Isometric embedding via strongly symmetric positive systems

Jeanne N. Clelland, University of Colorado, Boulder

Joint with Gui-Qiang Chen, Marshall Slemrod, Dehua Wang, and Deane Yang

> Midwest Geometry Conference Iowa State University

> > September 7, 2019

うして ふゆう ふほう ふほう ふしつ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへぐ

Let (M, g) be an *n*-dimensional Riemannian manifold. A map $\mathbf{y}: M \to \mathbb{R}^N$ is called an *isometric embedding* if \mathbf{y} is injective and, in local coordinates $\mathbf{x} = (x^1, \dots, x^n)$ on M,

$$\partial_i \mathbf{y} \cdot \partial_j \mathbf{y} = g_{ij}, \qquad 1 \le i, j \le n,$$
 (1)

(日) (日) (日) (日) (日) (日) (日) (日)

where $g = g_{ij} dx^i dx^j$ and ∂_i denotes $\frac{\partial}{\partial x^i}$.

Let (M, g) be an *n*-dimensional Riemannian manifold. A map $\mathbf{y}: M \to \mathbb{R}^N$ is called an *isometric embedding* if \mathbf{y} is injective and, in local coordinates $\mathbf{x} = (x^1, \dots, x^n)$ on M,

$$\partial_i \mathbf{y} \cdot \partial_j \mathbf{y} = g_{ij}, \qquad 1 \le i, j \le n,$$
 (1)

where $g = g_{ij} dx^i dx^j$ and ∂_i denotes $\frac{\partial}{\partial x^i}$.

The local isometric embedding problem asks whether, given (M, g) and $\mathbf{x}_0 \in M$, there exists an isometric embedding of some neighborhood of \mathbf{x}_0 into \mathbb{R}^N —i.e., whether the PDE system (1) has local solutions in some neighborhood of \mathbf{x}_0 .

Let (M, g) be an *n*-dimensional Riemannian manifold. A map $\mathbf{y}: M \to \mathbb{R}^N$ is called an *isometric embedding* if \mathbf{y} is injective and, in local coordinates $\mathbf{x} = (x^1, \dots, x^n)$ on M,

$$\partial_i \mathbf{y} \cdot \partial_j \mathbf{y} = g_{ij}, \qquad 1 \le i, j \le n,$$
 (1)

where $g = g_{ij} dx^i dx^j$ and ∂_i denotes $\frac{\partial}{\partial x^i}$.

The local isometric embedding problem asks whether, given (M, g) and $\mathbf{x}_0 \in M$, there exists an isometric embedding of some neighborhood of \mathbf{x}_0 into \mathbb{R}^N —i.e., whether the PDE system (1) has local solutions in some neighborhood of \mathbf{x}_0 .

This problem is overdetermined when $N < \frac{1}{2}n(n+1)$, underdetermined when $N > \frac{1}{2}n(n+1)$, and determined when $N = \frac{1}{2}n(n+1)$. The underdetermined case:

The underdetermined case:

Nash (1956): If (M^n, g) is C^k with $3 \le k \le \infty$, then there exists a global C^k isometric embedding of M into some \mathbb{R}^N with $N \le \frac{1}{2}n(n+1)(3n+11)$.

The underdetermined case:

Nash (1956): If (M^n, g) is C^k with $3 \le k \le \infty$, then there exists a global C^k isometric embedding of M into some \mathbb{R}^N with $N \le \frac{1}{2}n(n+1)(3n+11)$.

Greene (1970): If (M^n, g) is C^{∞} , then every $\mathbf{x}_0 \in M$ has a neighborhood which has a C^{∞} isometric embedding into some \mathbb{R}^N with $N \leq \frac{1}{2}n(n+1) + n$.

The determined case:

The determined case:

Cartan-Janet (1927): If (M^n, g) is real analytic and $N = \frac{1}{2}n(n+1)$, then every $\mathbf{x}_0 \in M$ has a neighborhood which has a real analytic isometric embedding into \mathbb{R}^N .

If (M^2, g) is C^{∞} , then local isometric embeddings of varying regularity exist in a neighborhood of any point where:

If (M^2, g) is C^{∞} , then local isometric embeddings of varying regularity exist in a neighborhood of any point where:

(日) (日) (日) (日) (日) (日) (日) (日)

• $K(\mathbf{x}_0) \neq 0;$

If (M^2, g) is C^{∞} , then local isometric embeddings of varying regularity exist in a neighborhood of any point where:

(日) (日) (日) (日) (日) (日) (日) (日)

- $K(\mathbf{x}_0) \neq 0;$
- $K(\mathbf{x}_0) = 0$ and $\nabla K(\mathbf{x}_0) \neq 0$;

If (M^2, g) is C^{∞} , then local isometric embeddings of varying regularity exist in a neighborhood of any point where:

- $K(\mathbf{x}_0) \neq 0;$
- $K(\mathbf{x}_0) = 0$ and $\nabla K(\mathbf{x}_0) \neq 0$;
- $K(\mathbf{x}_0)$ vanishes to finite order in certain precise ways.

ション ふゆ くち くち くち くち

(C.-S. Lin, Q. Han, J.-X. Hong, M. Khuri)

Bryant-Griffiths-Yang (1983): If (M^3, g) is C^{∞} , then C^{∞} local isometric embeddings exist in a neighborhood of any point where the rank of the Einstein tensor is at least 2.

Bryant-Griffiths-Yang (1983): If (M^3, g) is C^{∞} , then C^{∞} local isometric embeddings exist in a neighborhood of any point where the rank of the Einstein tensor is at least 2.

Nakamura-Maeda (1989): If (M^3, g) is C^{∞} , then C^{∞} local isometric embeddings exist in a neighborhood of any point where the Riemann curvature tensor is nonzero.

The case n = 4, N = 10:

The case n = 4, N = 10:

Bryant-Griffiths-Yang (1983), Goodman-Yang (1988): There exists a finite set of algebraic relations among the Riemann curvature tensor and its covariant derivatives, with the property that a local isometric embedding exists in a neighborhood of any point where these relations do not all hold. For $n \geq 3$, these results are all based on the Nash-Moser implicit function theorem. In order to apply Nash-Moser, one must show that:

For $n \ge 3$, these results are all based on the Nash-Moser implicit function theorem. In order to apply Nash-Moser, one must show that:

• There exist "approximate solutions," i.e., local embeddings $\mathbf{y}_0: M \to \mathbb{R}^N$ so that the induced metric

$$\bar{g}_{ij} = \partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{y}_0$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

is "close" to g_{ij} .

For $n \ge 3$, these results are all based on the Nash-Moser implicit function theorem. In order to apply Nash-Moser, one must show that:

• There exist "approximate solutions," i.e., local embeddings $\mathbf{y}_0: M \to \mathbb{R}^N$ so that the induced metric

$$\bar{g}_{ij} = \partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{y}_0$$

is "close" to g_{ij} .

For any such y₀, the linear PDE system obtained by linearizing the system (1) at y₀ has a local C[∞] solution v(x).

For $n \ge 3$, these results are all based on the Nash-Moser implicit function theorem. In order to apply Nash-Moser, one must show that:

• There exist "approximate solutions," i.e., local embeddings $\mathbf{y}_0: M \to \mathbb{R}^N$ so that the induced metric

$$\bar{g}_{ij} = \partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{y}_0$$

is "close" to g_{ij} .

- For any such y₀, the linear PDE system obtained by linearizing the system (1) at y₀ has a local C[∞] solution v(x).
- The solution **v**(**x**) to the linearized system satisfies "smooth tame estimates."

Approximate solutions are provided by the Cartan-Janet theorem:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへぐ

Approximate solutions are provided by the Cartan-Janet theorem:

Let \bar{g} be a real analytic metric that agrees with g to high order at \mathbf{x}_0 ; then there exists a neighborhood $\Omega \subset M$ of \mathbf{x}_0 and a real analytic isometric embedding $\mathbf{y}_0 : \Omega \to \mathbb{R}^N$ for \bar{g} .

うして ふゆう ふほう ふほう ふしつ

Approximate solutions are provided by the Cartan-Janet theorem:

Let \bar{g} be a real analytic metric that agrees with g to high order at \mathbf{x}_0 ; then there exists a neighborhood $\Omega \subset M$ of \mathbf{x}_0 and a real analytic isometric embedding $\mathbf{y}_0 : \Omega \to \mathbb{R}^N$ for \bar{g} .

By shrinking Ω if necessary, we can ensure that \bar{g} is sufficiently close to g.

The hard part:

The hard part:

The linearized system is generally not "nice," and showing that it has solutions that satisfy the necessary estimates can be very challenging.

ション ふゆ くち くち くち くち

The hard part:

The linearized system is generally not "nice," and showing that it has solutions that satisfy the necessary estimates can be very challenging.

In particular, for $n \ge 3$, the linearized system is never elliptic, so standard estimation techniques for elliptic systems don't work.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

• For n = 3 and the Einstein tensor having rank at least 2, the approximate embedding \mathbf{y}_0 can be chosen so that the linearized system becomes either *symmetric hyperbolic* or *strictly hyperbolic*. They then show that any such system has a solution that satisfies smooth tame estimates.

うして ふゆう ふほう ふほう ふしつ

- For n = 3 and the Einstein tensor having rank at least 2, the approximate embedding \mathbf{y}_0 can be chosen so that the linearized system becomes either *symmetric hyperbolic* or *strictly hyperbolic*. They then show that any such system has a solution that satisfies smooth tame estimates.
- For n = 3 and $R(\mathbf{0}) \neq 0$, or n = 4 and $(R(\mathbf{0}), \nabla R(\mathbf{0}))$ in some dense open set, the approximate embedding \mathbf{y}_0 can be chosen so that this system has *real principal type*.

うして ふゆう ふほう ふほう ふしつ

- For n = 3 and the Einstein tensor having rank at least 2, the approximate embedding \mathbf{y}_0 can be chosen so that the linearized system becomes either *symmetric hyperbolic* or *strictly hyperbolic*. They then show that any such system has a solution that satisfies smooth tame estimates.
- For n = 3 and $R(\mathbf{0}) \neq 0$, or n = 4 and $(R(\mathbf{0}), \nabla R(\mathbf{0}))$ in some dense open set, the approximate embedding \mathbf{y}_0 can be chosen so that this system has *real principal type*.

Nakamura-Maeda and Goodman-Yang then showed that any system of real principal type has a solution that satisfies smooth tame estimates. Proving these estimates requires the use of sophisticated microlocal analysis and Fourier integral operators. Our approach to a more straightforward proof:

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ
1. Show that, for n = 3 and $R(\mathbf{0}) \neq 0$, the approximate embedding \mathbf{y}_0 can be chosen so that the linearized system becomes *strongly symmetric positive* after a carefully chosen change of variables.

- 1. Show that, for n = 3 and $R(\mathbf{0}) \neq 0$, the approximate embedding \mathbf{y}_0 can be chosen so that the linearized system becomes *strongly symmetric positive* after a carefully chosen change of variables.
- 2. Show that any such system has a solution that satisfies smooth tame estimates.

- 1. Show that, for n = 3 and $R(\mathbf{0}) \neq 0$, the approximate embedding \mathbf{y}_0 can be chosen so that the linearized system becomes *strongly symmetric positive* after a carefully chosen change of variables.
- 2. Show that any such system has a solution that satisfies smooth tame estimates.

うして ふゆう ふほう ふほう ふしつ

Advantages:

- 1. Show that, for n = 3 and $R(\mathbf{0}) \neq 0$, the approximate embedding \mathbf{y}_0 can be chosen so that the linearized system becomes *strongly symmetric positive* after a carefully chosen change of variables.
- 2. Show that any such system has a solution that satisfies smooth tame estimates.

Advantages:

• Step (2) is fairly straightforward, requiring none of the sophisticated analysis needed for prior proofs.

- 1. Show that, for n = 3 and $R(\mathbf{0}) \neq 0$, the approximate embedding \mathbf{y}_0 can be chosen so that the linearized system becomes *strongly symmetric positive* after a carefully chosen change of variables.
- 2. Show that any such system has a solution that satisfies smooth tame estimates.

Advantages:

- Step (2) is fairly straightforward, requiring none of the sophisticated analysis needed for prior proofs.
- Step (1) requires only linear algebra.

Symmetric positive linear systems

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Symmetric positive linear systems

Friedrichs (1958) introduced the notion of a symmetric positive linear system of s first order PDEs

$$A^i \partial_i \mathbf{v} + B \mathbf{v} = \mathbf{h} \tag{2}$$

for a function $\mathbf{v} : \mathbb{R}^n \to \mathbb{R}^s$, in order to handle some cases where the system does not fall into one of the standard types (elliptic, hyperbolic, parabolic).

Symmetric positive linear systems

Friedrichs (1958) introduced the notion of a symmetric positive linear system of s first order PDEs

$$A^i \partial_i \mathbf{v} + B \mathbf{v} = \mathbf{h} \tag{2}$$

for a function $\mathbf{v} : \mathbb{R}^n \to \mathbb{R}^s$, in order to handle some cases where the system does not fall into one of the standard types (elliptic, hyperbolic, parabolic).

The system (2) is called *symmetric* if the coefficient matrices A^1, \ldots, A^n are symmetric $s \times s$ matrices.

In order to compute an $L^2(\overline{\Omega}, \mathbb{R}^s)$ estimate for a possible solution $\mathbf{v}(\mathbf{x})$, we might try the following:

In order to compute an $L^2(\overline{\Omega}, \mathbb{R}^s)$ estimate for a possible solution $\mathbf{v}(\mathbf{x})$, we might try the following:

Multiply the system (2) on the left by \mathbf{v}^{T} to obtain the scalar equation

$$\mathbf{v}^{\mathsf{T}} A^{i} \partial_{i} \mathbf{v} + \mathbf{v}^{\mathsf{T}} B \, \mathbf{v} = \mathbf{v}^{\mathsf{T}} \mathbf{h}. \tag{3}$$

In order to compute an $L^2(\overline{\Omega}, \mathbb{R}^s)$ estimate for a possible solution $\mathbf{v}(\mathbf{x})$, we might try the following:

Multiply the system (2) on the left by \mathbf{v}^{T} to obtain the scalar equation

$$\mathbf{v}^{\mathsf{T}} A^{i} \,\partial_{i} \mathbf{v} + \mathbf{v}^{\mathsf{T}} B \,\mathbf{v} = \mathbf{v}^{\mathsf{T}} \mathbf{h}. \tag{3}$$

After some straightforward manipulations using the product rule and taking into account the fact that the matrices A^i are symmetric, this can be written as

$$\mathbf{v}^{\mathsf{T}} \Big(B + B^{\mathsf{T}} - \partial_i A^i \Big) \mathbf{v} = 2 \mathbf{v}^{\mathsf{T}} \mathbf{h} - \partial_i \left(\mathbf{v}^{\mathsf{T}} A^i \mathbf{v} \right).$$
(4)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 少♀?

Definition (Friedrichs): The symmetric system (2) is called symmetric positive if the quadratic form $Q_0(\mathbf{x}) : \mathbb{R}^s \to \mathbb{R}$ defined by

$$Q_0(\xi) = \xi^{\mathsf{T}} \left(B + B^{\mathsf{T}} - \partial_i A^i \right) \xi$$

ション ふゆ くち くち くち くち

is positive definite for all $\mathbf{x} \in \overline{\Omega}$.

Definition (Friedrichs): The symmetric system (2) is called symmetric positive if the quadratic form $Q_0(\mathbf{x}) : \mathbb{R}^s \to \mathbb{R}$ defined by

$$Q_0(\xi) = \xi^{\mathsf{T}} \left(B + B^{\mathsf{T}} - \partial_i A^i \right) \xi$$

is positive definite for all $\mathbf{x} \in \overline{\Omega}$.

For a symmetric positive system, we have

$$\mathbf{v}^{\mathsf{T}} \Big(B + B^{\mathsf{T}} - \partial_i A^i \Big) \mathbf{v} \ge \lambda_0 |\mathbf{v}|^2$$

ション ふゆ くち くち くち くち

for some $\lambda_0 > 0$.

$$\lambda_0 |\mathbf{v}|^2 \le \mathbf{v}^\mathsf{T} \Big(B + B^\mathsf{T} - \partial_i A^i \Big) \mathbf{v}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{split} \lambda_0 |\mathbf{v}|^2 &\leq \mathbf{v}^\mathsf{T} \Big(B + B^\mathsf{T} - \partial_i A^i \Big) \mathbf{v} \\ &\leq 2 \mathbf{v}^\mathsf{T} \mathbf{h} - \partial_i \left(\mathbf{v}^\mathsf{T} A^i \mathbf{v} \right) \end{split}$$

$$\begin{split} \lambda_0 |\mathbf{v}|^2 &\leq \mathbf{v}^{\mathsf{T}} \Big(B + B^{\mathsf{T}} - \partial_i A^i \Big) \mathbf{v} \\ &\leq 2 \mathbf{v}^{\mathsf{T}} \mathbf{h} - \partial_i \left(\mathbf{v}^{\mathsf{T}} A^i \mathbf{v} \right) \\ &\leq \frac{\lambda_0}{2} |\mathbf{v}|^2 + \frac{2}{\lambda_0} |\mathbf{h}|^2 - \partial_i \left(\mathbf{v}^{\mathsf{T}} A^i \mathbf{v} \right). \end{split}$$

$$egin{aligned} &\lambda_0 |\mathbf{v}|^2 \leq \mathbf{v}^\mathsf{T} \Big(B + B^\mathsf{T} - \partial_i A^i \Big) \mathbf{v} \ &\leq 2 \mathbf{v}^\mathsf{T} \mathbf{h} - \partial_i \left(\mathbf{v}^\mathsf{T} A^i \mathbf{v}
ight) \ &\leq rac{\lambda_0}{2} |\mathbf{v}|^2 + rac{2}{\lambda_0} |\mathbf{h}|^2 - \partial_i \left(\mathbf{v}^\mathsf{T} A^i \mathbf{v}
ight). \end{aligned}$$

Integrating over Ω and applying Stokes' theorem yields

$$\|\mathbf{v}\|_{0}^{2} \leq C_{0} \|\mathbf{h}\|_{0}^{2} - \frac{2}{\lambda_{0}} \int_{\partial \Omega} (\mathbf{v}^{\mathsf{T}} \beta(\mathbf{x}) \mathbf{v}) \, dS,$$

where, for $\mathbf{x} \in \partial \Omega$, $\beta(\mathbf{x})$ is the *characteristic matrix*

 $\beta(\mathbf{x}) = \nu_i(\mathbf{x}) A^i(\mathbf{x}).$

ション ふゆ くち くち くち くち

Definition: Given a symmetric positive linear operator

$$P = A^i \partial_i + B$$

on the closure of a domain $\Omega \subset \mathbb{R}^n$, we call the domain P-convex for the system (2) if the characteristic matrix

$$\beta(\mathbf{x}) = \sum_{i=1}^{n} \nu_i(\mathbf{x}) A^i(\mathbf{x}),$$

where $\nu(\mathbf{x}) = (\nu_1(\mathbf{x}), \dots, \nu_n(\mathbf{x}))$ denotes the outer unit normal vector to $\partial\Omega$ at $\mathbf{x} \in \partial\Omega$, is positive definite at each point $\mathbf{x} \in \partial\Omega$.

Theorem (Friedrichs, 1958): Suppose that the system (2) is symmetric positive on $\overline{\Omega}$ and that Ω is *P*-convex. Then the system (2) has a unique solution $\mathbf{v} \in L^2(\overline{\Omega}, \mathbb{R}^s)$. Moreover, we have a smooth tame estimate of the form

 $\|\mathbf{v}\|_0 \le C_0 \|\mathbf{h}\|_0,$

where the constant C_0 depends only on the minimum eigenvalue λ_0 of the quadratic form Q_0 on $\overline{\Omega}$.

Example: Consider the following ODE:

$$(x - x_0)u' + bu = h(x).$$
 (5)

Example: Consider the following ODE:

$$(x - x_0)u' + bu = h(x).$$
 (5)

It is straightforward to verify that (5) is symmetric positive if $b > \frac{1}{2}$, and an interval $\Omega = (x_1, x_2)$ is *P*-convex if and only if $x_0 \in (x_1, x_2)$, i.e., if and only if the regular singular point of this ODE lies in the domain.

Example: Consider the following ODE:

$$(x - x_0)u' + bu = h(x).$$
 (5)

It is straightforward to verify that (5) is symmetric positive if $b > \frac{1}{2}$, and an interval $\Omega = (x_1, x_2)$ is *P*-convex if and only if $x_0 \in (x_1, x_2)$, i.e., if and only if the regular singular point of this ODE lies in the domain.

The general solution of (5) is

$$u(x) = \frac{1}{(x-x_0)^b} \int_{x_0}^x (y-x_0)^{b-1} h(y) \, dy + \frac{C}{(x-x_0)^b},$$

which is continuous at $x = x_0$ and satisfies the desired estimate if and only if C = 0. Thus we see that:

Thus we see that:

• The *P*-convexity condition forces the uniqueness of a continuous solution of (5) on Ω , without specifying any initial or boundary data for u.

ション ふゆ くち くち くち くち

Thus we see that:

- The *P*-convexity condition forces the uniqueness of a continuous solution of (5) on Ω , without specifying any initial or boundary data for u.
- Symmetric positivity on a domain Ω does not necessarily guarantee the existence of a *P*-convex neighborhood of $\mathbf{x}_0 \in \Omega$.

うして ふゆう ふほう ふほう ふしつ

For our purposes, Friedrich's theorem has two important shortcomings:

For our purposes, Friedrich's theorem has two important shortcomings:

1. Recall that our starting point will be an approximate local embedding $\mathbf{y}_0 : M \to \mathbb{R}^N$ that may be defined on an arbitrarily small neighborhood of a given point $\mathbf{x}_0 \in M$. So we have no way to guarantee that we have a *P*-convex domain for the linearized system.

うして ふゆう ふほう ふほう ふしつ

For our purposes, Friedrich's theorem has two important shortcomings:

- 1. Recall that our starting point will be an approximate local embedding $\mathbf{y}_0 : M \to \mathbb{R}^N$ that may be defined on an arbitrarily small neighborhood of a given point $\mathbf{x}_0 \in M$. So we have no way to guarantee that we have a *P*-convex domain for the linearized system.
- 2. We need estimates for $\|\mathbf{v}\|_k$ for all $k \ge 0$, but even if the coefficients A^i, B and the inhomogeneous term \mathbf{h} are all C^{∞} , Friedrichs's theorem does not guarantee any higher order regularity for the solution \mathbf{v} .

What happens if we try to compute a first-order estimate for the solution \mathbf{v} ?

◆□▶ ◆□▶ ★ □▶ ★ □▶ = □ の < @

What happens if we try to compute a first-order estimate for the solution \mathbf{v} ?

If we differentiate the system (2) and perform manipulations similar to those above, we obtain

$$\partial_{j}\mathbf{v}^{\mathsf{T}} \Big(B + B^{\mathsf{T}} - \partial_{i}A^{i} \Big) \partial_{j}\mathbf{v} + (\partial_{j}\mathbf{v}^{\mathsf{T}})(\partial_{j}A^{i} + \partial_{i}A^{j})(\partial_{i}\mathbf{v}) = 2\partial_{j}\mathbf{v}^{\mathsf{T}} (\partial_{j}\mathbf{h} - (\partial_{j}B)\mathbf{v}) - \partial_{i} \left(\partial_{j}\mathbf{v}^{\mathsf{T}}A^{i}\partial_{j}\mathbf{v} \right).$$

Definition: The symmetric system (2) is called *strongly* symmetric positive if the quadratic forms $Q_0(\mathbf{x}) : \mathbb{R}^s \to \mathbb{R}$ and $Q_1(\mathbf{x}) : \mathbb{R}^{ns} \to \mathbb{R}$ defined by

$$Q_0(\mathbf{x})(\xi) = \xi^{\mathsf{T}} \left(B + B^{\mathsf{T}} - \partial_i A^i \right) \xi,$$
$$Q_1(\mathbf{x})(\xi_1, \dots, \xi_n) = \xi_j^{\mathsf{T}} \left(\partial_j A^i + \partial_i A^j \right) \xi_i$$

are positive definite for all $\mathbf{x} \in \overline{\Omega}$.

For a strongly symmetric positive system on the closure of a P-convex domain Ω , a similar argument to that above yields a smooth tame first-order estimate of the form

$$\|\mathbf{v}\|_{1} \leq C_{1} \left(\|\mathbf{h}\|_{1} + \|\mathbf{h}\|_{0} \|B\|_{2+[\frac{n}{2}]} \right),$$

where the constant C_1 depends only on the minimum eigenvalues λ_0, λ_1 of the quadratic forms Q_0, Q_1 on $\overline{\Omega}$. Perhaps surprisingly, it turns out that higher-order estimates require no further assumptions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへぐ

Perhaps surprisingly, it turns out that higher-order estimates require no further assumptions.

Successive differentiations of the system (2) lead to expressions of the form

$$\sum_{j_1,\dots,j_k=1}^n Q_0(\partial_{j_1,\dots,j_k}^k \mathbf{v}) + k \sum_{j_1,\dots,j_{k-1}=1}^n Q_1(\partial_{j_1,\dots,j_{k-1},1}^k \mathbf{v},\dots,\partial_{j_1,\dots,j_{k-1},n}^k \mathbf{v}).$$
Perhaps surprisingly, it turns out that higher-order estimates require no further assumptions.

Successive differentiations of the system (2) lead to expressions of the form

$$\sum_{j_1,\dots,j_k=1}^n Q_0(\partial_{j_1,\dots,j_k}^k \mathbf{v}) + k \sum_{j_1,\dots,j_{k-1}=1}^n Q_1(\partial_{j_1,\dots,j_{k-1},1}^k \mathbf{v},\dots,\partial_{j_1,\dots,j_{k-1},n}^k \mathbf{v}).$$

If the system (2) is strongly symmetric positive on the closure of a *P*-convex domain Ω , then we can obtain smooth tame estimates for $\|\mathbf{v}\|_k$ for all $k \ge 0$. In particular, the solution \mathbf{v} promised by Friedrichs's theorem is C^{∞} . By applying Nash-Moser, this leads to the following theorem for *nonlinear* systems, proven for real analytic systems by Moser (1966) and for C^{∞} systems by K. Tso (1992):

By applying Nash-Moser, this leads to the following theorem for *nonlinear* systems, proven for real analytic systems by Moser (1966) and for C^{∞} systems by K. Tso (1992):

Theorem (Tso): Let $\Phi : C^{\infty}(\overline{\Omega}, \mathbb{R}^s) \to C^{\infty}(\overline{\Omega}, \mathbb{R}^s)$ be a C^{∞} , nonlinear first-order partial differential operator. Given a smooth function $\mathbf{f} : \overline{\Omega} \to \mathbb{R}^s$, consider the PDE system

$$\Phi(\mathbf{u}) = \mathbf{f}(\mathbf{x}). \tag{6}$$

Suppose that the linearization of Φ at any function in some C^1 -neighborhood of \mathbf{u}_0 is strongly symmetric positive and that Ω is *P*-convex for the associated linear operators. Then there exist an integer β and $\epsilon > 0$ such that, for any C^{∞} function $\mathbf{f}: \overline{\Omega} \to \mathbb{R}^s$ with $\|\Phi(\mathbf{u}_0) - \mathbf{f}\|_{\beta} < \epsilon$, there exists a C^{∞} solution $\mathbf{u}: \overline{\Omega} \to \mathbb{R}^s$ to the nonlinear system (6).

Unfortunately, Tso's theorem isn't quite enough for us; we need a *local* version that can be applied to an arbitrarily small neighborhood of a point \mathbf{x}_0 , without the requirement of *P*-convexity.

ション ふゆ くち くち くち くち

Theorem 1 (Chen, C—, Slemrod, Wang, Yang): Let $\Phi: C^{\infty}(\Omega, \mathbb{R}^s) \to C^{\infty}(\Omega, \mathbb{R}^s)$ be a C^{∞} , nonlinear first-order partial differential operator. Given a smooth function $\mathbf{f}: \Omega \to \mathbb{R}^s$, consider the PDE system

$$\Phi(\mathbf{u}) = \mathbf{f}(\mathbf{x}). \tag{7}$$

Suppose that the linearization of Φ at any function in some C^1 -neighborhood of \mathbf{u}_0 is strongly symmetric positive at some point $\mathbf{x}_0 \in \Omega$. Then there exist a neighborhood $\Omega_0 \subset \Omega$ of \mathbf{x}_0 , an integer β and $\epsilon > 0$ such that, for any C^{∞} function $\mathbf{f} : \overline{\Omega}_0 \to \mathbb{R}^s$ with $\|\Phi(\mathbf{u}_0) - \mathbf{f}\|_{\beta} < \epsilon$, there exists a C^{∞} solution $\mathbf{u} : \overline{\Omega}_0 \to \mathbb{R}^s$ to the restriction of the nonlinear system (7) to $\overline{\Omega}_0$.

Outline of proof:

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲国 ● ● ●

Outline of proof:

WLOG, assume that $\mathbf{x}_0 = \mathbf{0}$. Write the Taylor expansions for the coefficients of the linearized system at \mathbf{u}_0 :

$$B(\mathbf{x}) = \bar{B} + \hat{B}(\mathbf{x}), \qquad A^{i}(\mathbf{x}) = \bar{A}^{i} + \sum_{j=1}^{n} x^{j} \bar{A}_{j}^{i} + \hat{A}^{i}(\mathbf{x}).$$

Outline of proof:

WLOG, assume that $\mathbf{x}_0 = \mathbf{0}$. Write the Taylor expansions for the coefficients of the linearized system at \mathbf{u}_0 :

$$B(\mathbf{x}) = \bar{B} + \hat{B}(\mathbf{x}), \qquad A^{i}(\mathbf{x}) = \bar{A}^{i} + \sum_{j=1}^{n} x^{j} \bar{A}_{j}^{i} + \hat{A}^{i}(\mathbf{x}).$$

Strong symmetric positivity at $\mathbf{x} = \mathbf{0}$ is equivalent to the assumption that the quadratic forms $\bar{Q}_0 : \mathbb{R}^s \to \mathbb{R}$, $\bar{Q}_1 : \mathbb{R}^{ns} \to \mathbb{R}$ defined by

$$\bar{Q}_0(\xi) = \xi^{\mathsf{T}} \left(\bar{B} + \bar{B}^{\mathsf{T}} - \sum_{i=1}^n \bar{A}_i^i \right) \xi,$$
$$\bar{Q}_1(\xi_1, \dots, \xi_n) = \sum_{i,j=1}^n \xi_j^{\mathsf{T}} \left(\bar{A}_j^i + \bar{A}_i^j \right) \xi_i$$

are positive definite.

Step 1: Restriction to a small ball

▲□▶ ▲□▶ ▲国▶ ▲国▶ - 国 - のへで

Step 1: Restriction to a small ball

Choose r > 0 so that $\bar{B}_r \subset \Omega$ and the restrictions of the remainder terms $\hat{B}(\mathbf{x})$ and $\hat{A}^i(\mathbf{x})$ to \bar{B}_r are sufficiently small.

Restrict the system (7) to the closure of the domain $\Omega_0 = B_r$.

Step 2: Extension to \mathbb{R}^n

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Step 2: Extension to \mathbb{R}^n

We will apply the following variant of the Stein extension theorem:

Theorem (Stein): For any r > 0, there exists an extension operator $\mathcal{E}_r : L^1(\bar{B}_r) \to L^1(\mathbb{R}^n)$ and constants $M_{k,p}$, $1 \le p \le \infty, \ 0 \le k < \infty$, such that, for all $f \in W^{k,p}(\bar{B}_r)$,

 $\|\mathcal{E}_r f\|_{k,p} \le M_{k,p} \|f\|_{k,p}.$

ション ふゆ くち くち くち くち

Moreover, the constants $M_{k,p}$ are independent of r.

Apply this theorem to the remainder terms $\hat{B}(\mathbf{x})$, $\hat{A}^{i}(\mathbf{x})$, and $\mathbf{h}(\mathbf{x})$ on \bar{B}_{r} .

Apply this theorem to the remainder terms $\hat{B}(\mathbf{x})$, $\hat{A}^{i}(\mathbf{x})$, and $\mathbf{h}(\mathbf{x})$ on \bar{B}_{r} .

This allows us to extend the system (7) on \overline{B}_r to a new system

$$\tilde{A}^i \,\partial_i \mathbf{v} + \tilde{B} \,\mathbf{v} = \tilde{\mathbf{h}} \tag{8}$$

on all of \mathbb{R}^n , where

$$\begin{split} \tilde{B}(\mathbf{x}) &= \bar{B} + (\mathcal{E}_r \hat{B})(\mathbf{x}), \\ \tilde{A}^i(\mathbf{x}) &= \bar{A}^i + x^j \bar{A}^i_j + (\mathcal{E}_r \hat{A}^i)(\mathbf{x}), \\ \tilde{\mathbf{h}}(\mathbf{x}) &= (\mathcal{E}_r \mathbf{h})(\mathbf{x}). \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

・ロト ・ (目)・ (目)・ (目)・ (ロ)・ (ロ)・

Consider the restriction of the extended system (8) to a large ball \bar{B}_R .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへぐ

Consider the restriction of the extended system (8) to a large ball \bar{B}_R .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The normal vector to ∂B_R is $\nu(\mathbf{x}) = \frac{1}{R}\mathbf{x}$.

Consider the restriction of the extended system (8) to a large ball \bar{B}_R .

The normal vector to ∂B_R is $\nu(\mathbf{x}) = \frac{1}{R}\mathbf{x}$.

Therefore, the characteristic matrix for $\mathbf{x} \in \partial B_R$ is

$$\beta(\mathbf{x}) = \nu_i(\mathbf{x})\tilde{A}^i(\mathbf{x}) = \frac{1}{R}x^i\tilde{A}^i(\mathbf{x})$$
$$= \frac{1}{R}\left(x^i\bar{A}^i + x^ix^j\bar{A}^i_j + x^i(\mathcal{E}_r\hat{A}^i)(\mathbf{x})\right)$$
$$\approx \frac{1}{R}x^ix^j\bar{A}^i_j$$

ション ふゆ くち くち くち くち

for large R.

Proposition: As $R \to \infty$, the quadratic form

$$Q_{\beta}(\mathbf{x})(\xi) = \xi^{\mathsf{T}}\beta(\mathbf{x})\xi$$

defined by $\beta(\mathbf{x})$ is asymptotic to

$$\frac{1}{2R}\tilde{Q}_1(\mathbf{x})(x^1\xi,\ldots,x^n\xi) \ge \frac{1}{2}\lambda_0 R|\xi|^2,$$

where $\lambda_0 > 0$ is the minimum eigenvalue of $\tilde{Q}_1(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^n$.

Proposition: As $R \to \infty$, the quadratic form

$$Q_{\beta}(\mathbf{x})(\xi) = \xi^{\mathsf{T}}\beta(\mathbf{x})\xi$$

defined by $\beta(\mathbf{x})$ is asymptotic to

$$\frac{1}{2R}\tilde{Q}_1(\mathbf{x})(x^1\xi,\ldots,x^n\xi) \ge \frac{1}{2}\lambda_0 R|\xi|^2,$$

where $\lambda_0 > 0$ is the minimum eigenvalue of $\tilde{Q}_1(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^n$.

It follows that, for sufficiently large R, the characteristic matrix $\beta(\mathbf{x})$ is positive definite for all $\mathbf{x} \in \partial B_R$. Therefore, B_R is a P-convex domain for the extended system (8).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Tso's theorem guarantees the existence of smooth tame estimates for the extended function $\tilde{\mathbf{v}} : \bar{B}_R \to \mathbb{R}^s$, in terms of the Sobolev norms of the function \tilde{A}^i, \tilde{B} , and $\tilde{\mathbf{h}}$ on \bar{B}_R .

うつう 山田 エリ・エリ・ 山田 うらう

Tso's theorem guarantees the existence of smooth tame estimates for the extended function $\tilde{\mathbf{v}}: \bar{B}_R \to \mathbb{R}^s$, in terms of the Sobolev norms of the function \tilde{A}^i, \tilde{B} , and $\tilde{\mathbf{h}}$ on \bar{B}_R .

These, in turn, are bounded in terms of the Sobolev norms of the functions A^i, B , and **h** on \overline{B}_r .

うして ふゆう ふほう ふほう ふしつ

Tso's theorem guarantees the existence of smooth tame estimates for the extended function $\tilde{\mathbf{v}}: \bar{B}_R \to \mathbb{R}^s$, in terms of the Sobolev norms of the function \tilde{A}^i, \tilde{B} , and $\tilde{\mathbf{h}}$ on \bar{B}_R .

These, in turn, are bounded in terms of the Sobolev norms of the functions A^i, B , and **h** on \overline{B}_r .

Thus we obtain estimates for the solution $\mathbf{v}: \bar{B}_r \to \mathbb{R}^s$ as follows:

$$\begin{aligned} \|\mathbf{v}\|_{k} &\leq \|\tilde{\mathbf{v}}\|_{k} \leq C_{k} \left(\|\tilde{\mathbf{h}}\|_{k} + \|\tilde{\mathbf{h}}\|_{0} \|\mathbf{u}_{0}\|_{k+3+[\frac{n}{2}]}\right) \\ &\leq \tilde{C}_{k} M_{k,2} \left(\|\mathbf{h}\|_{k} + \|\mathbf{h}\|_{0} \|\mathbf{u}_{0}\|_{k+3+[\frac{n}{2}]}\right). \end{aligned}$$

・ロト ・西ト ・田下 ・ 田下 ・ 今々ぐ

Tso's theorem guarantees the existence of smooth tame estimates for the extended function $\tilde{\mathbf{v}} : \bar{B}_R \to \mathbb{R}^s$, in terms of the Sobolev norms of the function \tilde{A}^i, \tilde{B} , and $\tilde{\mathbf{h}}$ on \bar{B}_R .

These, in turn, are bounded in terms of the Sobolev norms of the functions A^i, B , and **h** on \overline{B}_r .

Thus we obtain estimates for the solution $\mathbf{v}: \bar{B}_r \to \mathbb{R}^s$ as follows:

$$\begin{aligned} \|\mathbf{v}\|_{k} &\leq \|\tilde{\mathbf{v}}\|_{k} \leq C_{k} \left(\|\tilde{\mathbf{h}}\|_{k} + \|\tilde{\mathbf{h}}\|_{0} \|\mathbf{u}_{0}\|_{k+3+[\frac{n}{2}]}\right) \\ &\leq \tilde{C}_{k} M_{k,2} \left(\|\mathbf{h}\|_{k} + \|\mathbf{h}\|_{0} \|\mathbf{u}_{0}\|_{k+3+[\frac{n}{2}]}\right). \end{aligned}$$

Theorem 1 then follows from Nash-Moser.

And now, back to isometric embedding!

▲□▶ ▲□▶ ▲国▶ ▲国▶ - 国 - のへで

And now, back to isometric embedding!

Theorem 2 (Chen, C—, Slemrod, Wang, Yang): Let (M, g) be a C^{∞} Riemannian manifold of dimension n = 2 or n = 3; let $N = \frac{1}{2}n(n+1)$; let $\mathbf{x}_0 \in M$, and suppose that the Riemann curvature tensor $R(\mathbf{x}_0)$ is nonzero. Then there exists a neighborhood $\Omega \subset M$ of \mathbf{x}_0 for which there is a C^{∞} isometric embedding $\mathbf{y} : \Omega \to \mathbb{R}^N$. Strategy for the proof:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Strategy for the proof:

• Choose local coordinates $\mathbf{x} = (x^1, \dots, x^n)$ on M so that $\mathbf{x}_0 = \mathbf{0}$. Given a C^{∞} metric g on a neighborhood Ω of $\mathbf{x} = \mathbf{0}$, choose a real analytic metric \bar{g} on Ω that agrees with g to sufficiently high order at $\mathbf{x} = \mathbf{0}$. By the Cartan-Janet theorem, there exists a real analytic isometric embedding (possibly on a smaller neighborhood) $\mathbf{y}_0: \Omega \subset M \to \mathbb{R}^N$ of (Ω, \bar{g}) into \mathbb{R}^N .

うして ふゆう ふほう ふほう ふしつ

Strategy for the proof:

- Choose local coordinates $\mathbf{x} = (x^1, \ldots, x^n)$ on M so that $\mathbf{x}_0 = \mathbf{0}$. Given a C^{∞} metric g on a neighborhood Ω of $\mathbf{x} = \mathbf{0}$, choose a real analytic metric \overline{g} on Ω that agrees with g to sufficiently high order at $\mathbf{x} = \mathbf{0}$. By the Cartan-Janet theorem, there exists a real analytic isometric embedding (possibly on a smaller neighborhood) $\mathbf{y}_0: \Omega \subset M \to \mathbb{R}^N$ of (Ω, \overline{g}) into \mathbb{R}^N .
- The linearization of the isometric embedding system at \mathbf{y}_0 is a first-order PDE system of N equations for the unknown function $\mathbf{v}: \Omega \to \mathbb{R}^N$. This system decomposes into a system of n first-order PDEs for the tangential components of \mathbf{v} , together with (N n) equations that determine the normal components of \mathbf{v} algebraically in terms of the tangential components.

• We show that, under the hypotheses of Theorem 2, the embedding \mathbf{y}_0 can be chosen so that the tangential subsystem becomes strongly symmetric positive after a fairly simple, but carefully chosen, change of variables. Consequently, it follows from the argument given in the proof of Theorem 1 that the tangential components of \mathbf{v} satisfy the smooth tame estimates required for Nash-Moser.

うして ふゆう ふほう ふほう ふしつ

- We show that, under the hypotheses of Theorem 2, the embedding \mathbf{y}_0 can be chosen so that the tangential subsystem becomes strongly symmetric positive after a fairly simple, but carefully chosen, change of variables. Consequently, it follows from the argument given in the proof of Theorem 1 that the tangential components of \mathbf{v} satisfy the smooth tame estimates required for Nash-Moser.
- The remaining algebraic equations will imply the necessary estimates for the normal components of \mathbf{v} . Theorem 2 then follows directly from the Nash-Moser implicit function theorem .

The linearized isometric embedding equations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

The linearized isometric embedding equations

Set $\mathbf{y}(\mathbf{x}) = \mathbf{y}_0(\mathbf{x}) + \mathbf{v}(\mathbf{x})$, where $\mathbf{v}(\mathbf{x})$ is assumed to be small, and substitute into the isometric embedding system to obtain:

$$\partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{y}_0 + (\partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{v} + \partial_j \mathbf{y}_0 \cdot \partial_i \mathbf{v}) + \partial_i \mathbf{v} \cdot \partial_j \mathbf{v} = g_{ij}.$$

The linearized isometric embedding equations

Set $\mathbf{y}(\mathbf{x}) = \mathbf{y}_0(\mathbf{x}) + \mathbf{v}(\mathbf{x})$, where $\mathbf{v}(\mathbf{x})$ is assumed to be small, and substitute into the isometric embedding system to obtain:

$$\partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{y}_0 + (\partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{v} + \partial_j \mathbf{y}_0 \cdot \partial_i \mathbf{v}) + \partial_i \mathbf{v} \cdot \partial_j \mathbf{v} = g_{ij}.$$

The linearization of the system at \mathbf{y}_0 is obtained by eliminating the terms that are quadratic in \mathbf{v} :

$$\partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{v} + \partial_j \mathbf{y}_0 \cdot \partial_i \mathbf{v} = h_{ij}, \qquad 1 \le i, j \le n, \tag{9}$$

ション ふゆ くち くち くち くち

where $h_{ij} = g_{ij} - \bar{g}_{ij}$.

The linearized system

$$\partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{v} + \partial_j \mathbf{y}_0 \cdot \partial_i \mathbf{v} = h_{ij}, \qquad 1 \le i, j \le n \tag{9}$$

ション ふゆ くち くち くち くち

can be reformulated as a system of n linear PDEs for the n tangential components of \mathbf{v} , together with a system of (N - n) algebraic equations for the normal components:
The linearized system

$$\partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{v} + \partial_j \mathbf{y}_0 \cdot \partial_i \mathbf{v} = h_{ij}, \qquad 1 \le i, j \le n \tag{9}$$

(日) (日) (日) (日) (日) (日) (日) (日)

can be reformulated as a system of n linear PDEs for the n tangential components of \mathbf{v} , together with a system of (N - n) algebraic equations for the normal components:

For $i = 1, \ldots, n$, let $\bar{v}_i(\mathbf{x})$ be the function

$$\bar{v}_i(\mathbf{x}) = \partial_i \mathbf{y}_0(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}).$$

The linearized system

$$\partial_i \mathbf{y}_0 \cdot \partial_j \mathbf{v} + \partial_j \mathbf{y}_0 \cdot \partial_i \mathbf{v} = h_{ij}, \qquad 1 \le i, j \le n \tag{9}$$

can be reformulated as a system of n linear PDEs for the n tangential components of \mathbf{v} , together with a system of (N - n) algebraic equations for the normal components:

For $i = 1, \ldots, n$, let $\bar{v}_i(\mathbf{x})$ be the function

$$\bar{v}_i(\mathbf{x}) = \partial_i \mathbf{y}_0(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}).$$

Then the system (9) can be written as

$$\partial_i \bar{v}_j + \partial_j \bar{v}_i - 2\partial_{ij}^2 \mathbf{y}_0 \cdot \mathbf{v} = h_{ij}, \qquad 1 \le i, j \le n.$$
(10)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ��

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Since \mathbf{y}_0 is an embedding, the tangent vectors $\{\partial_1 \mathbf{y}_0, \ldots, \partial_n \mathbf{y}_0\}$ are linearly independent and span an *n*-dimensional subspace $T_{\mathbf{x}} \subset \mathbb{R}^N$.

(日) (日) (日) (日) (日) (日) (日) (日)

Since \mathbf{y}_0 is an embedding, the tangent vectors $\{\partial_1 \mathbf{y}_0, \ldots, \partial_n \mathbf{y}_0\}$ are linearly independent and span an *n*-dimensional subspace $T_{\mathbf{x}} \subset \mathbb{R}^N$.

We can therefore decompose the second derivatives $\partial_{ij}^2 \mathbf{y}_0$ as follows:

$$\partial_{ij}^2 \mathbf{y}_0 = \Gamma_{ij}^k \partial_k \mathbf{y}_0 + H_{ij},$$

where, for each $1 \leq i, j \leq n$, the vector-valued function $H_{ij} = H_{ji} : \Omega \to \mathbb{R}^N$ satisfies $H_{ij} \cdot \partial_k \mathbf{y}_0 = 0$ for $1 \leq k \leq n$.

Since \mathbf{y}_0 is an embedding, the tangent vectors $\{\partial_1 \mathbf{y}_0, \ldots, \partial_n \mathbf{y}_0\}$ are linearly independent and span an *n*-dimensional subspace $T_{\mathbf{x}} \subset \mathbb{R}^N$.

We can therefore decompose the second derivatives $\partial_{ij}^2 \mathbf{y}_0$ as follows:

$$\partial_{ij}^2 \mathbf{y}_0 = \Gamma_{ij}^k \partial_k \mathbf{y}_0 + H_{ij},$$

where, for each $1 \leq i, j \leq n$, the vector-valued function $H_{ij} = H_{ji} : \Omega \to \mathbb{R}^N$ satisfies $H_{ij} \cdot \partial_k \mathbf{y}_0 = 0$ for $1 \leq k \leq n$.

The quadratic form $H_{ij}dx^i dx^j$ is the second fundamental form of the embedding \mathbf{y}_0 . Let $(\mathbf{e}_{n+1}, \ldots, \mathbf{e}_N)$ be a smoothly varying orthonormal basis for the normal bundle of the embedded submanifold $\mathbf{y}_0(\Omega) \subset \mathbb{R}^N$. Then we can write the second fundamental form of \mathbf{y}_0 as

$$H_{ij}dx^i \circ dx^j = \mathbf{e}_\alpha \otimes H_{ij}^\alpha dx^i \circ dx^j$$

うして ふゆう ふほう ふほう ふしつ

for scalar-valued functions H_{ij}^{α} on Ω .

Let $(\mathbf{e}_{n+1}, \ldots, \mathbf{e}_N)$ be a smoothly varying orthonormal basis for the normal bundle of the embedded submanifold $\mathbf{y}_0(\Omega) \subset \mathbb{R}^N$. Then we can write the second fundamental form of \mathbf{y}_0 as

$$H_{ij}dx^i \circ dx^j = \mathbf{e}_\alpha \otimes H_{ij}^\alpha dx^i \circ dx^j$$

for scalar-valued functions H_{ij}^{α} on Ω .

Definition: The embedding $\mathbf{y}_0 : \Omega \to \mathbb{R}^N$ is nondegenerate if, for each $\mathbf{x} \in \Omega$, the $\frac{1}{2}n(n-1)$ matrices

$$H^{\alpha}(\mathbf{x}) = [H^{\alpha}_{ij}(\mathbf{x})]$$

are linearly independent, or equivalently, if the vectors $H_{ij}(\mathbf{x})$ span the normal space $T_{\mathbf{x}}^{\perp} \subset \mathbb{R}^{N}$.

(日) (母) (王) (王) (王) (○) (○)

Let $(\mathbf{e}_{n+1}, \ldots, \mathbf{e}_N)$ be a smoothly varying orthonormal basis for the normal bundle of the embedded submanifold $\mathbf{y}_0(\Omega) \subset \mathbb{R}^N$. Then we can write the second fundamental form of \mathbf{y}_0 as

$$H_{ij}dx^i \circ dx^j = \mathbf{e}_\alpha \otimes H^\alpha_{ij}dx^i \circ dx^j$$

for scalar-valued functions H_{ij}^{α} on Ω .

Definition: The embedding $\mathbf{y}_0 : \Omega \to \mathbb{R}^N$ is nondegenerate if, for each $\mathbf{x} \in \Omega$, the $\frac{1}{2}n(n-1)$ matrices

$$H^{\alpha}(\mathbf{x}) = [H^{\alpha}_{ij}(\mathbf{x})]$$

are linearly independent, or equivalently, if the vectors $H_{ij}(\mathbf{x})$ span the normal space $T_{\mathbf{x}}^{\perp} \subset \mathbb{R}^{N}$.

We will assume henceforth that \mathbf{y}_0 is nondegenerate.

Let $\Pi_{\mathbf{x}}$ denote the span of the matrices H^{α} .

Let $II_{\mathbf{x}}$ denote the span of the matrices H^{α} .

Definition: The annihilator $\operatorname{II}_{\mathbf{x}}^{\perp}$ of $\operatorname{II}_{\mathbf{x}}$ is the subspace of the space S_n of symmetric $n \times n$ matrices defined by

$$\mathrm{II}_{\mathbf{x}}^{\perp} = \{ A \in \mathcal{S}_n : \langle A, H^{\alpha} \rangle = 0, \quad n+1 \le \alpha \le N \},\$$

where

$$\langle A, H^{\alpha} \rangle = A^{ij} H^{\alpha}_{ij}.$$

ション ふゆ くち くち くち くち

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• dim(II_{**x**}) =
$$\frac{1}{2}n(n-1)$$
 for all **x** $\in \Omega$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- dim(II_{**x**}) = $\frac{1}{2}n(n-1)$ for all **x** $\in \Omega$.
- $\dim(\mathrm{II}_{\mathbf{x}}^{\perp}) = n$ for all $\mathbf{x} \in \Omega$.

- dim(II_{**x**}) = $\frac{1}{2}n(n-1)$ for all **x** $\in \Omega$.
- $\dim(\mathrm{II}_{\mathbf{x}}^{\perp}) = n$ for all $\mathbf{x} \in \Omega$.

Let $A^1, \ldots, A^n : \Omega \to S_n$ be chosen so that for each $\mathbf{x} \in \Omega$, the matrices $A^1(\mathbf{x}), \ldots, A^n(\mathbf{x})$ comprise a basis of $\mathrm{II}_{\mathbf{x}}^{\perp}$.

Write $A^k = [A^{kij}]$, where $A^{kij} = A^{kji}$.

- dim(II_{**x**}) = $\frac{1}{2}n(n-1)$ for all **x** $\in \Omega$.
- $\dim(\mathrm{II}_{\mathbf{x}}^{\perp}) = n$ for all $\mathbf{x} \in \Omega$.

Let $A^1, \ldots, A^n : \Omega \to S_n$ be chosen so that for each $\mathbf{x} \in \Omega$, the matrices $A^1(\mathbf{x}), \ldots, A^n(\mathbf{x})$ comprise a basis of $\mathrm{II}_{\mathbf{x}}^{\perp}$.

Write $A^k = [A^{kij}]$, where $A^{kij} = A^{kji}$.

And now, back to the linearized isometric embedding system...

The decomposition

$$\partial_{ij}^2 \mathbf{y}_0 = \Gamma_{ij}^k \partial_k \mathbf{y}_0 + H_{ij}$$

allows us to write the linearized system

$$\partial_i \bar{v}_j + \partial_j \bar{v}_i - 2\partial_{ij}^2 \mathbf{y}_0 \cdot \mathbf{v} = h_{ij}, \qquad 1 \le i, j \le n \tag{10}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへぐ

 as

$$\partial_i \bar{v}_j + \partial_j \bar{v}_i - 2(\Gamma^k_{ij} \bar{v}_k + H_{ij} \cdot \mathbf{v}) = h_{ij}, \qquad 1 \le i, j \le n.$$
(11)

The decomposition

$$\partial_{ij}^2 \mathbf{y}_0 = \Gamma_{ij}^k \partial_k \mathbf{y}_0 + H_{ij}$$

allows us to write the linearized system

$$\partial_i \bar{v}_j + \partial_j \bar{v}_i - 2\partial_{ij}^2 \mathbf{y}_0 \cdot \mathbf{v} = h_{ij}, \qquad 1 \le i, j \le n \tag{10}$$

as

$$\partial_i \bar{v}_j + \partial_j \bar{v}_i - 2(\Gamma^k_{ij} \bar{v}_k + H_{ij} \cdot \mathbf{v}) = h_{ij}, \qquad 1 \le i, j \le n.$$
(11)

By pairing each of the (symmetric!) matrices A^k with the system (11), we obtain a system of n equations for the functions $\bar{\mathbf{v}} = (\bar{v}_1, \ldots, \bar{v}_n)$:

$$A^{kij}(\partial_i \bar{v}_j - \Gamma^{\ell}_{ij} \bar{v}_\ell) = \frac{1}{2} A^{kij} h_{ij}, \qquad 1 \le k \le n.$$
(12)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Now, suppose that $\bar{\mathbf{v}}(\mathbf{x})$ is any solution of the reduced linear system (12). The nondegeneracy assumption guarantees that the algebraic equations

$$\mathbf{v} \cdot \partial_i \mathbf{y}_0 = \bar{v}_i, \qquad 1 \le i \le n, \\ -2\mathbf{v} \cdot H_{ij} = h_{ij} - \partial_i \bar{v}_j - \partial_j \bar{v}_i + 2\Gamma^k_{ij} \bar{v}_k, \qquad 1 \le i, j \le n$$

ション ふゆ くち くち くち くち

can be solved uniquely for $\mathbf{v}(\mathbf{x})$.

Now, suppose that $\bar{\mathbf{v}}(\mathbf{x})$ is any solution of the reduced linear system (12). The nondegeneracy assumption guarantees that the algebraic equations

$$\mathbf{v} \cdot \partial_i \mathbf{y}_0 = \bar{v}_i, \qquad 1 \le i \le n, \\ -2\mathbf{v} \cdot H_{ij} = h_{ij} - \partial_i \bar{v}_j - \partial_j \bar{v}_i + 2\Gamma^k_{ij} \bar{v}_k, \qquad 1 \le i, j \le n$$

can be solved uniquely for $\mathbf{v}(\mathbf{x})$.

So it suffices to show that we can arrange for the reduced system (12) to be strongly symmetric positive; this will imply all the necessary estimates required for the Nash-Moser Theorem. Now, suppose that $\bar{\mathbf{v}}(\mathbf{x})$ is any solution of the reduced linear system (12). The nondegeneracy assumption guarantees that the algebraic equations

$$\mathbf{v} \cdot \partial_i \mathbf{y}_0 = \bar{v}_i, \qquad 1 \le i \le n, \\ -2\mathbf{v} \cdot H_{ij} = h_{ij} - \partial_i \bar{v}_j - \partial_j \bar{v}_i + 2\Gamma_{ij}^k \bar{v}_k, \qquad 1 \le i, j \le n$$

can be solved uniquely for $\mathbf{v}(\mathbf{x})$.

So it suffices to show that we can arrange for the reduced system (12) to be strongly symmetric positive; this will imply all the necessary estimates required for the Nash-Moser Theorem.

This is the hard part!

We can write the reduced system (12) in the form

$$A^i \partial_i \bar{\mathbf{v}} + B \bar{\mathbf{v}} = \mathbf{h},$$

where

$$\begin{split} \bar{A}^{i} &= [A^{kij}] = \begin{bmatrix} A^{1i1} & \cdots & A^{1in} \\ \vdots & & \vdots \\ A^{ni1} & \cdots & A^{nin} \end{bmatrix}, \\ B &= [B^{kj}] = [-A^{k\ell m} \Gamma^{j}_{\ell m}], \qquad \mathbf{h} = [\frac{1}{2} A^{k\ell m} h_{\ell m}], \\ A^{kij} H^{\alpha}_{ij} &= 0, \quad 1 \leq k \leq n, \quad n+1 \leq \alpha \leq N. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We can write the reduced system (12) in the form

$$\bar{A}^i \partial_i \bar{\mathbf{v}} + B \bar{\mathbf{v}} = \mathbf{h},$$

where

$$\bar{A}^{i} = [A^{kij}] = \begin{bmatrix} A^{1i1} & \cdots & A^{1in} \\ \vdots & & \vdots \\ A^{ni1} & \cdots & A^{nin} \end{bmatrix},$$
$$B = [B^{kj}] = [-A^{k\ell m} \Gamma^{j}_{\ell m}], \qquad \mathbf{h} = [\frac{1}{2} A^{k\ell m} h_{\ell m}],$$
$$A^{kij} H^{\alpha}_{ij} = 0, \quad 1 \le k \le n, \quad n+1 \le \alpha \le N.$$

GOAL: Show that we can choose the approximate embedding $\mathbf{y}_0: \Omega \to \mathbb{R}^N$ so that this system becomes strongly symmetric positive at $\mathbf{x} = \mathbf{0}$. Then the local isometric embedding theorem follows from Theorem 1.

The Riemann curvature tensors for g and \overline{g} and their first derivatives agree at $\mathbf{x} = \mathbf{0}$, so we need not distinguish between them.

The Riemann curvature tensors for g and \overline{g} and their first derivatives agree at $\mathbf{x} = \mathbf{0}$, so we need not distinguish between them.

Choose a local coordinate system $\mathbf{x} = (x^1, \dots, x^n)$ based at $\mathbf{x} = \mathbf{0}$ that is *normal* with respect to the metric g, i.e., $\Gamma_{ij}^k(\mathbf{0}) = 0$ for $1 \le i, j, k \le n$.

The Riemann curvature tensors for g and \overline{g} and their first derivatives agree at $\mathbf{x} = \mathbf{0}$, so we need not distinguish between them.

Choose a local coordinate system $\mathbf{x} = (x^1, \dots, x^n)$ based at $\mathbf{x} = \mathbf{0}$ that is *normal* with respect to the metric g, i.e., $\Gamma_{ij}^k(\mathbf{0}) = 0$ for $1 \le i, j, k \le n$.

Choose the basis $(\mathbf{e}_{n+1}, \ldots, \mathbf{e}_N)$ for the normal bundle so that

 $abla_{\mathbf{w}}^{\perp} \mathbf{e}_{\alpha}(\mathbf{0}) = \mathbf{0}$

くしゃ (四) (日) (日) (日) (日)

for $n+1 \leq \alpha \leq N$ and all $\mathbf{w} \in T_{\mathbf{0}}M$.

・ロト ・ (目)・ (目)・ (目)・ (ロ)・ (ロ)・

Recall that we have $A^{kij} = A^{kji}$, but no other symmetry assumptions among the A^{kij} . Thus the coefficient matrices $\bar{A}^i = [A^{kij}]$ are *not* necessarily symmetric.

Recall that we have $A^{kij} = A^{kji}$, but no other symmetry assumptions among the A^{kij} . Thus the coefficient matrices $\bar{A}^i = [A^{kij}]$ are *not* necessarily symmetric.

Question: Can we always choose a basis A^1, \ldots, A^n for $\operatorname{II}_{\mathbf{x}}^{\perp}$ for which the A^{kij} are symmetric in all their indices, and hence the matrices \overline{A}^i are symmetric?

Equivalently, can we always find a fully symmetric solution A^{kij} to the annihilator equations

$$A^{kij}H^{\alpha}_{ij} = 0?$$

Recall that we have $A^{kij} = A^{kji}$, but no other symmetry assumptions among the A^{kij} . Thus the coefficient matrices $\bar{A}^i = [A^{kij}]$ are *not* necessarily symmetric.

Question: Can we always choose a basis A^1, \ldots, A^n for $\operatorname{II}_{\mathbf{x}}^{\perp}$ for which the A^{kij} are symmetric in all their indices, and hence the matrices \overline{A}^i are symmetric?

Equivalently, can we always find a fully symmetric solution A^{kij} to the annihilator equations

$$A^{kij}H^{\alpha}_{ij} = 0?$$

Answer: Yes if n = 2 or n = 3; No if $n \ge 4$.

▲ロト ▲御ト ▲臣ト ▲臣ト 三臣 - のへで

• When n = 2, N = 3, the annihilator equations are a system of 2 homogeneous linear equations for the 4 components of a symmetric tensor $A^{kij} \mathbf{e}_i \circ \mathbf{e}_j \circ \mathbf{e}_k$, so there is a 2-dimensional solution space.

- When n = 2, N = 3, the annihilator equations are a system of 2 homogeneous linear equations for the 4 components of a symmetric tensor $A^{kij}\mathbf{e}_i \circ \mathbf{e}_j \circ \mathbf{e}_k$, so there is a 2-dimensional solution space.
- When n = 3, N = 6, the annihilator equations are a system of 9 homogeneous linear equations for the 10 components of a symmetric tensor $A^{kij} \mathbf{e}_i \circ \mathbf{e}_j \circ \mathbf{e}_k$, so there is a 1-dimensional solution space.

うして ふゆう ふほう ふほう ふしつ

- When n = 2, N = 3, the annihilator equations are a system of 2 homogeneous linear equations for the 4 components of a symmetric tensor $A^{kij}\mathbf{e}_i \circ \mathbf{e}_j \circ \mathbf{e}_k$, so there is a 2-dimensional solution space.
- When n = 3, N = 6, the annihilator equations are a system of 9 homogeneous linear equations for the 10 components of a symmetric tensor $A^{kij} \mathbf{e}_i \circ \mathbf{e}_j \circ \mathbf{e}_k$, so there is a 1-dimensional solution space.
- When $n \ge 4$, there are more equations than components of a symmetric tensor, and so generically there are no solutions. (e.g., for n = 4, N = 10, there are 24 equations for 20 components.)

- When n = 2, N = 3, the annihilator equations are a system of 2 homogeneous linear equations for the 4 components of a symmetric tensor $A^{kij} \mathbf{e}_i \circ \mathbf{e}_j \circ \mathbf{e}_k$, so there is a 2-dimensional solution space.
- When n = 3, N = 6, the annihilator equations are a system of 9 homogeneous linear equations for the 10 components of a symmetric tensor $A^{kij} \mathbf{e}_i \circ \mathbf{e}_j \circ \mathbf{e}_k$, so there is a 1-dimensional solution space.
- When $n \ge 4$, there are more equations than components of a symmetric tensor, and so generically there are no solutions. (e.g., for n = 4, N = 10, there are 24 equations for 20 components.)

Henceforth, we will assume that $n \leq 3$ and the A^{kij} are fully symmetric.
Main issue: Strong symmetric positivity

Main issue: Strong symmetric positivity

Henceforth, we will only be concerned with the values of H_{ij}^{α}, A^{kij} , and their derivatives at $\mathbf{x} = \mathbf{0}$. We will denote the derivatives by

$$h_{ijk}^{\alpha} = \partial_k H_{ij}^{\alpha}, \qquad a_{\ell}^{kij} = \partial_{\ell} A^{kij},$$

and we will write

$$h_k^{\alpha} = \begin{bmatrix} h_{ijk}^{\alpha} \end{bmatrix}, \qquad a_\ell^k = \begin{bmatrix} a_\ell^{kij} \end{bmatrix}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ��

Main issue: Strong symmetric positivity

Henceforth, we will only be concerned with the values of H_{ij}^{α}, A^{kij} , and their derivatives at $\mathbf{x} = \mathbf{0}$. We will denote the derivatives by

$$h_{ijk}^{\alpha} = \partial_k H_{ij}^{\alpha}, \qquad a_{\ell}^{kij} = \partial_{\ell} A^{kij},$$

and we will write

$$h_k^{\alpha} = \begin{bmatrix} h_{ijk}^{\alpha} \end{bmatrix}, \qquad a_\ell^k = \begin{bmatrix} a_\ell^{kij} \end{bmatrix}.$$

The Cartan-Janet theorem implies that these values may be chosen arbitrarily, subject only to the nondegeneracy condition on the H_{ij}^{α} and the following constraints:

Gauss equations and their first derivatives:

$$\sum_{\alpha=n+1}^{N} (H_{ik}^{\alpha} H_{j\ell}^{\alpha} - H_{i\ell}^{\alpha} H_{jk}^{\alpha}) = R_{ijk\ell};$$

$$\sum_{\alpha=n+1}^{N} (H_{ik}^{\alpha} h_{j\ell m}^{\alpha} + H_{j\ell}^{\alpha} h_{ikm}^{\alpha} - H_{i\ell}^{\alpha} h_{jkm}^{\alpha} - H_{jk}^{\alpha} h_{i\ell m}^{\alpha}) = \partial_m R_{ijk\ell};$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへぐ

Gauss equations and their first derivatives:

$$\sum_{\alpha=n+1}^{N} (H_{ik}^{\alpha} H_{j\ell}^{\alpha} - H_{i\ell}^{\alpha} H_{jk}^{\alpha}) = R_{ijk\ell};$$

$$\sum_{\alpha=n+1} (H_{ik}^{\alpha} h_{j\ell m}^{\alpha} + H_{j\ell}^{\alpha} h_{ikm}^{\alpha} - H_{i\ell}^{\alpha} h_{jkm}^{\alpha} - H_{jk}^{\alpha} h_{i\ell m}^{\alpha}) = \partial_m R_{ijk\ell};$$

Codazzi equations:

N

$$h_{ijk}^{\alpha} = h_{ikj}^{\alpha} = h_{jik}^{\alpha};$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへぐ

Gauss equations and their first derivatives:

$$\sum_{\alpha=n+1}^{N} (H_{ik}^{\alpha}H_{j\ell}^{\alpha} - H_{i\ell}^{\alpha}H_{jk}^{\alpha}) = R_{ijk\ell};$$

$$(H_{ik}^{\alpha}h_{i\ell m}^{\alpha} + H_{i\ell}^{\alpha}h_{ikm}^{\alpha} - H_{i\ell}^{\alpha}h_{ikm}^{\alpha} - H_{ik}^{\alpha}h_{i\ell m}^{\alpha}) = \partial_{m}.$$

$$\sum_{\alpha=n+1} \left(H_{ik}^{\alpha} h_{j\ell m}^{\alpha} + H_{j\ell}^{\alpha} h_{ikm}^{\alpha} - H_{i\ell}^{\alpha} h_{jkm}^{\alpha} - H_{jk}^{\alpha} h_{i\ell m}^{\alpha} \right) = \partial_m R_{ijk\ell};$$

Codazzi equations:

N

$$h_{ijk}^{\alpha} = h_{ikj}^{\alpha} = h_{jik}^{\alpha};$$

Annihilator equations and their first derivatives:

$$A^{kij}H^{\alpha}_{ij} = 0;$$

$$A^{kij}h^{\alpha}_{ij\ell} + H^{\alpha}_{ij}a^{kij}_{\ell} = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ⊙ ◆ ⊙

$$B(\mathbf{0}) = \mathbf{0}.$$

 $B(\mathbf{0}) = \mathbf{0}.$

Thus, the quadratic forms $\bar{Q}_0: \mathbb{R}^n \to \mathbb{R}$ and $\bar{Q}_1: \mathbb{R}^{n^2} \to \mathbb{R}$ are given by

$$\bar{Q}_0 = -a_i^i, \qquad \bar{Q}_1 = \begin{bmatrix} 2a_1^1 & \cdots & a_n^1 + a_1^n \\ \vdots & \cdots & \vdots \\ a_n^1 + a_1^n & \cdots & 2a_n^n \end{bmatrix}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$B(\mathbf{0}) = \mathbf{0}.$$

Thus, the quadratic forms $\bar{Q}_0 : \mathbb{R}^n \to \mathbb{R}$ and $\bar{Q}_1 : \mathbb{R}^{n^2} \to \mathbb{R}$ are given by

$$\bar{Q}_0 = -a_i^i, \qquad \bar{Q}_1 = \begin{bmatrix} 2a_1^1 & \cdots & a_n^1 + a_1^n \\ \vdots & \cdots & \vdots \\ a_n^1 + a_1^n & \cdots & 2a_n^n \end{bmatrix}$$

From this, strong symmetric positivity appears impossible.

$$B(\mathbf{0}) = \mathbf{0}.$$

Thus, the quadratic forms $\bar{Q}_0 : \mathbb{R}^n \to \mathbb{R}$ and $\bar{Q}_1 : \mathbb{R}^{n^2} \to \mathbb{R}$ are given by

$$\bar{Q}_0 = -a_i^i, \qquad \bar{Q}_1 = \begin{bmatrix} 2a_1^1 & \cdots & a_n^1 + a_1^n \\ \vdots & \cdots & \vdots \\ a_n^1 + a_1^n & \cdots & 2a_n^n \end{bmatrix}$$

(日) (同) (三) (三) (三) (○) (○)

From this, strong symmetric positivity appears impossible.

Amazingly, a change of variables may save the day!

Lemma: Under a change of variables of the form

$$x^{i} = \bar{x}^{i} + \frac{1}{2}c^{i}_{jk}\bar{x}^{j}\bar{x}^{k}, \qquad \bar{\mathbf{v}} = (I + \bar{x}^{i}S_{i})\bar{\mathbf{w}}, \tag{13}$$

ション ふゆ くち くち くち くち

where $c_{jk}^i = c_{kj}^i \in \mathbb{R}$ and S_1, \ldots, S_n are constant $n \times n$ matrices, the symmetric linear system (12) is transformed to a symmetric system

$$\tilde{A}^i \partial_i \bar{\mathbf{w}} + \tilde{B} \bar{\mathbf{w}} = \tilde{\mathbf{h}},$$

with

$$\begin{split} \tilde{A}^i &= A^i + \bar{x}^k \left(S_k^\mathsf{T} A^i + A^i S_k - c_{jk}^i A^j \right) + O(\bar{x}^2), \\ \tilde{B} &= B + A^i S_i + O(\bar{x}). \end{split}$$

Lemma: Under a change of variables of the form

$$x^{i} = \bar{x}^{i} + \frac{1}{2}c^{i}_{jk}\bar{x}^{j}\bar{x}^{k}, \qquad \bar{\mathbf{v}} = (I + \bar{x}^{i}S_{i})\bar{\mathbf{w}}, \tag{13}$$

where $c_{jk}^i = c_{kj}^i \in \mathbb{R}$ and S_1, \ldots, S_n are constant $n \times n$ matrices, the symmetric linear system (12) is transformed to a symmetric system

$$\tilde{A}^i \partial_i \bar{\mathbf{w}} + \tilde{B} \bar{\mathbf{w}} = \tilde{\mathbf{h}}_i$$

with

$$\tilde{A}^i = A^i + \bar{x}^k \left(S_k^\mathsf{T} A^i + A^i S_k - c_{jk}^i A^j \right) + O(\bar{x}^2),$$

$$\tilde{B} = B + A^i S_i + O(\bar{x}).$$

So even if $B(\mathbf{0}) = \mathbf{0}$ —which makes strong symmetric positivity impossible—the same may not be true of $\tilde{B}(\mathbf{0})$ if the matrices S_i are chosen carefully. **Proof:** Straightforward chain rule slog.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof: Straightforward chain rule slog.

The associated quadratic form $\tilde{\tilde{Q}}_0$ for the transformed system is given by

$$\tilde{\bar{Q}}_0 = -a_i^i + c_{ij}^i A^j
= \bar{Q}_0 + c_{ij}^i A^j,$$
(14)

and the (i, j)th block of $\tilde{\bar{Q}}_1$ is given by

$$(\tilde{\bar{Q}}_{1})_{ij} = (a_{j}^{i} + a_{i}^{j}) - (c_{jk}^{i} + c_{ik}^{j})A^{k} + (S_{i}^{\mathsf{T}}A^{j} + A^{j}S_{i}) + (S_{j}^{\mathsf{T}}A^{i} + A^{i}S_{j})$$

$$= (\bar{Q}_{1})_{ij} - (c_{jk}^{i} + c_{ik}^{j})A^{k} + (S_{i}^{\mathsf{T}}A^{j} + A^{j}S_{i}) + (S_{j}^{\mathsf{T}}A^{i} + A^{i}S_{j}).$$

(15)

Theorem 2' (Chen, C—, Slemrod, Wang, Yang): Suppose that either n = 2 and $K(\mathbf{0}) \neq 0$, or n = 3 and $R(\mathbf{0}) \neq 0$. Then there exists a neighborhood $\Omega \subset M$ of $\mathbf{x} = \mathbf{0}$ and an approximate embedding $\mathbf{y}_0 : \Omega \to \mathbb{R}^N$ such that the linearized isometric embedding system can be transformed to a strongly symmetric positive system in a neighborhood of $\mathbf{x} = \mathbf{0}$ via a change of variables of the form (13).

Theorem 2' (Chen, C—, Slemrod, Wang, Yang): Suppose that either n = 2 and $K(\mathbf{0}) \neq 0$, or n = 3 and $R(\mathbf{0}) \neq 0$. Then there exists a neighborhood $\Omega \subset M$ of $\mathbf{x} = \mathbf{0}$ and an approximate embedding $\mathbf{y}_0 : \Omega \to \mathbb{R}^N$ such that the linearized isometric embedding system can be transformed to a strongly symmetric positive system in a neighborhood of $\mathbf{x} = \mathbf{0}$ via a change of variables of the form (13).

The existence of local isometric embeddings then follows from Theorem 1.

Outline of Proof:

Outline of Proof:

Step 1: Given any nonzero R, choose nondegenerate H_{ij}^{α} subject to the Gauss equations

$$\sum_{\alpha=n+1}^{N} (H_{ik}^{\alpha} H_{j\ell}^{\alpha} - H_{i\ell}^{\alpha} H_{jk}^{\alpha}) = R_{ijk\ell},$$

and fully symmetric A^{kij} subject to the annihilator equations

$$A^{kij}H^{\alpha}_{ij} = 0.$$

ション ふゆ くち くち くち くち

Step 2: Choose $\lambda, \mu > 0$, set

$$\tilde{\tilde{Q}}_0 = \lambda I_{n \times n}, \qquad \tilde{\tilde{Q}}_1 = \mu I_{n^2 \times n^2},$$

and solve as many of the equations

$$\tilde{Q}_{0} = -a_{i}^{i} + c_{ij}^{i}A^{j}, \qquad (14)$$
$$(\tilde{Q}_{1})_{ij} = (a_{j}^{i} + a_{i}^{j}) - (c_{jk}^{i} + c_{ik}^{j})A^{k} + (S_{i}^{\mathsf{T}}A^{j} + A^{j}S_{i}) + (S_{j}^{\mathsf{T}}A^{i} + A^{i}S_{j}). \qquad (15)$$

as possible for a subset of the c_{jk}^i and the entries of S_i .

Step 2: Choose $\lambda, \mu > 0$, set

$$\tilde{\tilde{Q}}_0 = \lambda I_{n \times n}, \qquad \tilde{\tilde{Q}}_1 = \mu I_{n^2 \times n^2},$$

and solve as many of the equations

$$\tilde{\bar{Q}}_{0} = -a_{i}^{i} + c_{ij}^{i}A^{j}, \qquad (14)$$
$$(\tilde{\bar{Q}}_{1})_{ij} = (a_{j}^{i} + a_{i}^{j}) - (c_{jk}^{i} + c_{ik}^{j})A^{k} + (S_{i}^{\mathsf{T}}A^{j} + A^{j}S_{i}) + (S_{j}^{\mathsf{T}}A^{i} + A^{i}S_{j}). \qquad (15)$$

ション ふゆ くち くち くち くち

as possible for a subset of the c_{jk}^i and the entries of S_i .

The remaining equations determine an affine subspace \mathcal{A} of "admissible" values for (a_{ℓ}^{kij}) .

Step 3: Find the values of (h_{ijk}^{α}) that satisfy the derivatives of the annihilator equations

$$A^{kij}h^{\alpha}_{ij\ell} + H^{\alpha}_{ij}a^{kij}_{\ell} = 0$$

ション ふゆ くち くち くち くち

for some $(a_{\ell}^{kij}) \in \mathcal{A}$.

Step 3: Find the values of (h_{ijk}^{α}) that satisfy the derivatives of the annihilator equations

$$A^{kij}h^{\alpha}_{ij\ell} + H^{\alpha}_{ij}a^{kij}_{\ell} = 0$$

for some $(a_{\ell}^{kij}) \in \mathcal{A}$.

These values determine an affine subspace \mathcal{H} of "admissible" values for (h_{ijk}^{α}) .

(日) (日) (日) (日) (日) (日) (日) (日)

Step 4: Show that all possible values of $(\partial_m R_{ijk\ell})$ may be obtained as the right-hand sides of the derivatives of the Gauss equations

$$\sum_{\alpha=n+1}^{N} (H_{ik}^{\alpha} h_{j\ell m}^{\alpha} + H_{j\ell}^{\alpha} h_{ikm}^{\alpha} - H_{i\ell}^{\alpha} h_{jkm}^{\alpha} - H_{jk}^{\alpha} h_{i\ell m}^{\alpha}) = \partial_m R_{ijk\ell}$$

(日) (日) (日) (日) (日) (日) (日) (日)

for some $(h_{ijk}^{\alpha}) \in \mathcal{H}$.

Step 4: Show that all possible values of $(\partial_m R_{ijk\ell})$ may be obtained as the right-hand sides of the derivatives of the Gauss equations

$$\sum_{\alpha=n+1}^{N} (H_{ik}^{\alpha} h_{j\ell m}^{\alpha} + H_{j\ell}^{\alpha} h_{ikm}^{\alpha} - H_{i\ell}^{\alpha} h_{jkm}^{\alpha} - H_{jk}^{\alpha} h_{i\ell m}^{\alpha}) = \partial_m R_{ijk\ell}$$

for some $(h_{ijk}^{\alpha}) \in \mathcal{H}$.

Conclusion: for any nonzero R and any values of $\partial_m R$, there exist values of $H_{ij}^{\alpha}, A^{kij}, h_{ijk}^{\alpha}, a_{\ell}^{kij}$ that satisfy all necessary constraints, and for which there exists a change of variables of the form (13) that renders the linearized isometric embedding system strongly symmetric positive.

Conclusion: for any nonzero R and any values of $\partial_m R$, there exist values of $H_{ij}^{\alpha}, A^{kij}, h_{ijk}^{\alpha}, a_{\ell}^{kij}$ that satisfy all necessary constraints, and for which there exists a change of variables of the form (13) that renders the linearized isometric embedding system strongly symmetric positive.

This completes the proof of Theorem 2'.

Details for n = 2

Details for n = 2

When n = 2, there is only one second fundamental form matrix H^3 . According to the Gauss equations, we may choose

$$H^3 = \begin{bmatrix} K & 0 \\ 0 & 1 \end{bmatrix}.$$

Details for n = 2

When n = 2, there is only one second fundamental form matrix H^3 . According to the Gauss equations, we may choose

$$H^3 = \begin{bmatrix} K & 0 \\ 0 & 1 \end{bmatrix}.$$

Then, according to the annihilator equations, we may choose

$$A^1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad A^2 = \begin{bmatrix} 1 & 0 \\ 0 & -K \end{bmatrix}$$

•

(日) (日) (日) (日) (日) (日) (日) (日)

For any fixed $\lambda, \mu > 0$, the equations

$$\tilde{\bar{Q}}_0 = \lambda I_{2 \times 2}, \qquad \tilde{\bar{Q}}_1 = \mu I_{4 \times 4}$$

can be solved for c_{jk}^i and $S_i = [s_i^{jk}]$ if and only if

$$(a_1^{122} + a_2^{222} + \lambda) + K(a_1^{111} + a_2^{112} + \lambda) = 0.$$
 (16)

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

(This solution makes use of the assumption that $K \neq 0$.)

For any fixed $\lambda, \mu > 0$, the equations

$$\tilde{\bar{Q}}_0 = \lambda I_{2 \times 2}, \qquad \tilde{\bar{Q}}_1 = \mu I_{4 \times 4}$$

can be solved for c_{jk}^i and $S_i = [s_i^{jk}]$ if and only if

$$(a_1^{122} + a_2^{222} + \lambda) + K(a_1^{111} + a_2^{112} + \lambda) = 0.$$
 (16)

(This solution makes use of the assumption that $K \neq 0$.)

Thus, \mathcal{A} is the 7-dimensional affine subspace of the 8-dimensional space of (a_{ℓ}^{kij}) values defined by equation (16).

Now consider the derivatives of the annihilator equations, which may be written in matrix form as

$$\langle A^k, h_\ell^3 \rangle + \langle H^3, a_\ell^k \rangle = 0.$$

Now consider the derivatives of the annihilator equations, which may be written in matrix form as

$$\langle A^k, h_\ell^3 \rangle + \langle H^3, a_\ell^k \rangle = 0.$$

The defining equation (16) for \mathcal{A} is equivalent to

$$\langle H^3, a_1^1 + a_2^2 \rangle = -(K+1)\lambda,$$

which holds if and only if

$$\langle A^1, h_1^3 \rangle + \langle A^2, h_2^3 \rangle = -\langle H^3, a_1^1 + a_2^2 \rangle = (K+1)\lambda,$$

or, equivalently,

$$3h_{112}^3 - Kh_{222}^3 = (K+1)\lambda.$$
(17)

(日) (日) (日) (日) (日) (日) (日) (日)

Now consider the derivatives of the annihilator equations, which may be written in matrix form as

$$\langle A^k, h_\ell^3 \rangle + \langle H^3, a_\ell^k \rangle = 0.$$

The defining equation (16) for \mathcal{A} is equivalent to

$$\langle H^3, a_1^1 + a_2^2 \rangle = -(K+1)\lambda,$$

which holds if and only if

$$\langle A^1, h_1^3 \rangle + \langle A^2, h_2^3 \rangle = -\langle H^3, a_1^1 + a_2^2 \rangle = (K+1)\lambda,$$

or, equivalently,

$$3h_{112}^3 - Kh_{222}^3 = (K+1)\lambda.$$
(17)

Thus, \mathcal{H} is the 3-dimensional affine subspace of the 4-dimensional space of (h_{ijk}^3) values defined by equation (17).

Finally, consider the derivatives of the Gauss equations, which can be written as

$$Kh_{122}^3 + h_{111}^3 = k_1,$$

$$Kh_{222}^3 + h_{112}^3 = k_2.$$

The values of h_{ijk}^3 may be chosen arbitrarily, subject only to the condition

$$3h_{112}^3 - Kh_{222}^3 = (K+1)\lambda; \tag{17}$$

therefore, any given values of k_1 and k_2 may be realized by an appropriate choice of $h_{ijk}^3 \in \mathcal{H}$.

The reasoning in the n = 3 case is exactly the same—but the linear algebra is a lot messier!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・