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o Holder spaces C™P(R"), 0 < 8 < 1, m € Ny, consist of functions f € C™(R")
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o Holder spaces are basic in areas of functional analysis and relevant to solve partial
differential equations (regularity results, existence of solutions for elliptic

equations,...).
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Silvestre), Riesz transforms, Bessel potentials (E. Stein),...
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[u(j) — u(m)|
[W]cos = sup W)=l
c m# L= m|?

—Agu(j) = —(u(j+1)+u(i—1)—2u(j)) and dyighsu(j) = u(j) — u((j+ 1)), j € Z.

In 2016, Ciaurri-Roncal-Stinga-Torrea-Varona proved the regularity of A;ts in
the discrete Holder spaces.

+s

vight 1N the discrete

In 2017, Abadias-dLC-Torrea proved the regularity for &

Holder spaces.

@ In general, these pointwise estimates are quite involved.
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In 2014 Liu-Sjogren gave the pointwise characterization of those spaces.
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@ We shall deal with the operators # = —A + |x|? and £ = 0; + H.
@ Observe that

1< 1
H= > Z {05 + %) (=0 + xi) + (—0x; + x)(0x; + %)} = 5 ZA,'A—; +A_A;.

i=1 i=1

o In 2011, P.R. Stinga and J.L. Torrea defined the following spaces:
Hermite Holder spaces.
o let0< B < 1.
CRPR) = {F (L4 |- PF(-) € L(R"), and ||F(- + 2) — F(-)[[ooan) < Alz|”}
with associated norm
Flles, = [Flys + [Fleas.

IFC+2)=F()ll oo
12| ’

where [f],,5 = [[(1+ |- )?f(-)]|o and [f]C% = SUP|; |0

Marta de Leén Contreras Halder and Schauder estimates. Pointwise and semigroup strategies.



Introduction

Pointwise estimates vs Semigroup approach. The parabolic Hermite operator.

@ We shall deal with the operators # = —A + |x|? and £ = 0; + H.
@ Observe that

1< 1
H= > Z {05 + %) (=0 + xi) + (—0x; + x)(0x; + %)} = 5 ZA,'A—; +A_A;.

i=1 i=1

o In 2011, P.R. Stinga and J.L. Torrea defined the following spaces:
Hermite Holder spaces.
o let0< B < 1.
CRPR) = {F (L4 |- PF(-) € L(R"), and ||F(- + 2) — F(-)[[ooan) < Alz|”}
with associated norm
Flles, = [Flys + [Fleas.

IFC+2)=F()ll oo
12| ’

where [f],,5 = [[(1+ |- )?f(-)]|o and [f]C% = SUP|; |0
o Forme Nand 0 < 8 <1, we say that f € CZ’B(R"), if there exist the associated
derivatives of order m and belong to Cgi’ﬁ (R") and
> [Ay - Ay flys + [flys < oo

1<j<m
1< il il <n
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Definition (Parabolic Hermite Holder spaces.)

@ Let 0 < o < 1. We say that f € Cta,‘?/fx’o‘ if f e C*/%>* and

[ue = sup (L+ <) IF(£,x)] < oo
(t,x)erRn+1

In this case,

Il cay2.a = [flae +[f] ay2,a-
t, Hx t, Hx
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Consider the harmonic oscillator H = —A + |x|%.

The heat semigroup is

_1zI?
coth Te

_r [ e 3
¢ Hf(x)_/n (27 sinh(2r))7/2

and satisfies

12
—M tanh T

f(x — z)dz. ’ It is not a convolution kernel!!!

Orv(r,x) = —Hv(1,x), 7>0,x €R"
v(0,x) = f(x), x € R".
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Orv(t,x) = —Hv(1,x), 7>0,x eR"
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The Poisson semigroup associated with # can be written, for f in L>°(R"), as

dr
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and satisfies
52 — n
52V x) = Hv(y,x) =0, y >0,x € R".
v(0,x) = f(x), x € R".
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We define the space Ag; associated with the operator #H as follows.

Definition (Hermite Zygmund spaces)

Let a > 0.

5= {a e =@ |orpitel

< Cy ke, k= 1, 0,C>0},
po@ey = Y [a]+1, y> >

with norm ||g||/\% = Ci + ||g|loo, Where C; is the infimum of the constants C above.
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We define the space Ag; associated with the operator #H as follows.

Definition (Hermite Zygmund spaces)

Let a > 0.

o = {g € L®(R") : Hajp}*gH <Cy kY k=[a]+1, y>0,C> o},

Loo(R")

with norm ||g||/\% = Ci + ||g|loo, Where C; is the infimum of the constants C above.

Now let's consider the Parabolic Hermite operator:
L=08—Dx+]|x% xR, t>0.

As the operators 9; and H commute, e L = e O o e_"H, we have
e TEf(e,x) = e (7T A(2,1)) (x) = e TH(F(t — 7, ))(x).
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Hermite-Zygmund spaces.

We define the space Ag; associated with the operator #H as follows.

Definition (Hermite Zygmund spaces)

Let a > 0.

) {gELOO(R" |osPtel| < Gy Rt k=[a] +1, y>o,c>o},

Loo(R")

with norm Hg||/\% = Ci + ||g|loo, Where C; is the infimum of the constants C above.

Now let's consider the Parabolic Hermite operator:

L=08—Dx+]|x% xR, t>0.
As the operators 9; and H commute, e L = e O o e‘TH, we have
e TEf(t,x)=e TH (e*TBff(t, ))(x) = e "H(f(t—7,-))(x). It turns out that for
functions f € LP(R”+1) 1 < p < oo, the Poisson semigroup
> dr
—y /47' —TL
N | e )57

2 52
E |2X4Z‘ tanh 7 dr

%) — 1= cothT —
A v/ e ! F(t—7,x — ) dz—
zﬁ/o / y (27 sinh 27)/2 (£ =mx—2)dz 57

L
Py f(t,x)
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Hermite-Zygmund spaces.

Definition (Parabolic Hermite-Zygmund spaces)

Let o > 0, we define the Parabolic Hermite-Zygmund spaces as

<Gy *t k=[o]+1, y>0

a _ a oo (pn+1 kpL
a = {f. feL=®R") and |0} fHLm(RnH)

whose norm is given by ||f\|,\% ‘= ||f|loc + C, where C is the infimum of the constants

Cy above.
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Hermite-Zygmund spaces.

Definition (Parabolic Hermite-Zygmund spaces)

Let o > 0, we define the Parabolic Hermite-Zygmund spaces as

<Gy *t k=[o]+1, y>0

{f f € L®(R"™1) and Ha"P‘:fH
Lo ]R"*l)

whose norm is given by ||f\|,\% ‘= ||f|loc + C, where C is the infimum of the constants
Cy above.

Let f(t,x) = g(x), then

| _ |2x—z|?

y ) o e~ 3 COthTe tanh T d
Pﬁf t, — / / yo /AT d = PH
) =572 | f® (27 sinh 27)n/2 gx—2)dz 5 &),

where P;“g(x) is the Poisson semigroup associated with the operator
H=—Ax+ x|
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Definition (Parabolic Hermite-Zygmund spaces)

Let o > 0, we define the Parabolic Hermite-Zygmund spaces as

<Gy *t k=[o]+1, y>0

{f f € L®(R"™1) and Ha"P‘:fH
Lo ]R"*l)

whose norm is given by ||f\|,\% ‘= ||f|loc + C, where C is the infimum of the constants
Cy above.

Let f(t,x) = g(x), then

| _ |2x—z|?

y ) o e~ 3 COthTe tanh T d
Pﬁf t, — / / yo /AT d = PH
) =572 | f® (27 sinh 27)n/2 gx—2)dz 5 &),

where P;“g(x) is the Poisson semigroup associated with the operator
H=—-Ax+ \X|2. In this case,

| FeAZE™) & g € AR
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Hermite-Zygmund spaces.

Proposition

Let a > 0. If f € AZ(R™1), then for every 0 < § < a, f € NZ(R™1).
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Hermite-Zygmund spaces.

Proposition

Let a > 0. If f € AZ(R™1), then for every 0 < § < a, f € NZ(R™1).

Proposition

Let o > 0. If f € A%, then |x|*f € L°(R"F1).
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Hermite-Zygmund spaces.

Proposition

Let a > 0. If f € A%(R™1), then for every 0 < B < a, f € /\g(R"‘H).

Proposition

Let a > 0. If f € AE, then |x|*f € L°(R™).

Theorem

Let 0 < o < 1. Then

a/2,a _ pa
Con, =Nz,

with equivalence of norms. That is, f € Ay if, and only if,

(- =7 = 2) = (-, )l oo rry < C(ITIY2 + |2])°

and [flye =  sup (1 + |x])¥|f(t,x)| < co.
(t,x)ERN+1L

Marta de Leén Contreras
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Hermite-Zygmund spaces.

Theorem

1 Suppose that 0 < o < 2. Then f € A% if and only if there exists a constant
C > 0 such that

[F(t =7, x = 2) + F(t — 7, x + 2) = 2F (£, %) | oo mr1y < C(I7[2 + |2]),

for all (1,z) € R"™! and (1 + |x|)*f € L>°(R™1). In this case, if C; denotes the
least constant C for which the inequality above is true, then
||f||/\rz = [f]Ma + C2.
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Hermite-Zygmund spaces.

1 Suppose that 0 < o < 2. Then f € A% if and only if there exists a constant
C > 0 such that

[F(t =7, x = 2) + F(t — 7, x + 2) = 2F (£, %) | oo mr1y < C(I7[2 + |2]),

for all (1,z) € R"™! and (1 + |x|)*f € L>°(R™1). In this case, if C; denotes the
least constant C for which the inequality above is true, then
Ifllag = [flme + C2.

2 Suppose that a > 2. Then f € A} if and only if

ApLAgf €NG™? i j=1,...,n, and 8f€AZ 2

In this case the following equivalence holds

1fllng, ~ D= (IA£iALFllpa—2) + 10l a2
ij=1
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Hermite-Zygmund spaces.

1 Suppose that 0 < o < 2. Then f € A% if and only if there exists a constant
C > 0 such that

[F(t =7, x = 2) + F(t — 7, x + 2) = 2F (£, %) | oo mr1y < C(I7[2 + |2]),

for all (1,z) € R"™! and (1 + |x|)*f € L>°(R™1). In this case, if C; denotes the
least constant C for which the inequality above is true, then
Ifllag = [flme + C2.

2 Suppose that a > 2. Then f € A} if and only if

ApLAgf €NG™? i j=1,...,n, and 8f€AZ 2

In this case the following equivalence holds

1fllng, ~ D= (IA£iALFllpa—2) + 10l a2
ij=1

3 For0 < a< 3, a &N, the spaces Cf‘{{zx’a = A%, with equivalence of norms.
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Hermite-Zygmund spaces.

Also, we have

Theorem

@ Suppose that 0 < o < 2. Then g € A, if and only if (1 + | -[)*g € L>°(R") and
there exists a constant C > 0 such that

llg(x — 2) + g(x + 2) — 28(x)[lc < Clz|*.

In this case, if C; denotes the least constant C for which the inequality above is
true, then ||g||/\§x_£ = [g]lme + Co.
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Hermite-Zygmund spaces.

Also, we have

Theorem

@ Suppose that 0 < o < 2. Then g € A, if and only if (1 + | -[)*g € L>°(R") and
there exists a constant C > 0 such that

llg(x — 2) + g(x + 2) — 28(x)[lc < Clz|*.

In this case, if C; denotes the least constant C for which the inequality above is
true, then ||g||/\§x_£ = [g]lme + Co.

© Suppose that o > 1. Then g € Ag; if and only if
ArigeNg Tt i=1,...,n

In this case the following equivalence holds

n
lellng, ~ Tl +3 (1Azigllye-1 )-
=
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Hermite-Zygmund spaces.

Also, we have

Theorem

@ Suppose that 0 < o < 2. Then g € A, if and only if (1 + | -[)*g € L>°(R") and
there exists a constant C > 0 such that

llg(x — 2) + g(x + 2) — 28(x)[lc < Clz|*.

In this case, if C; denotes the least constant C for which the inequality above is
true, then ||g||/\§x_£ = [g]lme + Co.

© Suppose that o > 1. Then g € Ag; if and only if
ArigeNg Tt i=1,...,n

In this case the following equivalence holds

n
lellng, ~ Tl +3 (1Azigllye-1 )-
=

© For a > 0 such that o ¢ N, we have Cf_‘t = /\‘;‘_L.
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Hermite-Zygmund spaces.

Example: A';lLt ¢ Lip.

There exists a function g € A} (R), but so that SUpy zcpo,1] 18(x +2) — g(x)| < Clz]
fails for all C.

Marta de Leén Contreras Halder and Schauder estimates. Pointwise and semigroup strategies.



Hermite-Zygmund spaces.

Example: A';lLt ¢ Lip.

There exists a function g € A} (R), but so that SUpy zcpo,1] 18(x +2) — g(x)| < Clz]
fails for all C.
o Consider h(x) = 372, 27 ¥ cos(2m2x) and ¢ positive and C! s.t. ¢ = 1 in
[=3,3], and (1 + |x|)p(x) < C, |¢'(x)| < C, for C,C’ > 0.
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Hermite-Zygmund spaces.

Example: A';lLt ¢ Lip.

There exists a function g € A} (R), but so that SUpy zcpo,1] 18(x +2) — g(x)| < Clz]
fails for all C.

o Consider h(x) = 372, 27 ¥ cos(2m2x) and ¢ positive and C! s.t. ¢ = 1 in
[=3,3], and (1 + |x|)p(x) < C, |¢'(x)| < C, for C,C’ > 0.

o |h(x)| <1, and ||h(x + z) + h(x — z) — 2h(X)||ec < Alz].
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Hermite-Zygmund spaces.

Example: A';lLt ¢ Lip.

There exists a function g € A} (R), but so that SUpy zcpo,1] 18(x +2) — g(x)| < Clz]
fails for all C.

o Consider h(x) = 372, 27 ¥ cos(2m2x) and ¢ positive and C! s.t. ¢ = 1 in
[=3,3], and (1 + |x|)p(x) < C, |¢'(x)| < C, for C,C’ > 0.
o |h(x)| <1, and ||h(x + z) + h(x — z) — 2h(X)||ec < Alz].

@ Choose g(x) = h(x)e(x). Then, |(1+ |x|)g(x)| < C and by the Mean Value
Theorem

lg(x+2) + g(x — 2) = 28(x)| < [ (h(x + 2) + hix — 2) = 2h(x)) p(x + 2)|

+ h(x = 2) (p(x = 2) = w(x + 2)| + 2|h(x) (p(x + 2) = @(x)) | < Clzl:
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Hermite-Zygmund spaces.

Example: A';lLt ¢ Lip.

There exists a function g € A} (R), but so that SUpy zcpo,1] 18(x +2) — g(x)| < Clz]
fails for all C.

o Consider h(x) = 372, 27 ¥ cos(2m2x) and ¢ positive and C! s.t. ¢ = 1 in
[=3,3], and (1 + |x|)p(x) < C, |¢'(x)| < C, for C,C’ > 0.
o |h(x)| <1, and ||h(x + z) + h(x — z) — 2h(X)||ec < Alz].

@ Choose g(x) = h(x)e(x). Then, |(1+ |x|)g(x)| < C and by the Mean Value
Theorem

lg(x+2) + g(x — 2) = 28(x)| < [ (h(x + 2) + hix — 2) = 2h(x)) p(x + 2)|

+ h(x = 2) (p(x = 2) = w(x + 2)| + 2|h(x) (p(x + 2) = @(x)) | < Clzl:

o If g would satisfy |g(x + z) — g(x)| < C|z|, then for x, z € [0, 1] we would have
|h(x + z) — h(x)| < C|z|. But the Weierstrass function doesn't satisfy Lipschitz
condition.

Marta de Leén Contreras Hélder and Schauder estimates. Pointwise and semigroup strategies.
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© Fractional Powers of operators. Semigroup Theory approach.
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Fractional Powers of operators. Semigroup Theory approach

For A\, 8 > 0, the following identities are true:

1 /2 [2A1+1  dt
B _ 2
AT = s Jo (e 1) t1+2B” @)

281+1 _d
1)PAH _dr - and

1 Rl 172 dt
-8 _ _ - —tA
S o AR @

where cg = [ (e77 —
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Fractional Powers of operators. Semigroup Theory approach

For A\, 8 > 0, the following identities are true:

1 /2 [2A1+1  dt
B— = |2

V=) (e 1) Eed 1)

where cg = [ (e77 — 1)[2’3]+1 .,1(%2/3' and
B L /°° emex/2_dt @)

r(28) Jo t1-28

(efz _ 1)[25]+1 e~ 2728

The functions 1726 and are holomorphic on C\ {0} and by using
z z

Cauchy Theorem, we can extend formulas (1), (2) for A € C such that ®\ > 0.
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Fractional Powers of operators. Semigroup Theory approach

For A\, 8 > 0, the following identities are true:

1 [/ /2 [2A1+1  dt
B _ 2
AT = cs (e 1) t1+2B” @)

where ¢y = [ (e~ )P g5 and

-6 _ 1 /‘X’eit)\l/z dt . (2)
r(2p) Jo t1-26

e—Z )[25]+1 e~ 2728

The functions ( Ti25 and are holomorphic on C\ {0} and by using

Cauchy Theorem, we can extend formulas (1), (2) for A € C such that ®X > 0.
If we replace A\ by £, we have the formal definitions:

1 o 1/2 [28]+1 dr
B — TL
LPf(t,x) = CB/O (e —I) f(t,x) 1725

where cg = [ (e77 — 1)[%]+1 dT . Also, for 3> 0,

B¢ 77_51/2 dr
ey
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Fractional Powers of operators. Semigroup Theory approach

The Fourier-Hermite transform of a function f € L1(R"!) can be defined as
F(F)(ps 1) = / F(t, x)e~ Pt (x)dtdx, p € R, p € Nj,
Rn+1

where h,, are the multi-dimensional Hermite functions defined by

hu(x) = Yu(x) - e XI?/2 where 1, are the multi-dimensional Hermite polynomials.
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Fractional Powers of operators. Semigroup Theory approach

The Fourier-Hermite transform of a function f € L1(R"!) can be defined as
F(F)(ps 1) = / F(t, x)e~ Pt (x)dtdx, p € R, p € Nj,
Rn+1

where h,, are the multi-dimensional Hermite functions defined by

hu(x) = Yu(x) - e XI?/2 where 1, are the multi-dimensional Hermite polynomials.

o Hhy = (2| + n) by

Marta de Leén Contreras Halder and Schauder estimates. Pointwise and semigroup strategies.



Fractional Powers of operators. Semigroup Theory approach

The Fourier-Hermite transform of a function f € L1(R"!) can be defined as
F(F)(ps 1) = / F(t, x)e~ Pt (x)dtdx, p € R, p € Nj,
Rn+1

where h,, are the multi-dimensional Hermite functions defined by
hu(x) = Yu(x) - e XI?/2 where 1, are the multi-dimensional Hermite polynomials.
o Hhy = (2lul + ) hy.
o As F(LF)(p, 1) = F((0: + H)F)(p, 1) = (ip+ 2lul + m)F(F), we have
F(eTTE ) (py ) = e TR F (£) (o, )
F(Pr) o) = F(e™ 2 F)(p, ) = &= 70 202 2(£) (p, p)and
FLFP6)(p, ) = (ip + 2|ul + n) =P F(F)(p, ),

pER, p € NI, f e LY(R™T)
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Fractional Powers of operators. Semigroup Theory approach

The Fourier-Hermite transform of a function f € L1(R"!) can be defined as
F(F)(ps 1) = / F(t, x)e~ Pt (x)dtdx, p € R, p € Nj,
Rn+1

where h,, are the multi-dimensional Hermite functions defined by
hu(x) = Yu(x) - e XI?/2 where 1, are the multi-dimensional Hermite polynomials.
o Hhy = (2lul + ) hy.
o As F(LF)(p, 1) = F((0: + H)F)(p, 1) = (ip+ 2lul + m)F(F), we have
F(eTTE ) (py ) = e TR F (£) (o, )
F(Pr) o) = F(e™ 2 F)(p, ) = &= 70 202 2(£) (p, p)and
FLFP6)(p, ) = (ip + 2|ul + n) =P F(F)(p, ),

pER, p € NI, f e LY(R™T)

(a) Let 0 < 2B < a and f € A% then we have LPf(t,x) < C < oo, (t,x) € R

(b) For every B3>0 and f € £>°(R"™!) we have L~Pf(t,x) < C < oo, for all
(t,x) € R™L.
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© Regularity results. Holder and Schauder estimates.
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Regularity results. Holder and Schauder estimates

Theorem (Holder estimates)

Let 0 < 28 < . If f € A%, then LPf € N3P, and

||£Bf||,\%—2/3 < Cllfllag -
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Regularity results. Holder and Schauder estimates

Theorem (Holder estimates)

Let 0 < 28 < . If f € A%, then LPf € N3P, and

||£Bf||,\z—2ﬁ < Cllfllag -

Theorem (Schauder estimates)

Let 8 > 0.
(i) Iff € A%, with a >0, then L=Pf € A3*?P and

||ﬁ_ﬁf||,\z+w < Cllfllag
(ii) If f € L(R™Y), then L=Af € A2(R™1) and

Hﬁfﬁfll,\i < Clflloo-
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Regularity results. Holder and Schauder estimates

For the multiplier operator of the Laplace transform on the spaces A%, we have:

Let a be a bounded function on [0, c0) and consider

12 [ __aal/2
m(A) = AV / e """ a(s)ds, A >0.
0

Then, for every o > 0, the multiplier operator m(L) is bounded from A% into itself.
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Regularity results. Holder and Schauder estimates

For the multiplier operator of the Laplace transform on the spaces A%, we have:

Let a be a bounded function on [0, c0) and consider

12 [ __aal/2
m(A) = AV / e """ a(s)ds, A >0.
0

Then, for every o > 0, the multiplier operator m(L) is bounded from A% into itself.

These results allow as to prove the regularity of other operators.
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Regularity results. Holder and Schauder estimates

For the multiplier operator of the Laplace transform on the spaces A%, we have:

Let a be a bounded function on [0, c0) and consider

12 [ __aal/2
m(A) = AV / e """ a(s)ds, A >0.
0

Then, for every o > 0, the multiplier operator m(L) is bounded from A% into itself.

These results allow as to prove the regularity of other operators.
Now we consider the Parabolic Riesz transforms of order m, m > 1, defined by

Rs = (AL A%, .. AL )L™™2 and Ry =087L™"™,

where § = (d1,...,0n) € Nj such that |§| =61 + -+ 5 = m,
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Regularity results. Holder and Schauder estimates

For the multiplier operator of the Laplace transform on the spaces A%, we have:

Let a be a bounded function on [0, c0) and consider

12 [ __aal/2
m(A) = AV / e """ a(s)ds, A >0.
0

Then, for every o > 0, the multiplier operator m(L) is bounded from A% into itself.

These results allow as to prove the regularity of other operators.
Now we consider the Parabolic Riesz transforms of order m, m > 1, defined by

Rs = (AL A%, .. AL )L™™2 and Ry =087L™"™,

where § = (d1,...,0n) € Nj such that |§| =61 + -+ 5 = m,

Let m € N. The Riesz transforms of order m, Rm and Rs, where |§| = m, are bounded

from A% into itself, for every oo > 0.
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Thank you for your attention!!
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