine an affine subspace $\mathcal H$ of "admissible" values for (h_{ijk}^{α}) .

Step 4: Show that all possible values of $(\partial_m R_{iik\ell})$ may be obtained as the right-hand sides of the derivatives of the Gauss equations

$$
\sum_{\alpha=n+1}^{N} (H_{ik}^{\alpha} h_{j\ell m}^{\alpha} + H_{jl}^{\alpha} h_{ikm}^{\alpha} - H_{il}^{\alpha} h_{jkm}^{\alpha} - H_{jk}^{\alpha} h_{ilm}^{\alpha}) = \partial_m R_{ijk\ell}
$$

KORK EX KEY KEY YOUR

for some $(h_{ijk}^{\alpha}) \in \mathcal{H}$.

Step 4: Show that all possible values of $(\partial_m R_{ijk\ell})$ may be obtained as the right-hand sides of the derivatives of the Gauss equations

$$
\sum_{\alpha=n+1}^{N} (H_{ik}^{\alpha} h_{j\ell m}^{\alpha} + H_{jl}^{\alpha} h_{ikm}^{\alpha} - H_{il}^{\alpha} h_{jkm}^{\alpha} - H_{jk}^{\alpha} h_{ilm}^{\alpha}) = \partial_m R_{ijk\ell}
$$

for some $(h_{ijk}^{\alpha}) \in \mathcal{H}$.

A DIA K RIA K E A G A K RIA K LO A CA

Conclusion: for any nonzero R and any values of $\partial_m R$, there exist values of H_{ij}^{α} , A^{kij} , h_{ijk}^{α} , a_{ℓ}^{kij} ℓ ^{*ty*} that satisfy all necessary constraints, and for which there exists a change of variables of the form [\(13\)](#page-154-0) that renders the linearized isometric embedding system strongly symmetric positive.

Conclusion: for any nonzero R and any values of $\partial_m R$, there exist values of H_{ij}^{α} , A^{kij} , h_{ijk}^{α} , a_{ℓ}^{kij} ℓ ^{*ty*} that satisfy all necessary constraints, and for which there exists a change of variables of the form [\(13\)](#page-154-0) that renders the linearized isometric embedding system strongly symmetric positive.

This completes the proof of Theorem $2'$.

Details for $n = 2$

K ロ ▶ K 레 ▶ K 로 K K 로 K - 로 - X 9 Q Q Q

Details for $n = 2$

When $n = 2$, there is only one second fundamental form matrix $H³$. According to the Gauss equations, we may choose

$$
H^3 = \begin{bmatrix} K & 0 \\ 0 & 1 \end{bmatrix}.
$$

KORK EX KEY KEY YOUR

Details for $n = 2$

When $n = 2$, there is only one second fundamental form matrix $H³$. According to the Gauss equations, we may choose

$$
H^3 = \begin{bmatrix} K & 0 \\ 0 & 1 \end{bmatrix}
$$

.

.

KORK EX KEY KEY YOUR

Then, according to the annihilator equations, we may choose

$$
A^{1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad A^{2} = \begin{bmatrix} 1 & 0 \\ 0 & -K \end{bmatrix}
$$

For any fixed $\lambda, \mu > 0$, the equations

$$
\tilde{\bar{Q}}_0 = \lambda I_{2 \times 2}, \qquad \tilde{\bar{Q}}_1 = \mu I_{4 \times 4}
$$

can be solved for c_{jk}^i and $S_i = [s_i^{jk}]$ $\binom{\jmath\kappa}{i}$ if and only if

$$
(a_1^{122} + a_2^{222} + \lambda) + K(a_1^{111} + a_2^{112} + \lambda) = 0.
$$
 (16)

(This solution makes use of the assumption that $K \neq 0$.)

For any fixed $\lambda, \mu > 0$, the equations

$$
\tilde{\bar{Q}}_0 = \lambda I_{2 \times 2}, \qquad \tilde{\bar{Q}}_1 = \mu I_{4 \times 4}
$$

can be solved for c_{jk}^i and $S_i = [s_i^{jk}]$ $\binom{\jmath\kappa}{i}$ if and only if

$$
(a_1^{122} + a_2^{222} + \lambda) + K(a_1^{111} + a_2^{112} + \lambda) = 0.
$$
 (16)

(This solution makes use of the assumption that $K \neq 0$.)

Thus, A is the 7-dimensional affine subspace of the 8-dimensional space of (a_{ℓ}^{kij}) $\binom{kij}{\ell}$ values defined by equation [\(16\)](#page-173-0). Now consider the derivatives of the annihilator equations, which may be written in matrix form as

$$
\langle A^k, h_\ell^3 \rangle + \langle H^3, a_\ell^k \rangle = 0.
$$

Now consider the derivatives of the annihilator equations, which may be written in matrix form as

$$
\langle A^k, h_\ell^3 \rangle + \langle H^3, a_\ell^k \rangle = 0.
$$

The defining equation [\(16\)](#page-173-0) for A is equivalent to

$$
\langle H^3, a_1^1 + a_2^2 \rangle = -(K+1)\lambda,
$$

which holds if and only if

$$
\langle A^1,h_1^3\rangle+\langle A^2,h_2^3\rangle=-\langle H^3,a_1^1+a_2^2\rangle=(K+1)\lambda,
$$

or, equivalently,

$$
3h_{112}^3 - Kh_{222}^3 = (K+1)\lambda.
$$
 (17)

KORK EX KEY KEY YOUR

Now consider the derivatives of the annihilator equations, which may be written in matrix form as

$$
\langle A^k, h_\ell^3 \rangle + \langle H^3, a_\ell^k \rangle = 0.
$$

The defining equation [\(16\)](#page-173-0) for A is equivalent to

$$
\langle H^3, a_1^1 + a_2^2 \rangle = -(K+1)\lambda,
$$

which holds if and only if

$$
\langle A^1,h_1^3\rangle+\langle A^2,h_2^3\rangle=-\langle H^3,a_1^1+a_2^2\rangle=(K+1)\lambda,
$$

or, equivalently,

$$
3h_{112}^3 - Kh_{222}^3 = (K+1)\lambda.
$$
 (17)

Thus, H is the 3-dimensional affine subspace of the 4-dimensional space of (h_{ijk}^3) values defined by equation [\(17\)](#page-175-0). Finally, consider the derivatives of the Gauss equations, which can be written as

$$
Kh_{122}^3 + h_{111}^3 = k_1,
$$

$$
Kh_{222}^3 + h_{112}^3 = k_2.
$$

The values of h_{ijk}^3 may be chosen arbitrarily, subject only to the condition

$$
3h_{112}^3 - Kh_{222}^3 = (K+1)\lambda; \tag{17}
$$

therefore, any given values of k_1 and k_2 may be realized by an appropriate choice of $h_{ijk}^3 \in \mathcal{H}$.

The reasoning in the $n = 3$ case is exactly the same—but the linear algebra is a lot messier!

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q O