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Regularity results. Hölder and Schauder estimates.

Classical Hölder spaces.
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Hölder condition: |f (x)− f (y)| ≤ C |x − y |β , 0 < β < 1.

Hölder spaces C m,β(Rn), 0 < β < 1, m ∈ N0, consist of functions f ∈ Cm(Rn)

such that ∂γ1
x1
. . . ∂γn

xn f , γ1 + · · ·+ γn = m, satisfy the β Hölder condition.

The spaces C m,β , 0 < β < 1 are ‘’between”Cm and Cm+1, m ∈ N0.

Hölder spaces are basic in areas of functional analysis and relevant to solve partial

differential equations (regularity results, existence of solutions for elliptic

equations,...).
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Behavior of integro-differential operators in these spaces: ∆s and ∆−s (L.

Silvestre), Riesz transforms, Bessel potentials (E. Stein),...

Discrete Hölder Spaces: C 0,β
d := {f ∈ `∞ : [u]

C
β
h

<∞}, 0 < β < 1, where

[u]C 0,β = sup
m 6=j

|u(j)− u(m)|
|j −m|β

<∞.

−∆d u(j) = −(u(j+1)+u(j−1)−2u(j)) and δrightu(j) = u(j)− u((j + 1)), j ∈ Z.

In 2016, Ciaurri-Roncal-Stinga-Torrea-Varona proved the regularity of ∆±s
d in

the discrete Hölder spaces.

In 2017, Abadias-dLC-Torrea proved the regularity for δ±s
right in the discrete

Hölder spaces.

In general, these pointwise estimates are quite involved.
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Hölder spaces.

In general, these pointwise estimates are quite involved.
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Hölder spaces.

In general, these pointwise estimates are quite involved.

Marta de León Contreras Hölder and Schauder estimates. Pointwise and semigroup strategies.



Introduction.
Hermite-Zygmund spaces.

Fractional Powers of operators. Semigroup Theory approach.
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We will define operators through the semigroup theory.

Could we take advantage of the description of our operators via the semigroup

e−tL to do computations in a unifying way?

The pioneer work along these lines is due to E. Stein:

f ∈ C m,β(Rn) := Λα(Rn), α = m+β ⇐⇒ ‖∂k
y e−y

√
−∆f ‖∞ ≤ Cy−k+α, k = [α]+1.

What would happen if we change the operator −∆ by another operator L?

For L = 1
2

∆x − 〈x ,∇x 〉, the Ornstein-Uhlenbeck differential operator:

In 2009 Gatto-Urbina defined Gaussian-Lipschitz spaces through

‖∂k
y e−y

√
Lf ‖

L∞(Rn, e−|x|2

πn/2
)
≤ Cy−k+α, k = [α] + 1, and got regularity results.

In 2014 Liu-Sjögren gave the pointwise characterization of those spaces.
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Marta de León Contreras Hölder and Schauder estimates. Pointwise and semigroup strategies.



Introduction.
Hermite-Zygmund spaces.

Fractional Powers of operators. Semigroup Theory approach.
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Classical Hölder spaces.
Pointwise estimates vs Semigroup approach. The parabolic Hermite operator.

We will define operators through the semigroup theory.

Could we take advantage of the description of our operators via the semigroup

e−tL to do computations in a unifying way?

The pioneer work along these lines is due to E. Stein:

f ∈ C m,β(Rn) := Λα(Rn), α = m+β ⇐⇒ ‖∂k
y e−y

√
−∆f ‖∞ ≤ Cy−k+α, k = [α]+1.

What would happen if we change the operator −∆ by another operator L?

For L = 1
2

∆x − 〈x ,∇x 〉, the Ornstein-Uhlenbeck differential operator:

In 2009 Gatto-Urbina defined Gaussian-Lipschitz spaces through

‖∂k
y e−y

√
Lf ‖

L∞(Rn, e−|x|2

πn/2
)
≤ Cy−k+α, k = [α] + 1, and got regularity results.
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Classical Hölder spaces.
Pointwise estimates vs Semigroup approach. The parabolic Hermite operator.

We will define operators through the semigroup theory.

Could we take advantage of the description of our operators via the semigroup

e−tL to do computations in a unifying way?

The pioneer work along these lines is due to E. Stein:

f ∈ C m,β(Rn) := Λα(Rn), α = m+β ⇐⇒ ‖∂k
y e−y

√
−∆f ‖∞ ≤ Cy−k+α, k = [α]+1.

What would happen if we change the operator −∆ by another operator L?

For L = 1
2

∆x − 〈x ,∇x 〉, the Ornstein-Uhlenbeck differential operator:

In 2009 Gatto-Urbina defined Gaussian-Lipschitz spaces through

‖∂k
y e−y

√
Lf ‖

L∞(Rn, e−|x|2

πn/2
)
≤ Cy−k+α, k = [α] + 1, and got regularity results.
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We shall deal with the operators H = −∆ + |x |2 and L = ∂t +H.

Observe that

H =
1

2

n∑
i=1

{
(∂xi

+ xi )(−∂xi
+ xi ) + (−∂xi

+ xi )(∂xi
+ xi )

}
=

1

2

n∑
i=1

Ai A−i + A−i Ai .

In 2011, P.R. Stinga and J.L. Torrea defined the following spaces:

Hermite Hölder spaces.

Let 0 < β < 1.

C 0,β
H (Rn) = {f : (1 + | · |)β f (·) ∈ L∞(Rn), and ‖f (· + z)− f (·)‖L∞(Rn) ≤ A|z|β}

with associated norm

‖f ‖
C
β
H

= [f ]
Mβ

+ [f ]
C

0,β
H

,

where [f ]
Mβ

= ‖(1 + | · |)β f (·)‖∞ and [f ]
C
β
H

= sup|z|>0
‖f (·+z)−f (·)‖∞

|z|β
.

For m ∈ N and 0 < β < 1, we say that f ∈ C m,β
H (Rn), if there exist the associated

derivatives of order m and belong to C 0,β
H (Rn) and∑

1≤j≤m
1≤|i1|,...,|ij |≤n

[Ai1
. . .Aij

f ]
Mβ

+ [f ]
Mβ

<∞.
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Regularity results. Hölder and Schauder estimates.

Classical Hölder spaces.
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Classical Hölder spaces.
Pointwise estimates vs Semigroup approach. The parabolic Hermite operator.

We shall deal with the operators H = −∆ + |x |2 and L = ∂t +H.

Observe that

H =
1

2

n∑
i=1

{
(∂xi

+ xi )(−∂xi
+ xi ) + (−∂xi

+ xi )(∂xi
+ xi )

}
=

1

2

n∑
i=1

Ai A−i + A−i Ai .

In 2011, P.R. Stinga and J.L. Torrea defined the following spaces:
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Consider the harmonic oscillator H = −∆ + |x |2.

The heat semigroup is

e−τHf (x) =

∫
Rn

e−
|z|2

4
coth τ e−

|2x−z|2
4

tanh τ

(2π sinh(2τ))n/2
f (x − z)dz. It is not a convolution kernel!!!

and satisfies {
∂τ v(τ, x) = −Hv(τ, x), τ > 0, x ∈ Rn

v(0, x) = f (x), x ∈ Rn.

The Poisson semigroup associated with H can be written, for f in L∞(Rn), as

PHy f (x) = e−y
√
Hf (x) =

y

2
√
π

∫ ∞
0

e−y2/4τ e−τHf (x)
dτ

τ3/2

and satisfies {
∂2

∂y2 v(y , x)−Hv(y , x) = 0, y > 0, x ∈ Rn.

v(0, x) = f (x), x ∈ Rn.
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We define the space ΛαH associated with the operator H as follows.

Definition (Hermite Zygmund spaces)

Let α > 0.

ΛαH =

{
g ∈ L∞(Rn) :

∥∥∥∂k
y PHy g

∥∥∥
L∞(Rn)

≤ Cy−k+α, k = [α] + 1, y > 0, C > 0

}
,

with norm ‖g‖ΛαH
= C1 + ‖g‖∞, where C1 is the infimum of the constants C above.

Now let’s consider the Parabolic Hermite operator:

L = ∂t −∆x + |x |2, x ∈ Rn, t > 0.

As the operators ∂t and H commute, e−τL = e−τ∂t ◦ e−τH, we have

e−τLf (t, x) = e−τH
(

e−τ∂t f (t, ·)
)

(x) = e−τH(f (t − τ, ·))(x). It turns out that for

functions f ∈ Lp(Rn+1), 1 ≤ p ≤ ∞, the Poisson semigroup

PLy f (t, x) =
y

2
√
π

∫ ∞
0

e−y2/4τ e−τLf (x)
dτ

τ3/2

=
y

2
√
π

∫ ∞
0

∫
Rn

e−y2/4τ e−
|z|2

4
coth τ e−

|2x−z|2
4

tanh τ

(2π sinh 2τ)n/2
f (t − τ, x − z) dz

dτ

τ3/2
.
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Regularity results. Hölder and Schauder estimates.

We define the space ΛαH associated with the operator H as follows.

Definition (Hermite Zygmund spaces)

Let α > 0.

ΛαH =

{
g ∈ L∞(Rn) :

∥∥∥∂k
y PHy g

∥∥∥
L∞(Rn)

≤ Cy−k+α, k = [α] + 1, y > 0, C > 0

}
,

with norm ‖g‖ΛαH
= C1 + ‖g‖∞, where C1 is the infimum of the constants C above.

Now let’s consider the Parabolic Hermite operator:

L = ∂t −∆x + |x |2, x ∈ Rn, t > 0.

As the operators ∂t and H commute, e−τL = e−τ∂t ◦ e−τH, we have

e−τLf (t, x) = e−τH
(

e−τ∂t f (t, ·)
)

(x) = e−τH(f (t − τ, ·))(x). It turns out that for

functions f ∈ Lp(Rn+1), 1 ≤ p ≤ ∞, the Poisson semigroup

PLy f (t, x) =
y

2
√
π

∫ ∞
0

e−y2/4τ e−τLf (x)
dτ

τ3/2

=
y

2
√
π

∫ ∞
0

∫
Rn

e−y2/4τ e−
|z|2

4
coth τ e−

|2x−z|2
4

tanh τ

(2π sinh 2τ)n/2
f (t − τ, x − z) dz

dτ

τ3/2
.

Marta de León Contreras Hölder and Schauder estimates. Pointwise and semigroup strategies.



Introduction.
Hermite-Zygmund spaces.

Fractional Powers of operators. Semigroup Theory approach.
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Proposition

Let α > 0. If f ∈ ΛαL(Rn+1), then for every 0 < β < α, f ∈ ΛβL(Rn+1).
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Let α > 0. If f ∈ ΛαL, then |x |αf ∈ L∞(Rn+1).
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Let 0 < α < 1. Then

C
α/2,α
t,Hx

= ΛαL,

with equivalence of norms. That is, f ∈ ΛαL if, and only if,

‖f (· − τ, · − z)− f (·, ·)‖L∞(Rn+1) ≤ C(|τ |1/2 + |z|)α

and [f ]Mα = sup
(t,x)∈Rn+1

(1 + |x |)α|f (t, x)| <∞.
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least constant C for which the inequality above is true, then

‖f ‖ΛαL
:= [f ]Mα + C2.

2 Suppose that α > 2. Then f ∈ ΛαL if and only if

A±i A±j f ∈ Λα−2
L , i , j = 1, . . . , n, and ∂t f ∈ Λα−2

L .

In this case the following equivalence holds

‖f ‖ΛαH
∼

n∑
i,j=1

(
‖A±i A±j f ‖Λα−2

L

)
+ ‖∂t f ‖

Λα−2
L

.

3 For 0 < α < 3, α 6∈ N, the spaces C
α/2,α
t,Hx

= ΛαL, with equivalence of norms.
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Also, we have

Theorem

1 Suppose that 0 < α < 2. Then g ∈ ΛαH if and only if (1 + | · |)αg ∈ L∞(Rn) and

there exists a constant C > 0 such that

‖g(x − z) + g(x + z)− 2g(x)‖∞ ≤ C |z|α.

In this case, if C2 denotes the least constant C for which the inequality above is

true, then ‖g‖ΛαH
:= [g ]Mα + C2.

2 Suppose that α > 1. Then g ∈ ΛαH if and only if

A±i g ∈ Λα−1
H i = 1, . . . , n.

In this case the following equivalence holds

‖g‖ΛαH
∼ ‖g‖∞ +

n∑
i=1

(
‖A±i g‖Λα−1

H

)
.

3 For α > 0 such that α 6∈ N, we have CαH = ΛαH.

Marta de León Contreras Hölder and Schauder estimates. Pointwise and semigroup strategies.
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Hermite-Zygmund spaces.

Fractional Powers of operators. Semigroup Theory approach.
Regularity results. Hölder and Schauder estimates.

Example: Λ1
H 6⊂ Lip.

There exists a function g ∈ Λ1
H(R), but so that supx,z∈[0,1] |g(x + z)− g(x)| ≤ C |z|

fails for all C .

Consider h(x) =
∑∞

k=1 2−k cos(2π2k x) and ϕ positive and C1 s.t. ϕ ≡ 1 in

[−3, 3], and (1 + |x |)ϕ(x) ≤ C , |ϕ′(x)| ≤ C ′, for C ,C ′ > 0.

|h(x)| ≤ 1, and ‖h(x + z) + h(x − z)− 2h(x)‖∞ ≤ A|z|.

Choose g(x) = h(x)ϕ(x). Then, |(1 + |x |)g(x)| ≤ C and by the Mean Value

Theorem∣∣∣g(x + z) + g(x − z)− 2g(x)
∣∣∣ ≤ ∣∣∣ (h(x + z) + h(x − z)− 2h(x))ϕ(x + z)

∣∣∣
+
∣∣∣h(x − z) (ϕ(x − z)− ϕ(x + z))

∣∣∣+ 2
∣∣∣h(x) (ϕ(x + z)− ϕ(x))

∣∣∣ ≤ C |z|.

If g would satisfy |g(x + z)− g(x)| ≤ C |z|, then for x , z ∈ [0, 1] we would have

|h(x + z)− h(x)| ≤ C |z|. But the Weierstrass function doesn’t satisfy Lipschitz

condition.

Marta de León Contreras Hölder and Schauder estimates. Pointwise and semigroup strategies.
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Marta de León Contreras Hölder and Schauder estimates. Pointwise and semigroup strategies.



Introduction.
Hermite-Zygmund spaces.

Fractional Powers of operators. Semigroup Theory approach.
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k=1 2−k cos(2π2k x) and ϕ positive and C1 s.t. ϕ ≡ 1 in

[−3, 3], and (1 + |x |)ϕ(x) ≤ C , |ϕ′(x)| ≤ C ′, for C ,C ′ > 0.

|h(x)| ≤ 1, and ‖h(x + z) + h(x − z)− 2h(x)‖∞ ≤ A|z|.

Choose g(x) = h(x)ϕ(x). Then, |(1 + |x |)g(x)| ≤ C and by the Mean Value

Theorem∣∣∣g(x + z) + g(x − z)− 2g(x)
∣∣∣ ≤ ∣∣∣ (h(x + z) + h(x − z)− 2h(x))ϕ(x + z)

∣∣∣
+
∣∣∣h(x − z) (ϕ(x − z)− ϕ(x + z))

∣∣∣+ 2
∣∣∣h(x) (ϕ(x + z)− ϕ(x))

∣∣∣ ≤ C |z|.

If g would satisfy |g(x + z)− g(x)| ≤ C |z|, then for x , z ∈ [0, 1] we would have

|h(x + z)− h(x)| ≤ C |z|. But the Weierstrass function doesn’t satisfy Lipschitz

condition.
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4 Regularity results. Hölder and Schauder estimates.
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For λ, β > 0, the following identities are true:

λβ =
1

cβ

∫ ∞
0

(
e−tλ1/2

− 1
)[2β]+1 dt

t1+2β
, (1)

where cβ =
∫∞

0

(
e−τ − 1

)[2β]+1 dτ
τ1+2β , and

λ−β =
1

Γ(2β)

∫ ∞
0

e−tλ1/2 dt

t1−2β
. (2)

The functions
(e−z − 1)[2β]+1

z1+2β
and

e−z z2β

z
are holomorphic on C \ {0} and by using

Cauchy Theorem, we can extend formulas (1), (2) for λ ∈ C such that <λ > 0.

If we replace λ by L, we have the formal definitions:

Lβ f (t, x) =
1

cβ

∫ ∞
0

(
e−τL

1/2
− I
)[2β]+1

f (t, x)
dτ

τ1+2β
,

where cβ =
∫∞

0

(
e−τ − 1

)[2β]+1 dτ
τ1+2β . Also, for β > 0,

L−β f (t, x) =
1

Γ(2β)

∫ ∞
0

e−τL
1/2

f (t, x)
dτ

τ1−2β
.
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The Fourier-Hermite transform of a function f ∈ L1(Rn+1) can be defined as

F(f )(ρ, µ) =

∫
Rn+1

f (t, x)e−iρt hµ(x)dtdx , ρ ∈ R, µ ∈ Nn
0,

where hµ are the multi-dimensional Hermite functions defined by

hµ(x) = ψµ(x) · e−|x|2/2, where ψµ are the multi-dimensional Hermite polynomials.

Hhµ = (2|µ|+ n) hµ.

As F(Lf )(ρ, µ) = F((∂t +H)f )(ρ, µ) = (iρ+ 2|µ|+ n)F(f ), we have

F(e−τLf )(ρ, µ) = e−τ(iρ+2|µ|+n)F(f )(ρ, µ)

F(Pτ f )(ρ, µ) = F(e−τL
1/2

f )(ρ, µ) = e−τ(iρ+2|µ|+n)1/2
F(f )(ρ, µ)and

F(L±β f )(ρ, µ) = (iρ+ 2|µ|+ n)±βF(f )(ρ, µ),

ρ ∈ R, µ ∈ Nn
0, f ∈ L1(Rn+1)

Lemma

(a) Let 0 < 2β < α and f ∈ ΛαL then we have Lβ f (t, x) ≤ C <∞, (t, x) ∈ Rn+1.

(b) For every β > 0 and f ∈  L∞(Rn+1) we have L−β f (t, x) ≤ C <∞, for all

(t, x) ∈ Rn+1.

Marta de León Contreras Hölder and Schauder estimates. Pointwise and semigroup strategies.



Introduction.
Hermite-Zygmund spaces.

Fractional Powers of operators. Semigroup Theory approach.
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Regularity results. Hölder and Schauder estimates.

The Fourier-Hermite transform of a function f ∈ L1(Rn+1) can be defined as

F(f )(ρ, µ) =

∫
Rn+1

f (t, x)e−iρt hµ(x)dtdx , ρ ∈ R, µ ∈ Nn
0,

where hµ are the multi-dimensional Hermite functions defined by

hµ(x) = ψµ(x) · e−|x|2/2, where ψµ are the multi-dimensional Hermite polynomials.

Hhµ = (2|µ|+ n) hµ.

As F(Lf )(ρ, µ) = F((∂t +H)f )(ρ, µ) = (iρ+ 2|µ|+ n)F(f ), we have

F(e−τLf )(ρ, µ) = e−τ(iρ+2|µ|+n)F(f )(ρ, µ)

F(Pτ f )(ρ, µ) = F(e−τL
1/2

f )(ρ, µ) = e−τ(iρ+2|µ|+n)1/2
F(f )(ρ, µ)and

F(L±β f )(ρ, µ) = (iρ+ 2|µ|+ n)±βF(f )(ρ, µ),

ρ ∈ R, µ ∈ Nn
0, f ∈ L1(Rn+1)

Lemma

(a) Let 0 < 2β < α and f ∈ ΛαL then we have Lβ f (t, x) ≤ C <∞, (t, x) ∈ Rn+1.

(b) For every β > 0 and f ∈  L∞(Rn+1) we have L−β f (t, x) ≤ C <∞, for all

(t, x) ∈ Rn+1.
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Theorem (Hölder estimates)

Let 0 < 2β < α. If f ∈ ΛαL, then Lβ f ∈ Λα−2β
L , and

‖Lβ f ‖
Λ
α−2β
L

≤ C‖f ‖ΛαL
.

Theorem (Schauder estimates)

Let β > 0.

(i) If f ∈ ΛαL, with α > 0, then L−β f ∈ Λα+2β
L and

‖L−β f ‖
Λ
α+2β
L

≤ C‖f ‖ΛαL

(ii) If f ∈ L∞(Rn+1), then L−β f ∈ ΛβL(Rn+1) and

‖L−β f ‖
Λ
β
L
≤ C‖f ‖∞.
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For the multiplier operator of the Laplace transform on the spaces ΛαL, we have:

Theorem

Let a be a bounded function on [0,∞) and consider

m(λ) = λ1/2
∫ ∞

0
e−sλ1/2

a(s)ds, λ > 0.

Then, for every α > 0, the multiplier operator m(L) is bounded from ΛαL into itself.

These results allow as to prove the regularity of other operators.

Now we consider the Parabolic Riesz transforms of order m, m ≥ 1, defined by

Rδ = (Aδ1
±1Aδ2

±2 . . .A
δn
±n)L−m/2 and Rm = ∂m

t L−m,

where δ = (δ1, . . . , δn) ∈ Nn
0 such that |δ| = δ1 + · · ·+ δn = m,

Theorem

Let m ∈ N. The Riesz transforms of order m, Rm and Rδ, where |δ| = m, are bounded

from ΛαL into itself, for every α > 0.
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Regularity results. Hölder and Schauder estimates.

For the multiplier operator of the Laplace transform on the spaces ΛαL, we have:

Theorem

Let a be a bounded function on [0,∞) and consider

m(λ) = λ1/2
∫ ∞

0
e−sλ1/2

a(s)ds, λ > 0.

Then, for every α > 0, the multiplier operator m(L) is bounded from ΛαL into itself.

These results allow as to prove the regularity of other operators.

Now we consider the Parabolic Riesz transforms of order m, m ≥ 1, defined by

Rδ = (Aδ1
±1Aδ2

±2 . . .A
δn
±n)L−m/2 and Rm = ∂m

t L−m,

where δ = (δ1, . . . , δn) ∈ Nn
0 such that |δ| = δ1 + · · ·+ δn = m,

Theorem

Let m ∈ N. The Riesz transforms of order m, Rm and Rδ, where |δ| = m, are bounded

from ΛαL into itself, for every α > 0.
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Non-local fractional derivatives. Discrete and continuous.

J. Math. Anal. Appl., 449(1):734–755, 2017.
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Marta de León Contreras Hölder and Schauder estimates. Pointwise and semigroup strategies.



Introduction.
Hermite-Zygmund spaces.

Fractional Powers of operators. Semigroup Theory approach.
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Thank you for your attention!!
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