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Thank you for the invitation!
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Obstacle problems play a pervasive role in the applied sciences, from
temperature control to linear elasticity, from fluid dynamics to financial
mathematics. In this talk I will describe how seemingly different
phenomena can be expressed in terms of the same mathematical model of
obstacle type, as well as some recent developments in the regularity theory
for solutions and their free boundaries.

In particular, I would like to focus on one of the central tools in the
regularity theory, namely families of monotonicity formulas.
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The Classical Obstacle Problem

The obstacle problem is a classic motivating example in the mathematical
study of variational inequalities and free boundary problems.

The problem consists in finding the equilibrium position of an elastic
membrane whose boundary is held fixed, and which is constrained to lie
above a given obstacle.

Applications include the study of fluid filtration in porous media,
constrained heating, elasto-plasticity, control theory, and financial
mathematics.
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Figure: Examples of 1-dimensional obstacle problems
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Figure: A two-dimensional obstacle problem: the obstacle on the left, the solution
on the right

Here Ω = [−2, 2]× [−2, 2], and the obstacle

ψ(x , y) =

{√
1− x2 − y2, if x2 + y2 ≤ 1

−1, elsewhere
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Mathematically, the obstacle problem consists of studying the properties of
minimizers of the Dirichlet integral

J(u) =

ˆ
D
|∇u|2 dx

in a domain D ⊂ Rn, among all configurations u(x) (representing the
vertical displacement of the membrane) with prescribed boundary values
u|∂D = f (x), and constrained to remain above the obstacle ϕ(x).

The solution breaks down into a region where the solution is equal to the
obstacle function, known as the coincidence set, and a region where the
solution is above the obstacle. The interface between the two regions
∂{u > ϕ} is the so-called free boundary.
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Variational inequalities

The theory of Variational Inequalities (V.I.) was born in the early sixties.
Its “founding fathers” were G. Stampacchia and G. Fichera.
Stampacchia was motivated by a problem in potential theory, whereas
Fichera was motivated by a question in mechanics (more on this later...)

V.I. have stimulated new and deep results in PDEs (regularity theory for
non linear equations, free boundary problems, etc.), and have found
applications in a wide range of fields (engineering, optimization and
control, physics, etc.)
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The Obstacle Problem as a V.I.

V.I. appear in a natural way in Calculus of Variations when a functional is
minimized over a convex set of constraints. In this case the classical Euler
equation is replaced by a set of inequalities.

The obstacle problem can be reformulated as a variational inequality on a
Hilbert space. In fact, solving the obstacle problem is equivalent to seeking
a function u ∈ K = {v ∈W 1,2(D) | v |∂D = f (x), v ≥ ϕ} such thatˆ

D
∇u · ∇(v − u) dx ≥ 0 for all v ∈ K .

Variational arguments show that the solution to the obstacle problem is
harmonic away from the contact set

∆u = 0 in {u > ϕ},

and that it is superharmonic on the contact set

∆u ≤ 0 in {u = ϕ}.

Hence, the solution is a superharmonic function.
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Questions:

1 How regular is the function u?

2 What are the geometric properties of the coincidence set? Is the free
boundary a regular surface?

The study of the classical obstacle problem, initiated in the 60’s with the
pioneering works of G. Stampacchia, H. Lewy, J. L. Lions, has led to
beautiful and deep developments in calculus of variations and geometric
partial differential equations. The crowning achievement has been the
development, due to L. Caffarelli, of the theory of free boundaries.
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Optimal regularity of the solution The solution to the obstacle problem
is C 1,1 (i.e. it has bounded second derivatives) when the obstacle itself has
such regularity (Frehse, 1972). In general, the second derivatives of the
solutions are discontinuous across the free boundary.

The intuition behind this result is that ∆u jumps from 0 where u > ϕ to
∆ϕ where u = ϕ, and therefore it is unreasonable to expect continuity of
the second derivatives.

The free boundary In 1977 Luis Caffarelli proved that the free boundary
is characterized as a C 1,α-surface except at certain singular points, which
are either isolated or contained on a C 1 manifold. In the same year,
Kinderlherer and Nirenberg showed that C 1 free boundaries are indeed
analytic.

Coupling these results, we have that the free boundary is smooth at the
so-called regular point.
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The Signorini Problem

A problem in linear elasticity, first proposed by Signorini in 1959, was one
of the driving forces in the study of V.I. In its original formulation, it
consists of finding the elastic equilibrium configuration of an anisotropic
non-homogeneous elastic body, resting on a rigid frictionless surface and
subject only to its mass forces.

The existence and uniqueness of solutions was proved by Fichera in 1963.
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Figure: What will be the equilibrium configuration of an elastic body resting on a
rigid frictionless plane?
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Other applications include optimal control of temperature across a surface,
in the modeling of semipermeable membranes where some saline
concentration can flow through the membrane only in one direction, and
financial math (when the random variation of underlying asset changes in
a discontinuous fashion, as a Levi process).
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Semipermeable Membranes and Osmosis

Picture Source: Wikipedia

Semipermeable membrane is
a membrane that is permeable
only for a certain type of
molecules (solvents) and blocks
other molecules (solutes).

Because of the chemical
imbalance, the solvent flows
through the membrane from the
region of smaller concentration
of solute to the region of higher
concentration (osmotic
pressure).

The flow occurs in one direction. The flow continues until a sufficient
pressure builds up on the other side of the membrane (to compensate
for osmotic pressure), which then shuts the flow. This process is
known as osmosis.

Donatella Danielli (Purdue University) Boundary Obstacle Problems September 7, 2019 15 / 94



Semipermeable Membranes and Osmosis

Picture Source: Wikipedia

Semipermeable membrane is
a membrane that is permeable
only for a certain type of
molecules (solvents) and blocks
other molecules (solutes).

Because of the chemical
imbalance, the solvent flows
through the membrane from the
region of smaller concentration
of solute to the region of higher
concentration (osmotic
pressure).

The flow occurs in one direction. The flow continues until a sufficient
pressure builds up on the other side of the membrane (to compensate
for osmotic pressure), which then shuts the flow. This process is
known as osmosis.

Donatella Danielli (Purdue University) Boundary Obstacle Problems September 7, 2019 15 / 94



Semipermeable Membranes and Osmosis

Picture Source: Wikipedia

Semipermeable membrane is
a membrane that is permeable
only for a certain type of
molecules (solvents) and blocks
other molecules (solutes).

Because of the chemical
imbalance, the solvent flows
through the membrane from the
region of smaller concentration
of solute to the region of higher
concentration (osmotic
pressure).

The flow occurs in one direction. The flow continues until a sufficient
pressure builds up on the other side of the membrane (to compensate
for osmotic pressure), which then shuts the flow. This process is
known as osmosis.

Donatella Danielli (Purdue University) Boundary Obstacle Problems September 7, 2019 15 / 94



Mathematical Formulation

Given open Ω ⊂ Rn

M⊂ ∂Ω semipermeable part of the
boundary

ϕ :M→ R osmotic pressure

u : Ω =→ R pressure of the chemical
solution, that satisfies the equation

∆u = 0 in Ω

Ω

M

ϕ

∆u = 0

OnM we have the following boundary conditions (finite permeability)

u > ϕ ⇒ ∂νu = 0 (no flow)

u ≤ ϕ ⇒ ∂νu = λ(u − ϕ) (flow)
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Letting λ→∞ we obtain the following
conditions on M (infinite permeability)

u ≥ ϕ
∂νu ≥ 0

(u − ϕ)∂νu = 0

These are known as the Signorini
boundary conditions

Since u should stay above ϕ on M,
ϕ is known as the thin obstacle. The
problem is also known as the Thin
Obstacle Problem.

M

ϕ

∆u = 0
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Connection with the Fractional Laplacian

An alternative interpretation of the thin obstacle problem is given as a
“standard” obstacle problem for the fractional Laplacian

(−∆)su(x) = C (n, s) lim
ε→0

ˆ
Rn\Bε(x)

u(x)− u(y)

|x − y |n+2s
dy ,

where C (n, s) is a dimensional constant. The connection in the case
s = 1/2 comes through the Dirichlet-to-Neumann map.
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If u0 is a solution of the obstacle problem for (−∆)1/2, then its harmonic
extension to Rn × (0,+∞) solves the corresponding Signorini problem,
and viceversa. Therefore, the two problems are equivalent and any
regularity result for one of them can be carried to the other one.

Caffarelli and Silvestre have extended this characterization, showing that
there exists a PDE realization of (−∆)s for every s ∈ (0, 1), s 6= 1

2 . (more
on this later...)
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Variational Formulation

Let Ω be a domain in Rn and M a smooth (n − 1)-dimensional manifold
in Rn that divides Ω into two parts: Ω+ and Ω−. For given functions
ϕ :M→ R and g : ∂Ω→ R satisfying g > ϕ on M∩ ∂Ω, the thin
obstacle problem consists of minimizing the Dirichlet integral

DΩ(u) =

ˆ
Ω
|∇u|2dx

on the closed convex set

K = {u ∈W 1,2(Ω) : u = g on ∂Ω, u ≥ ϕ on M∩ Ω}.

This is equivalent to solving in K the V.I.

ˆ
Ω
∇u∇(v − u) ≥ 0 for every v ∈ K.
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Figure: Graphs of Re(x1 + i x2)3/2 and Re(x1 + i x2)6
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The Signorini problem presented considerable challenges when compared
to the classical obstacle problem, and only in the past decade there has
been significant progress on it.

The main goals are still to understand the properties of the coincidence set
Λ(u) := {x ∈M : u = ϕ} and its boundary (in the relative topology of
M) Γ(u) := ∂MΛ(u), i.e., the free boundary. In order to do so, one needs
to establish the optimal regularity of the solution across the free boundary.

When M and ϕ are smooth, Caffarelli proved in 1979 that the minimizer
u in the thin obstacle problem is of class C 1,α

loc (Ω± ∪M).
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Normalization

Simplifying assumptions:
1. Vanishing thin obstacle ϕ.
2. The manifold M is a flat portion of the boundary of the relevant
domain: M=Rn−1 × {0}. In this case the thin obstacle problem is known
as the Signorini problem.

Since we are interested in properties of minimizers near free boundary
points, after translation, rotation and scaling arguments we may consider a
function u defined in the upper half-ball B+

1 := B1 ∩ Rn
+ satisfying

∆u = 0 in B+
1 (0.1)

u ≥ 0, −∂xnu ≥ 0, u ∂xnu = 0 on B ′1 (0.2)

0 ∈ Γ(u) = ∂Λ(u) := ∂{(x ′, 0) ∈ B ′1 | u(x ′, 0) = 0}, (0.3)

where Λ(u) is the coincidence set and the boundary is in the relative
topology of B ′1. Here B ′1 := B1 ∩ (Rn−1 × {0}).
We denote by S the class of solutions of the normalized Signorini problem
(0.1)–(0.3).
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Recent Developments

Athanasopoulos-Caffarelli (2006): Optimal C 1,1/2 interior regularity
with flat M and ϕ = 0.

Athanasopoulos-Caffarelli-Salsa (2008): Fine regularity properties of
the free boundary. Namely, the set of regular free boundary points is
locally a C 1-manifold of dimension n − 2.
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In the particular case Ω = Rn−1 × (0,∞) and M = Rn−1 × {0}, the
Signorini problem can be interpreted as an obstacle problem for the
fractional Laplacian on Rn−1:

u − ϕ ≥ 0, (−∆x ′)
su ≥ 0, (u − ϕ)(−∆x ′)

su = 0,

with s = 1/2.

Silvestre (2007): Almost optimal regularity of solutions, namely
u ∈ C 1,α(Rn−1) for any α < s, 0 < s < 1.
Caffarelli-Salsa-Silvestre (2008): Optimal regularity C 1,s(Rn−1), free
boundary regularity.

Interesting aspect: In the above results, the thin obstacle ϕ is allowed to
be nonzero.
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Garofalo-Petrosyan (2009): Structure of the singular set of solutions
to the thin obstacle problem by construction of two one-parameter
families of monotonicity formulas (of Weiss and Monneau type).

Higher regularity of the free boundary around regular points:

De Silva-Savin (2014)
C∞ regularity (based on boundary Harnack estimates in slit domains)
Koch-Petrosyan-Shi (2014)
Analiticity (based on a partial hodograph-Legendre transformation)
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Similarly to the classical obstacle problem, in the lower dimensional
obstacle problem the analysis of the free boundary revolves around the
behavior of the so-called blowups.

In the Signorini problem Athanasopoulos, Caffarelli and Salsa considered
the rescalings

ur (x) :=
u(rx)(

1
rn−1

´
∂Br

u2
)1/2

,

and studied the limits as r → 0+, known as the blowups.

Generally the blowups might be different over different subsequences
r = rj → 0+.

One needs a tool to control the rescalings.
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ur (x) :=
u(rx)(

1
rn−1

´
∂Br

u2
)1/2

,
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Almgren’s Frequency Function

The crucial tool is Almgren’s Frequency Function

N(r , u) =
r
´
Br
|∇u|2´

∂Br
u2

The name comes from fact that if u is a harmonic function in B1,
homogeneous of degree κ, then N(r , u) = κ.
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Monotonicity of the Frequency

Theorem 1 (Athanasopolous-Caffarelli-Salsa, 2007)

Let u ∈ S, then the function

N(r , u) :=
r
´
Br
|∇u|2´

∂Br
u2

is monotone increasing in r for 0 < r < 1. Moreover, N(r , u) ≡ κ for
0 < r < 1 iff u is homogeneous of order κ in B1, i.e.

x · ∇u − κu = 0 in B1.

When u is a harmonic function this is a classical result of Almgren (1979),
extended by Garofalo-Lin in 1986 to solutions of divergence form elliptic
PDEs.
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The Blowups

It follows easily from the monotonicity formula that, for r ≤ 1

ˆ
B1

|∇ur |2 = N(1, ur ) = N(r , u) ≤ N(1, u),

where in the last inequality we have used the monotonicity of the
frequency N(r , u) claimed in the previous theorem. The above inequality,
and the C 1,α

loc estimates of Caffarelli, imply that there exists a nonzero
function u0 ∈W 1,2(B1), called a blowup of u at the origin, such that for a
subsequence r = rj → 0+

urj → u0 in W 1,2(B1)

urj → u0 in L2(∂B1)

urj → u0 in C 1
loc(B ′1 ∪ B±1 )
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The monotonicity of the frequency easily implies the following

Proposition 2 (Homogeneity of blowups)

Let u ∈ S and denote by u0 any blowup of u as described above. Then,
u0 ∈ S and it is a homogeneous function of degree κ = N(0+, u).

The following result was proved in part by Luis Silvestre in his Ph.D.
Dissertation, and in part by Caffarelli, Salsa and Silvestre

Lemma 1 (Minimal homogeneity)

Let u ∈ S. Then

N(0+, u) =
3

2
or N(0+, u) ≥ 2.
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Combining these results, we obtain that, in a suitable coordinate system,

u(x) = C Re(x ′ · e + ixn)
3/2
+ in

for some tangential direction e ∈ ∂B ′1.

This immediately yields the optimal regularity of solutions.

The regularity of the free boundary follows from a delicate analysis of the
blow-ups.

The study of the singular set hinges on the uniqueness of a different type
of blow-ups, which is established by means of monotonicity formulas of
Weiss-and Monneau type (more details on this later...)
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Statement of the Parabolic Signorini Problem

Given a domain Ω in Rxn with a sufficiently regular boundary ∂Ω, a
relatively open subset M⊂ ∂Ω, S = ∂Ω \M, consider the problem

∆v − ∂tv = 0 in ΩT := Ω× (0,T ] (0.4)

v ≥ ϕ, ∂νv ≥ 0, (v − ϕ)∂νv = 0 on MT :=M× (0,T ], (0.5)

v = g on ST := S × (0,T ] (0.6)

v(·, 0) = ϕ0 on Ω0 := Ω× {0} (0.7)

where ∂ν is the outer normal derivative on ∂Ω and ϕ :MT → R,
ϕ0 : Ω0 → R, g : ST → R are prescribed functions satisfying the
compatibility conditions ϕ0 ≥ ϕ on M×{0}, g ≥ ϕ on ∂S × (0,T ],
g = ϕ on S × {0}. The condition (0.5) is known as the Signorini
boundary condition and the problem (0.4)–(0.7) as the Signorini problem
for the heat equation.
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The function u(x , t) solves the following variational inequality:

ˆ
Ω
∇u · ∇(u − v) + ∂tu(u − v) ≥ 0

u ∈ K, ∂tu ∈ L2(Ω)

for all v ∈ K

where

K = {v ∈W 1,2(Ω) : v
∣∣
M ≥ ϕ, v

∣∣
∂Ω\M = g}

For any (reasonable) initial condition u = ϕ0 on Ω0 = Ω× {0} the
solution exists and is unique (Duvaut-Lions, 1986).
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Known Results

Regularity of the solution
∇v ∈ Hα,α/2, 0 < α < 1, on compact subsets of ΩT ∪MT

• Athanasopoulos (1982)
• Uraltseva (1985)
• Arkhipova-Uraltseva (1996)

Poon’s Monotonicity Formula Poon (1996): If u is a solution of
the heat equation in a unit strip, the parabolic frequency

Nu(r) =
r2
´
Rn |∇u|2(x ,−r2)ρ(x ,−r2)dx´
Rn u(x ,−r2)2ρ(x ,−r2)dx

is monotone in r ∈ (0, 1). Here ρ denotes the backward heat kernel
on S∞ = Rn × (−∞, 0], i.e.

ρ(x , t) = (−4πt)−
n
2 e

x2

4t .
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Solutions in Half-Cylinders

The class Sϕ(Q+
1 ) consists of functions v ∈W 2,1

2 (Q+
1 ), with

∇v ∈ Hα,α/2(Q+
1 ∪ Q ′1) for some 0 < α < 1, satisfying

∆v − ∂tv = 0 in Q+
1

v − ϕ ≥ 0, −∂xnv ≥ 0, (v − ϕ)∂xnv = 0 on Q ′1,

and
(0, 0) ∈ Γ(v) = ∂{(x ′, t) ∈ Q ′1 | v(x ′, 0, t) > ϕ(x ′, t)}.

Here Q+
1 = B+

1 × (−1, 0] is the upper parabolic half-cylinder and
Q ′1 = B ′1 × (−1, 0] is the thin parabolic cylinder.
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Reduction to Vanishing Obstacle

The difference v(x , t)− ϕ(x ′, t) satisfies the Signorini conditions on Q ′1
with zero obstacle, but at an expense of solving a nonhomogeneous heat
equation instead of the homogeneous one.
This difference may be extended to the strip S+

1 = Rn
+ × (−1, 0] by

multiplying it by a suitable cutoff function ψ.
The resulting function will satisfy

∆u − ∂tu = f (x , t) in S+
1 ,

with

f (x , t) = −ψ(x)[∆′ϕ− ∂tϕ] + [v(x , t)− ϕ(x ′, t)]∆ψ + 2∇v∇ψ.

For smooth enough ϕ, the function f is bounded in S+
1 !
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Solutions in Half-Strips

A function u is in the class Sf (S+
1 ), for f ∈ L∞(S+

1 ), if u ∈W 2,1
2 (S+

1 ),
∇u ∈ Hα,α/2(S+

1 ∪ S ′1), u has a compact support and solves

∆u − ∂tu = f in S+
1 ,

u ≥ 0, −∂xnu ≥ 0, u∂xnu = 0 on S ′1,

and
(0, 0) ∈ Γ(u) = ∂{(x ′, t) ∈ S ′1 : u(x ′, 0, t) > 0}.
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Generalized Monotonicity Formula

Problem Poon’s monotonicity formula requires the function u to be
caloric in an entire strip, and it is not immediately applicable to caloric
functions in the unit cylinder Q1.

(Partial) Solution Extend the function u, caloric in Q1, to the entire strip
S1 by multiplying it by a spatial cutoff function ψ, supported in B1:

v(x , t) = u(x , t)ψ(x).

New Problem v is not caloric in S1 ⇒ Nv not monotone.

Hope Nv is “close” to being monotone.
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Introduce quantities

hu(t)=

ˆ
Rn

+

u(x , t)2ρ(x , t)dx

iu(t)= −t
ˆ
Rn

+

|∇u(x , t)|2ρ(x , t)dx ,

for any function u on S+
1 for which they make sense. Poon’s parabolic

frequency function is given by

Nu(r) =
iu(−r2)

hu(−r2)
.

There are many substantial technical difficulties involved in working with
this function directly. To overcome such difficulties, consider averaged
versions of hu and iu:

Hu(r)=
1

r2

ˆ 0

−r2

hu(t)dt =
1

r2

ˆ
S+
r

u(x , t)2ρ(x , t)dxdt

Iu(r)=
1

r2

ˆ 0

−r2

iu(t)dt =
1

r2

ˆ
S+
r

|t||∇u(x , t)|2ρ(x , t)dxdt
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The New Generalized Monotonicity Formula

Theorem 3 (D.-Garofalo-Petrosyan-To, 2017)

Let δ > 0. Then there exists C > 0, depending only on δ and n, such that
the function

Φu(r) =
1

2
reCr

δ d

dr
log max{Hu(r), r4−2δ}+

3

2
(eCr

δ − 1)

is nondecreasing for r ∈ (0, 1).

Remark 4

Hu(r) > r4−2δ ⇒ Φu(r) ∼ 1
2 rH

′
u(r)/Hu(r) = 2Nu, when f = 0.

The truncation of Hu(r) with r4−2δ controls the error terms caused by the
right-hand-side f .
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We then introduce parabolic rescalings

ur (x , t) :=
u(rx , r2t)

Hu(r)1/2
,

which solve a non-honmogeneous Signorini problem

∆ur − ∂tur = fr (x , t) in S+
1/r

ur ≥ 0, −∂xnur ≥ 0, ur∂xnur = 0 on S ′1/r
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Theorem 5

There is a subsequence rj → 0+ and a function u0 in
S+
∞ = Rn

+ × (−∞, 0] such that

ˆ
S+
R

(|urj − u0|2 + |t||∇(urj − u0)|2)ρ→ 0.

We call any such u0 a blowup of u at the origin.

u0 is a nonzero global solution of the Signorini problem:

∆u0 − ∂tu0 = 0 in S+
∞

u0 ≥ 0, −∂xnu0 ≥ 0, u0∂xnu0 = 0 on S ′∞

in the sense that it solves the Signorini problem in every Q+
R .

u0 is parabolically homogeneous of degree κ:

u0(λx , λ2t) = λκu0(x , t), (x , t) ∈ S+
∞, λ > 0
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Homogeneous global solutions of homogeneity 1 < κ < 2:

Let u be a nonzero κ-parabolically homogeneous solution of the Signorini
problem in S+

∞ = Rn
+ × (−∞, 0] with 1 < κ < 2. Then κ = 3/2 and

u(x , t) = C Re(x ′ · e + ixn)
3/2
+ in S+

∞

for some tangential direction e ∈ ∂B ′1.

Optimal regularity of the solution

Smoothness of free boundary at regular point

Structure of the singular set
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The Fractional Heat Operator

We now turn our attention to the obstacle problem for the fractional heat
operator

(∂t −∆)su(x , t) =

=
s

Γ(1− s)

ˆ t

−∞

ˆ
Rn

(t − τ)−s−1G (x − z , t − τ)[u(x , t)− u(z , τ)]dzdτ ,

for 0 < s < 1 and u ∈ C 1(Rn × R) ∩ L∞(Rn × R).

Here G (z , τ) = (4πτ)−
n
2 e−

|z|2
4τ is the standard heat kernel and Γ(z) is

Euler Gamma function.

The study of (∂t −∆)s was first proposed by M. Riesz in his fundamental
paper Intégrales de Riemann-Liouville et potentiels (1938).
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Motivation

An important motivation for the study of this nonlocal operator comes
from the fact that it models a stochastic jump process with arbitrary
distributions of both jump lengths and waiting times, such as the
continuous time random walk (CTRW) introduced by Montroll and Weiss
(1965).

Klafter and Metzler (2000) describe such processes by means of the
equation, nolocal both in space and time,

η(x , t) =

ˆ ∞
0

ˆ
R

Ψ(z , τ)η(x − z , t − τ)dzdτ .

This is an example of a master equation, introduced in 1973 by Kenkre,
Montroll and Shlesinger.
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Master equations are presently receiving increasing attention by
mathematicians, also thanks to the work of Caffarelli and Silvestre (2014),
who established the Hölder continuity of viscosity solutions to generalized
master equations

Lu(x , t) =

ˆ
Rn

ˆ ∞
0

K (x , t; z , τ)(u(x , t)− u(x − z , t − τ))dzdτ = 0,

under suitable assumptions on the kernel K . With the choice

K (x , t; z , τ) = K (z , τ)

=
s

Γ(1− s)
τ−s−1G (z , τ) =

s(4π)−
n
2

Γ(1− s)
τ−s−1−n/2e−

|z|2
4τ

it is an easy exercise to verify that K verifies such assumptions, and
therefore the fractional heat equation fits the framework of the generalized
master equations.
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The Obstacle Problem

We are interested in the nonlocal obstacle problem

min
{
u − ψ, (∂t −∆)su

}
= 0.

The function ψ is the obstacle.

As briefly discussed before, its elliptic counterpart

min
{
u − ψ, (−∆)su

}
= 0.

has a rich history.

In 2007 Caffarelli and Silvestre introduced a remarkable extension
procedure which allows to convert problems involving the fractional
Laplacian (−∆)s acting on functions of x ∈ Rn, into ones involving a
local degenerate elliptic operator acting on functions of the variable
X = (x , y) ∈ Rn+1

+ = Rn
x × R+

y .
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For a given u ∈ Dom(−∆)s one considers the function U(x , y) that solves
the so-called extension problem with a = 1− 2s ∈ (−1, 1){

divX (ya∇XU) = 0 x ∈ Rn, y > 0,

U(x , 0) = u(x).

Then, one has the following weighted Dirichlet-to-Neumann relation:

−
2−aΓ(a+1

2 )

Γ( 1−a
2 )

lim
y→0+

ya
∂U

∂y
(x , y) = (−∆)su(x).
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If we reformulate the obstacle problem for (−∆)s in the equivalent way:

u − ψ ≥ 0, (−∆)su ≥ 0, (u − ψ)(−∆)su = 0 in Rn,
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ya∂yU(x , y) = 0, on the set where U(x , 0) > ψ(x).

This is a thin obstacle problem since now the obstacle is confined to the
thin manifold M = Rn × {0} which bounds the thick space Rn+1
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Statement of the Parabolic Problem

Stinga and Torrea and - indipendently - Nystrom and Sande (Ca. 2015)
showed that, at a local level, the nonlocal obstacle problem

min
{
u − ψ, (∂t −∆)su

}
= 0

is equivalent to the following lower-dimensional obstacle problem for the
degenerate parabolic operator La = ya ∂V∂t − divX (ya∇XV ):



LaV = 0 in Q+
1 ,

V (x , 0, t) ≥ ψ(x , t), for (x , t) ∈ Q ′1,

− lim
y→0+

ya ∂V∂y (x , y , t) ≥ 0, for (x , t) ∈ Q ′1,

lim
y→0+

ya ∂V∂y (x , y , t) = 0, on {(x , t) ∈ Q ′1 | V (x , 0, t) > ψ(x , t)}.

This is a thin obstacle problem since now the obstacle ψ lives on the thin
manifold Q1 in space-time Rn × (−1, 0).
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The pioneering work of Chiarenza and Serapioni

The equation LaV = 0 is a special case of the class of degenerate
parabolic equations in divergence form

∂t(ω(X )V ) = div(A(X )∇V ),

where ω(X ) is a Muckenhoupt A2-weight which controls the degeneracy
of the matrix-valued function A(X ).

These equations were first studied by Chiarenza and Serapioni (1985).

If we take ω(X ) = |y |a, then we have ω ∈ A2(Rn+1) since |a| < 1.
Using the Chiarenza-Serapioni result and the Signorini conditions we know
that local solutions to the thin obstacle problem satisfy a parabolic
Harnack inequality and are therefore Hölder continuous up to the thin set
(Rn × {0})× (−1, 0).
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Related Results

The parabolic nonlocal obstacle problem

min{u − ψ, (−∆)su + ut} = 0

has been treated by Caffarelli and Figalli (2013) and Barrios, Figalli, and
Ros-Oton (2018). However, even if the stationary versions are the same,
this problem is fundamentally different from the one we are considering.

In recent work Athanasopoulos, Caffarelli and Milakis (2018) establish the
optimal regularity of solutions, as well as C 1,α regularity of the free
boundary at certain non-singular points for solutions to

min
{
u − ψ, (∂t −∆)su

}
= 0,

using the correspondence with the local degenerate problem.
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Reduction to zero obstacle and globalization

Proceeding as in the case a = 0 we subtract the obstacle and multiply by a
cut-off ζ(X ) = ζ?(|X |) ∈ C∞0 (B1), 0 ≤ ζ ≤ 1, and then consider the new
function

U(X , t) = ζ(X )(V (X , t)− ψ(x , t)).

The function U solves the following problem in the space-time strip S+
1 in

thick space



LaU = yaF in S+
1 ,

U(x , 0, t) ≥ 0, for (x , t) ∈ S ′1,

− lim
y→0+

ya ∂U∂y (x , y , t) ≥ 0, for (x , t) ∈ S ′1,

lim
y→0+

ya ∂U∂y (x , y , t) = 0, on the set {(x , t) ∈ S ′1 | U(x , 0, t) > 0}
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If ψ ∈ C 2
x ,t , then not only F ∈ L∞(S+

1 ) but also Ft ∈ L∞(S+
1 )!

This allows us to prove the crucial fact

Ut ∈ L∞(S+
1 )

.

For a = 0⇔ s = 1/2 this was proved by Athanasopoulos, Caffarelli and
Milakis, and independently by Petrosyan and Zeller.

With this information we can bring yaUt to the right-hand side and then,
setting F − Ut −→ F , consider the elliptic problem for the function
u(X ) = U(X , t̄) at each fixed time-level t̄:



divX (ya∇Xu) = yaF in B+
1 ,

u(x , 0) ≥ 0, for x ∈ B ′1,

− lim
y→0+

ya ∂u∂y (x , y) ≥ 0, for x ∈ B ′1,

lim
y→0+

ya ∂U∂y (x , y) = 0, on the set {x ∈ B ′1 | u(x , 0) > 0}
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Regularity of Solutions

This problem was studied by Caffarelli, Salsa and Silvestre under the
assumption that F ∈ C 0,1(B+

1 ).

They proved the following optimal regularity:

u ∈ C 1, 1−a
2 (B1/2 ∪ (B ′1/2 × {0})) (0.8)

This result is sharp:

u0(X ) = u0(x , y) =

(
xn +

√
x2
n + y2

) 1−a
2
(
xn −

1− a

2

√
x2
n + y2

)
solves the thin obstacle problem with F ≡ 0, and of course u0 satisfies

(0.8) at best!
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u ∈ C 1, 1−a
2 (B1/2 ∪ (B ′1/2 × {0})) (0.8)

This result is sharp:

u0(X ) = u0(x , y) =

(
xn +

√
x2
n + y2

) 1−a
2
(
xn −

1− a

2

√
x2
n + y2

)
solves the thin obstacle problem with F ≡ 0, and of course u0 satisfies

(0.8) at best!
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Since our F ∈ L∞(B+
1 ), we cannot use the results of Caffarelli, Salsa

Silvestre directly. But we can use an improved elliptic monotonicity
formula due Caffarelli, De Silva and Savin (2017), which allows to obtain

u ∈ C 1, 1−a
2 (B1/2 ∪ (B ′1/2 × {0}))

when F ∈ L∞(B+
1 ). Using the fact that the estimates are uniform in

t̄ ∈ (−1, 0), we prove that

∇xU ∈ H
1−a

2
, 1−a

4 (S+
1 ∪ (S ′1 × {0}))

(Hα,α/2 = intrinsic parabolic Hölder classes)
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In addition, thanks to some delicate W 2,2 estimates, we show that

|∇Uxi | ∈ L2(S+
1 , y

aGa(X , t)dXdt).

Here, we have denoted by

Ga(X , t) = Ga(X , 0, |t|), t < 0,

the Neumann fundamental solution of the backward operator
L?a = ya ∂∂t + divX (ya∇X ) with pole at 0 = (0, 0, 0).

One has the remarkable formula

Ga(X , t) =
(4π)−

n
2

2aΓ(a+1
2 )
|t|−

n+a+1
2 e

− |X |
2

4|t| .
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One-parameter Almgren-Poon type monotonicity formula

Let

H(U, r) =
1

r2

ˆ
S+
r

U2 GayadXdt.

One of our main tools is the following result:

Theorem 6 (Banerjee-D.-Garofalo-Petrosyan, 2019)

Suppose that |F (X , t)| ≤ C`|(X , t)|`−2 for every (X , t) ∈ S+
1 , for ` ≥ 2

and some constant C` > 0. Then, for every σ ∈ (0, 1) there exist a
constant C > 0, depending on n, a,C` and σ, such that the function

r 7→ Φ`,σ(U, r)
def
=

r

2
eCr

1−σ d

dr
log max

{
H(U, r), r2`−2+2σ

}
+ 2(eCr

1−σ − 1)

is monotone nondecreasing on (0, 1). In particular, it exists

Φ`,σ(U, 0+)
def
= lim

r→0+
Φ`,σ(U, r).
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The Free Boundary

We have the following basic result:

Let σ ∈ (0, 1), ` ≥ 4 and κ = Φ`,σ(U, 0+) be such that κ < `− 1 + σ.
Then

either κ = 1 +
1− a

2
=

3− a

2
, or κ ≥ 2.

Definition 7

The set Λψ(u) = {x ∈ Rn : u(x) = 0} is the coincidence set, and its
boundary Γψ(u) = ∂Λψ(u) is the free boundary.

An important consequence of the gap theorem is:

The set of free boundary points which have minimal frequency κ = 3−a
2 is

a relatively open subset of the free boundary.
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The regular free boundary

Definition 8

We define the regular part of the free boundary as the collection of all free
boundary points (X0, t0) = (x0, 0, t0) at which

κ =
3− a

2
.

.

Theorem 9

The regular free boundary is locally a Hα,α/2 hypersurface.
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Idea of proof:

Assume (0, 0) is a free boundary point;

U(·, 0) is a solution to the elliptic thin obstacle problem with bounded
right-hand-side (since ∂tU is bounded);

The elliptic Almgren frequency at x = 0 can be shown to be 3−a
2 ;

The regularity of the free boundary follows from the elliptic theory
and from the boundedness of ∂tU.
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The singular set

Definition 2 (Singular points)

A free boundary point X0 = (x0, 0, t0) is singular if

lim
r→0+

Hn+1(Λ(v) ∩ Qr (X0))

Hn+1(Qr (X0))
= 0.

We denote the set of singular points by Σ(v) and call it the singular set.
We can further classify singular points according to the homogeneity of
their blowup, by defining

Σκ(v) := Σ(v) ∩ Γ(`)
κ (v), κ ≤ `.
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Theorem 10 (Characterization of singular points)

Let F be such that |F (X , t)| ≤ M‖(X , t)‖`−2 in S+
1 and

|∇XF (X , t)| ≤ L‖(X , t)‖`−3 in Q+
1/2, ` ≥ 3 and 0 ∈ Γ

(`)
κ (u) with

κ < `− 1 + σ.
Then, the following statements are equivalent:

(i) 0 ∈ Σκ(U).

(ii) any Almgren blowup of U at the origin is a nonzero parabolically
κ-homogeneous polynomial pκ in S∞ satisfying

Lapκ = 0, pκ(x , 0, t) ≥ 0, pκ(x ,−y , t) = pκ(x , y , t).

We denote this class by P+
κ .

(iii) κ = 2m, m ∈ N.
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We now recall the quantity

H(U, r) =
1

r2

ˆ
S+
r

U2 GayadXdt,

and introduce

D(U, r) =
1

r2

ˆ
S+
r

|t||∇U|2 GayadXdt.
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Weiss type monotonicity formula in Gaussian space

To study the singular set we first prove the following

Theorem 11

Suppose that ` ≥ 2 is such that for some constant C` > 0 one has
|F (X , t)| ≤ C`|(X , t)|`−2 for every (X , t) ∈ S+

1 .
For κ ∈ (0, `) we define the parabolic κ-Weiss type functional

Wκ(U, r)
def
= r−2κ

{
D(U, r)− κ

2
H(U, r)

}
.

Then, for any 0 < σ ≤ `− κ there exists C > 0 depending on n, a, `,C`
such that the function r −→ Wκ(U, r) + Cr2σ is monotonically
nondecreasing in (0, 1), and therefore the limit

Wκ(U, 0+)
def
= lim

r→0+
Wκ(U, r)

exists.
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Monneau type monotonicity formula in Gaussian space

A direct consequence of the Weiss monotonicity formula is the main tool
to analyze singular points.

Theorem 12

Assume that for some ` ≥ 3 the function F satisfies the bounds
|F (X , t)| ≤ C`|(X , t)|`−2 and |∇F (X , t)| ≤ C ?` |(X , t)|`−3in S+

1 . Suppose
that 0 ∈ Σκ(U) with κ = 2m < `, for m ∈ N. For any parabolically
κ-homogeneous polynomial pκ in S∞ we define the Monneau type
functional

Mκ
def
=

1

r2κ+2

ˆ
S+
r

(U − pκ)2 Gaya, r ∈ (0, 1).

Then, for any 0 < σ < `− κ there exists a constant C > 0, depending on
n, a, `,C`, σ, such that the function r →Mκ + Crσ is monotonically
nondecreasing on (0, 1).
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The Monneau monotonicity formula implies a fundamental piece of
information:

the uniqueness of the homogeneous blowups at singular
points, that is, the limit of the κ-homogeneous rescalings of U defined as

Ũr =
U ◦ δr
rκ

.

We show that at a singular point of homogeneity κ = 2m such
homogeneous blowup must be a parabolically κ-homogeneous polynomial
pκ satisfying

Lapκ = 0, pκ(x , 0, t) ≥ 0, pκ(x ,−y , t) = pκ(x , y , t).

Monneau monotonicity formula also implies another important piece of
information: The continuous dependence of the blowup from the free
boundary points.
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Definition 13

We say that a (d + 1) dimensional manifold S ⊂ Rn × R for
d = 0, ..., n − 1 is space-like of class C 1,0 if locally, after a rotation of
coordinates, one can represent it as a graph

(xd+1, ..., xn) = g(x1, ..., xd , t)

where g ,∇xg are continuous.

Likewise, a n-dimensional manifold S ⊂ Rn × R is time-like of class C 1 if
it can be locally represented as

t = g(x1, ..., xn)

where g is C 1.
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Structure of the singular set

Combining these results with a parabolic Whitney type extension theorem
we are able to establish the rectifiable structure of the singular set

Theorem 14

Let F ∈ H`,`/2(Q1), ` ≥ 3. Then, for any κ = 2m < `, m ∈ N, we have
Γκ(U) = Σκ(U).

Moreover, for every d = 0, 1, . . . , n − 2, the set Σd
κ(U) is

contained in a countable union of (d + 1)-dimensional space-like C 1,0

manifolds and Σn−1
κ (v) is contained in a countable union of

(n − 1)-dimensional time-like C 1 manifolds.

Donatella Danielli (Purdue University) Boundary Obstacle Problems September 7, 2019 70 / 94



Structure of the singular set

Combining these results with a parabolic Whitney type extension theorem
we are able to establish the rectifiable structure of the singular set

Theorem 14

Let F ∈ H`,`/2(Q1), ` ≥ 3. Then, for any κ = 2m < `, m ∈ N, we have
Γκ(U) = Σκ(U). Moreover, for every d = 0, 1, . . . , n − 2, the set Σd

κ(U) is
contained in a countable union of (d + 1)-dimensional space-like C 1,0

manifolds and Σn−1
κ (v) is contained in a countable union of

(n − 1)-dimensional time-like C 1 manifolds.

Donatella Danielli (Purdue University) Boundary Obstacle Problems September 7, 2019 70 / 94



Wall of Finite Thickness

Again, two situations are possible for points x ∈ Ω:

ϕ(x) < u(x)
When the outside pressure ϕ(x) is smaller than the inside pressure
u(x), the fluid tries to leave Ω, but the wall prevents it. Thus,

∂u

∂ν
= 0.

ϕ(x) ≥ u(x)
It is reasonable to assume that the outflow through the wall is
proportional to the difference in pressure:

−∂u
∂ν

= k(u − ϕ),

where k > 0 measures the conductivity of the wall.
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Remarks

If the conductivity k = 0, no fluid enter or leaves the chamber and
the pressure u is a solution to the Neumann problem.

If the conductivity k →∞, in the limit one recovers the Signorini
boundary conditions. Duvaut and Lions showed that if uk is the
solution corresponding to the conductivity k , then uk converges
weakly in L2 to the solution to the thin obstacle problem.
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Here we consider a local version of the problem, posed in the upper half
ball

B+
1 = {x ∈ B1 | xn > 0}.

Additionally, we will let ϕ = 0, but we will allow for fluid flow to occur
both into and out of Ω with different permeability constants, under the
assumption that the flux in each direction is proportional to a power of the
pressure.

This allows an alternate interpretation of the problem as a boundary
temperature control problem, as derived by Duvaut and Lions. The same
model also describes the flux of electricity through semi-conducting walls.
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Boundary temperature control

Assume that a continuous medium occupies a region Ω in Rn, with
boundary Γ and outer unit normal ν.

Given a reference temperature h(x), for x ∈ Γ, it is required that the
temperature at the boundary u(x , t) deviates as little as possible from
h(x).

Thermostatic controls are placed on the boundary to inject an appropriate
heat flux when necessary. The controls are regulated as follows:

If u(x , t) = h(x), no correction is needed and therefore the heat flux
is null.

If u(x , t) 6= h(x), a quantity of heat proportional to the difference
between u(x , t) and h(x) is injected.
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The boundary condition can be written as

−∂u
∂ν

= Φ(u),

where

Φ(u) =


k−(u − h) if u < h

0 if u = h

k+(u − h) if u > h
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Statement of the problem

In our current setting the problem becomes
∆u= 0 in B+

1

u= g on (∂B1)+

uxn= k+(u+)p−1 − k−(u−)p−1 on Γ

where g ∈ C 2,α
(
B1

)
is the given boundary datum, p > 1, and

(∂B1)+= {x ∈ ∂B1 | xn > 0}
Γ= {x ∈ B1 | xn = 0}

u+= max{u, 0}, u− = −min{u, 0} ≥ 0.
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Variational Formulation

We seek to minimize

J(v) =
1

2

(ˆ
B1

|∇v |2 +

ˆ
Γ
k̃−(v−)p +

ˆ
Γ
k̃+(v+)p

)
over all v ∈W 1,2(B1), v − g ∈W 1,2

0 (B1) for a given boundary datum
g ∈ C 2,α

(
B1

)
.

In this context we think of the data g as extended to all of B1 by even
reflection. A minimizer will be symmetric about Γ and u will correspond to
its restriction to B+

1 .

Note: k̃± = 2k±/p.
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Related results

Allen-Lindgren-Petrosyan (2015)
Studied minimizers of

Ja(v) =

ˆ
B+

1

|∇v |2xan + 2

ˆ
Γ

(
k−(v−)1 + k+(v+)1

)
with a ∈ (−1, 1).
Proved optimal regularity of the minimizer u: For K b B+ ∪ Γ

u ∈ C 0,1−a(K ) if a ≥ 0,

u ∈ C 1,−a(K ) if a < 0,

as well as separation of the two free boundaries ∂{u > 0} ∩ Γ and
∂{u < 0} ∩ Γ when a ≥ 0.
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Allen (2016)
Considered the problem

div
(
xan∇u(x ′, xn)

)
= 0 in B+

1 ,

lim
xn→0

xanuxn(x ′, xn) = −ku+(x , 0) on Γ,

with k > 0.
The main objective is the study of the singular points of the free
boundary.
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Comparison with Signorini problem

New difficulties:

1. Non-homogeneous boundary condition ⇒ this problem does not
admit global homogeneous solutions of any degree.
Existence and classification of such solutions play a pivotal role in the
Signorini problem.

2. In the thin obstacle problem continuity arguments force u ≥ h, but
the case h > u is no longer ruled out when considering walls of finite
thickness.
Allowing for both constants k+, k− to be finite (even when one of
the two vanishes) de facto destroys the one-phase character of the
problem.

Redeeming feature:
The non-homogeneous character of the boundary condition allows to
employ bootstrap arguments to prove regularity.
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Joint work with T. Backing and R. Jain.

Theorem 15 (Existence and Uniqueness)

There exists a unique minimizer u ∈ {v ∈W 1,2(B1) | v − g ∈W 1,2
0 (B1)}

for the energy J(v).

Theorem 16 (Regularity of Solutions)

Let g ∈ C 2,α(B1) and let k± be non-negative, finite and non-equal
constants. Let u be the unique minimizer of the energy J(v). Then

u ∈ Cp−1,α(B+
1/2) for every α < p − 1, if p is an integer.

u ∈ C bp−1c,α(B+
1/2) for every α < p − 1− bp − 1c, if p is not an

integer.

Additionally, if k− = k+ or if g does not change sign, then u ∈ C∞(B+
1/2).
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Optimal regularity

Assume p ≥ 2, p integer. Then, our regularity result ensures u ∈ Cp−1,α

for all α < 1. Is this optimal?

Theorem 17

If ∇u(0) 6= 0, then u /∈ Cp−1,1(0).

Proof. Argument by contradiction, based on comparison principle and
construction of suitable barrier.

Open question: Case p = 2: Backing-D.-Jain; Case p > 2: D.-Krummel.
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Free boundary: Regular set

The regular set of the free boundary is defined as

R = {(x ′, 0) ∈ Γ | u(x ′, 0) = 0, ∇u(x ′, 0) 6= 0}

Theorem 18

If x ′0 ∈ R, then in a neighborhood of x ′0, the free boundary {u(x ′, 0) = 0}
is a C 1,α− graph for all α < 1.

Proof. Consequence of regularity result, and implicit function theorem.

Open problem: Higher regularity of the free boundary.
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A perturbed Almgren’s Frequency Functional

The Almgren’s Frequency Functional is no longer monotone in our setting,
but a suitable perturbation is.

Theorem 19

Let p ≥ 2, u be a solution, and let F (u) = k−(u−)p + k+(u+)p. Then the
perturbed Almgren Frequency Functional

Ñ(r , u) = r

´
B+
r
|∇u|2 + 2

p

´
Γ F (u)´

(∂Br )+ u2

is monotone increasing in r ∈ (0, 1).

Since Ñ(r , u) ≥ 0, we immediately have

Corollary 20

There exists limr→0+ Ñ(r , u) = µ ∈ [0,∞).
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Some consequences

To fix ideas, in the following we will always assume p = 2.
Recall

N(r , u) =
r
´
B+
r
|∇u|2´

∂B+
r
u2

, F (u) = k−(u−)2 + k+(u+)2,

and

Ñ(r , u) = r

´
B+
r
|∇u|2 +

´
Γ F (u)´

(∂Br )+ u2
= N(r , u) + r

´
Γ F (u)´

(∂Br )+ u2

Clearly Ñ(r , u) ≥ N(r , u). Moreover, a Poincaré-type trace inequality
implies

N(r , u) ≥ Ñ(r , u)− Cr

1 + Cr
.

Hence, there exists limr→0+ N(r , u) = µ.
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Ñ(r , u) = r

´
B+
r
|∇u|2 +

´
Γ F (u)´

(∂Br )+ u2
= N(r , u) + r

´
Γ F (u)´

(∂Br )+ u2
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N(r , u) ≥ Ñ(r , u)− Cr

1 + Cr
.

Hence, there exists limr→0+ N(r , u) = µ.

Donatella Danielli (Purdue University) Boundary Obstacle Problems September 7, 2019 85 / 94



From now assume ∇u(0) = 0. We introduce

ϕ(r) = ϕ(r ; u) =

 
(∂Br )+

u2.

Corollary 21

Let 0 ≤ limr→0+ Ñ(r) = µ <∞. Then the function r 7→ r−2µϕ(r) is
nondecreasing for 0 < r < 1. In particular,

ϕ(r) ≤ r2µϕ(1) ≤ r2µ sup
B1

|u|2.

Corollary 22

Let 0 < r < 1. Then for any δ > 0 there exists R0 = R0(δ) > 0 such that
for all r ,R ≤ R0

ϕ(R) ≤
(
R

r

)2(µ+δ)

ϕ(r).
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Combining the two previous results we obtain

Corollary 23

For all x ∈ Br/2,
|u(x)| ≤ rµ sup

B1

|u|.
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Analysis of the blow-ups

The final step to obtain regularity estimate around free boundary points
with vanishing gradient is to study blow-up sequences. Define

vr (x) =
u(rx)

[ϕ(u, r)]1/2
.

Note: ‖vr‖L2(∂B1) = 1.

Using the previous results, we see that {vr} are equibounded in H1
loc and,

thanks to the regularity estimates, also in C 1,α.
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Thus, there exists a uniformly convergent subsequence on every compact
subset of Rn such that vj → v∗, ∇vj → ∇v∗.
Note: ‖vr‖L2(∂B1) = 1⇒ the blow-up is nontrivial.
As rj → 0+,

Ñ(rj , u) = Ñ(1, vj)→ Ñ(1, v∗) = µ.

Since µ = limrj→0+ N(1, v∗), v∗ is homogenous of degree µ.

Moreover,
[u(rx)]y = ruxn(rx) = r

(
k+u

+ − k−u
−).

Letting r → 0, we find that v∗ satisfies{
∆v∗ = 0 in B+

1

v∗xn = 0 on Γ

We can evenly reflect v∗ and consider the solution in B1.
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Combining these results, and applying the classical theory we can finally
conclude

Theorem 24

Let u be a solution with ∇x ′u(0) = 0, and let v∗ be its blow-up limit.
Then v∗ is an homogeneous harmonic polynomial of degree µ ≥ 2.
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Structure of the singular set

We now introduce

Weiss-type functional

W (r , u) =
H(r , u)

rn−1+2µ
(N(r , u)− µ),

where H(r , u) =
´

(∂Br )+ u2

Monneau-type functional

M(r , u) =
1

rn−1+2µ

ˆ
(∂Br )+

(u − pµ)2,

pµ harmonic polynomial, homogeneous of degree µ and even in xn.

Both functionals are quasi-monotone as functions of r .
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Consequences

Nondegeneracy: There exists a constant c > 0 such that, for r < 1

sup
B+
r

|u| ≥ crµ.

Uniqueness of the homogeneous blow-ups: There exists a unique
non-zero harmonic polynomial pµ, homogeneous of degree µ and even
in xn, such that

v
(µ)
r (x) =

u(rx)

rµ
→ pµ(x).

This give essentially µ-differentiability at singular points:

u(x) = pµ(x) + o(|x |µ).
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Future developments

Structure of the free boundary (joint with Backing and Jain)

Variable coefficients (joint with Krummel)

More general boundary condition: non-zero obstacle (joint with
Krummel), gap in range for temperature controls...

Analysis of possible frequencies

Separation of phases

Parabolic case
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Thank you for your attention!
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