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NONLOCAL FRACTIONAL EQUATIONS FROM RANDOM WALKS

CHRISTOPHER KUNZ

Abstract. If a particle is undergoing a continuous random walk, it is of interest to model
the probability of observing said particle at some position and observing it at some time.
Under “normal” circumstances, this probability function satisfies the heat equation. How-
ever, there are natural phenomena where particles get stuck in one spot before moving
again or make jumps of arbitrary length. Such behaviors are examples of anomalous dif-
fusion, and we are interested in modeling this same probability under these scenarios and
how it impacts the heat equation. The fractional left derivative and fractional Laplacian
are developed and utilized in our formulations. Finally, we compare the kernels that are
obtained from experimental observations with kernels that result from the computations
of the discrete left fractional derivative and discrete fractional Laplacian. We show that
the difference between the restriction of the original fractional derivative to the mesh and
the corresponding discrete derivative can be made arbitrarily small. This proves that the
discrete fractional derivative converges to its corresponding continuous fractional derivative,
and it allows us to compute the kernels without relying on experiments. Extra care is taken
in preserving coefficients in computations to show the importance of the gamma function in
these models.
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2 C. KUNZ

1. Setting the scene

Consider a particle of unit mass on the lattice hZn = {hx : x ∈ Zn}, where h > 0, that
is moving step-by-step at random. We call h the space step. Also, we fix τ > 0 to be the
time step. Without loss of generality, we suppose that the particle starts at the origin. For
every step, the particle moves in one of the 2n possible directions with uniform probability,
and each step is independent of the previous one.

For the duration of the paper, we assume u : Rn×R→ [0, 1] is Schwartz class to maintain
a sufficient level of smoothness. For x ∈ Rn and t ∈ R, we say that u(x, t) is the probability
of observing the particle in position x and observing the particle at time t. If h, τ are made
arbitrarily small, then we obtain a continuous random walk in time and space. With this,
the goal is to derive a partial differential equation that models the behavior of u.

1.1. Classical random walk.

To illustrate these ideas, we start with the simple case where we require the particle to
move one space step of size h for every time step of size τ , which is called a classical random
walk. In the context of random walks throughout time, we are only able to consider past
and present times. Obviously, we cannot draw on information from the future. When we
talk about a change in some quantity with respect to time, it only makes sense to consider
the infinitesimal change coming from the left. As such, we do not talk about derivatives of
functions but rather left derivatives of functions.

Definition 1.1. Let u : R→ R be a function. We say that u is left-differentiable if

Dleftu(t) = lim
τ→0+

u(t)− u(t− τ)

τ

exists, and Dleftu is the left derivative of u.

It is worth mentioning that all left derivatives will be taken with respect to time, so the
components of the spacial variable will be treated as constants. Another tool that will be
used routinely in calculations is the fact that second derivatives can be written as limits of
second-order incremental quotients:

Proposition 1.2. Let u : Rn → R be a twice-differentiable function, and let 1 ≤ k ≤ n.
Then,

uxkxk(x) = lim
h→0

u(x+ hek) + u(x− hek)− 2u(x)

h2
,

where {ek}nk=1 is the standard orthonormal basis for Rn.

Note that the direction of the limit above is inconsequential because of the symmetry of
the first two terms in the numerator and the square in the denominator.

Since there are 2n possible directions for the particle to move, the probability of choosing
one of them is 1

2n . For each 1 ≤ k ≤ n, the particle moves in the direction of hek or −hek
with equal probability. Finally, we require that taking a time step of size τ results in a space
step of size h. With all of these observations, by the law of total probability, we have that

(1.1) u(x, t) =

n∑
k=1

u(x+ hek, t− τ) + u(x− hek, t− τ)

2n
.
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Next, by properties of finite sums, we can rearrange and divide both sides by τ :

u(x, t)− u(x, t− τ)

τ
=

n∑
k=1

u(x+ hek, t− τ) + u(x− hek, t− τ)− 2u(x, t− τ)

2τn

=
h2

2τn

n∑
k=1

u(x+ hek, t− τ) + u(x− hek, t− τ)− 2u(x, t− τ)

h2
.

To obtain a continuous random walk, we take the limits as both h, τ → 0+. However, in
order for us to arrive at a meaningful result, we must require that

h2

2τn
→ K

2n

for some K > 0. On the left, we recognize the limit in τ as the left derivative of u. Inside
the sum on the right, we have the limit in h on the spacial component of the second-order
incremental quotient. Thus, after taking limits, the previous equation is reduced to

Dleftu =
K

2n

n∑
k=1

uxkxk

=
K

2n
∆u,

(1.2)

which we know to be the heat equation. We can summarize our results as follows:

Theorem 1.3. A particle undergoes a continuous classical random walk. The probability of
observing the particle at position x ∈ Rn and observing the particle at time t ∈ R is given by
the following PDE:

(1.3) Dleftu =
K

2n
∆u

for some K > 0.

1.2. Introduction to waiting times and jumps.

Requiring the particle to move one unit space step for each time interval is rather specific,
so we now consider three more realistic cases. What if the particle gets stuck and has a
probability of waiting some amount of time before moving again? What if the particle makes
a longer jump than just a step of size h? What if both of these events happen? These are
examples of a process called anomalous diffusion. In particular, we can identify what these
cases are:

(1) There is a probability of the particle getting stuck and undergoing a waiting time
while still taking steps of size h.

(2) There is a probability of the particle making a jump of arbitrary size while still moving
for every time step τ .

(3) There is a probability of the particle getting stuck and another probability of making
a jump of arbitrary size.

These considerations will require us to modify (1.1) to fit the situation in question. The task
now is to mathematically describe these modifications.

Experimental results have shown that not all random motion can be modeled by (1.2).
Proteins moving through cell membranes may get stuck, and electrons can get stuck on
semiconductors until they obtain enough potential energy to move again. These processes
with waiting times of the particles are examples of subdiffusion. If this happens, then it
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has been observed that the probability of waiting some time before moving follows a Pareto
power law, resulting in the following definition:

Definition 1.4. Let ψ : (0,∞)→ [0, 1] be defined by ψ(τ) = cατ
−(1+α) for 0 < α < 1, where

cα > 0 is chosen such that
∞∑
m=1

ψ(m) = 1.

We say that ψ(m) is the probability of waiting m units of time between steps.

Similarly, it is natural that particles in random motion may experience jumps of various
lengths. A particle can move along the surface of a crystal, and due to the symmetry
of the crystal, the restriction to the surface can cause the particle to make unpredicatble
jumps. This type of process is an example of superdiffusion. In this scenario, experimental
observations have shown that the probability of making a jump of some size follows a similar
Pareto power law from before, so we have the following definition:

Definition 1.5. Let φ : Rn → [0, 1] be defined by φ(y) = ds |y|−(n+2s) for y 6= 0 and φ(y) = 0
for y = 0, where 0 < s < 1, and where ds > 0 is chosen such that∑

k∈Zn

φ(k) = 1.

We say that φ(k) is the probability of making a jump of size |k|.

Note that φ is even, which corresponds to the particle having an equal probability of
moving left or right.

Remark 1.6. Due to the definitions of ψ, φ, the normalization constants cα,ds respectively
can be written in terms of the Riemann zeta function. While this choice may lead to more
precise calculations of coefficients, we will instead only use cα,ds to retain the physical context
of the problem.

These two probabilities change the model in (1.2) in subtle yet fundamental ways. Now
that we have established what they are, we must find out how they impact the heat equation.
To discuss these changes, we shift our attention to the analytical tools that we will use.

Notes:

The setup of the classical random walk is described in [5]. To derive the heat equation,
we instead use methods similar to those in [6]. The three cases regarding waiting times and
jumps are explored further in Section 3. Additional context for the anomalous processes of
subdiffusion and superdiffusion is given in [6] and [4], and the proposed formulas for ψ and
φ that describe these phenomena are given in [6] and [8] respectively.
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2. Deriving the fractional derivatives

The introduction of waiting times and jumps requires the implementation of fractional
derivatives to model these changes. In this section, we discuss two types of these derivatives
and derive convenient integral expressions for them. It is implied that the main tool behind
the formulation of these fractional derivatives is the gamma function, whose key properties
used here are given in Section A.1.

2.1. Fractional left derivative.

To begin to define the fractional left derivative, we start by rewriting the left derivative
in terms of the Fourier transform. While it is well established how derivatives and Fourier
transforms relate, it would not hurt to take care when considering left derivatives.

Proposition 2.1. Let ω ∈ R. Then,

D̂leftu(ω) = (iω)û(ω).

Proof: Applying the Fourier transform to Dleftu and integrating by parts gives that

D̂leftu(ω) =
1

(2π)
1
2

ˆ
R

(Dleftu)e−iωrdr

=
−1

(2π)
1
2

ˆ
R

(
Dleft[e

−iωr]
)
udr.

Note that the exponential is differentiable, so its left derivative would be the familiar regular
derivative, and

D̂leftu(ω) =
iω

(2π)
1
2

ˆ
R
e−iωrudr

= (iω)û(ω).

�

Since a single copy of iω was removed from the exponent and placed in front of û, this
suggests that we can also take α copies of iω, so inverting the Fourier transform gives the
following definition:

Definition 2.2 (Fourier). Let 0 < α < 1. The fractional left derivative of order α of u is
defined to be

(Dleft)
αu = F−1

(
(iω)αû(ω)

)
.

We restrict α to be less than 1 because that is where the “interesting” behavior occurs.
If α > 1, then we could simply take bαc integer order derivatives to reattain the otherwise
typical fractional behavior. Observe that the factor (iω)α is well-defined by (A.7). If we take
that identity and multiply by û(ω), then we get that

(iω)αû(ω) =
1

Γ(−α)

ˆ ∞
0

(
e−iωrû(ω)− û(ω)

) dr

r1+α
,

and taking the inverse transform of both sides gives

(2.1) (Dleft)
αu(t) =

1

Γ(−α)

ˆ ∞
0

(
F−1

(
e−iωrû(ω)

)
(t)− u(t)

) dr

r1+α
.
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We pause here to note that these manipulations have allowed us to move from a power of iω
to a power of Dleft. We now use the method of semigroups to rewrite the expression above
as the exponential of the left derivative operator.

Proposition 2.3. Let Rr : L2(R)→ L2(R) be defined such that

R̂ru(ω) = e−iωrû(ω)

for ω ∈ R and r ≥ 0. Then, Rr defines a semigroup.

This will show that v := Rru is a solution to the initial value problem{
vr = −Dleftu r 6= 0

v = u r = 0

and provide meaning to v = e−rDleftu.

Proof: We first show that Rr is bounded on L2(R). By Plancherel’s identity, we have that

‖Rru‖L2(R) =
∥∥∥R̂ru∥∥∥

L2(R)

=
∥∥e−iωrû∥∥

L2(R)

≤ ‖û‖L2(R)

= ‖u‖L2(R) ,

which follows again by Plancherel’s identity. Rearranging gives us that ‖Rr‖L2(R) ≤ 1, so Rr

is bounded on L2(R). Next, we show that R0u = u, but this is true since the inverse Fourier
transform cancels out the Fourier transform. It then remains to show that Rr1 ◦Rr2 = Rr1+r2 .
We have that

(Rr1 ◦Rr2)u = Rr1
(
F−1(e−iωr2 û)

)
= F−1

(
e−iωr1F−1(e−iωr2 û)

)
= F−1

(
F−1(e−iωr1e−iωr2 û)

)
= e−iω(r1+r2)

= Rr1+r2u.

Thus, Rr is a semigroup. �

Now, we can make the following notation:

(2.2) e−rDleftu = F−1
(
e−iωrû(ω)

)
.

We should not be concerned with any other meaning for this notation. Dleft is unbounded as
an operator, so the matrix exponential given from this linear operator cannot be represented
as an infinite series. Plugging this back into (2.1) gives

(Dleft)
αu(t) =

1

Γ(−α)

ˆ ∞
0

(
e−rDleftu(t)− u(t)

) dr

r1+α
.

On the other hand, if we simplify (2.2), by the property of Fourier transforms, we see that
the result is simply the r-translation of u, that is,

(Dleft)
αu(t) =

1

|Γ(−α)|

ˆ ∞
0

(
u(t)− u(t− r)

) dr

r1+α
.(2.3)
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Of course, it is unnatural to consider a function of time that looks arbitrarily into the future,
as illustrated in the bounds of integration. Thus, we make the change of variables s = t− r,
so ds = −dr, and

(Dleft)
αu(t) =

−1

|Γ(−α)|

ˆ −∞
t

u(t)− u(s)

(t− s)1+α
ds

=
1

|Γ(−α)|

ˆ t

−∞

u(t)− u(s)

(t− s)1+α
ds

=
1

|Γ(−α)|

ˆ t

−∞

u(t)− u(r)

(t− r)1+α
dr.

Thus, we can summarize with the following:

Theorem 2.4. Let u : R→ R be sufficiently smooth and 0 < α < 1. Then,

(2.4) (Dleft)
αu(t) =

1

|Γ(−α)|

ˆ t

−∞

u(t)− u(r)

(t− r)1+α
dr.

This form of the fractional left derivative is also known as the Fourier-Weyl-Marchaud
fractional derivative.

2.2. Fractional Laplacian.

We apply the Fourier transform again here. For this subsection, we are not concerned with
one-sided derivatives, but due to the added level of complexity to the Laplacian compared
to the first derivative, we show the computations here as well. Let ξ ∈ Rn and 1 ≤ k ≤ n.
Since u is Schwartz, then integration by parts gives that:

∂̂

∂xk
u(ξ) =

1

(2π)
n
2

ˆ
Rn

∂u

∂xk
e−ixξdx

=
iξk

(2π)
n
2

ˆ
Rn

u(x)e−ixξdx

= (iξk)û(ξ).

We can apply integration by parts again to obtain an expression for the second, non-mixed
partial derivative of u.

∂̂2

∂x2
k

u(ξ) =
1

(2π)
n
2

ˆ
Rn

∂2u

∂x2
k

e−ixξdx

=
iξk

(2π)
n
2

ˆ
Rn

∂u

∂xk
e−ixξdx

= (iξk)
2û(ξ)

= −(ξ2
k)û(ξ),

(2.5)

and we can take the inverse Fourier transform of both sides to get

∂2u

∂x2
k

(x) = F−1
(
− (ξ2

k)û(ξ)
)
(x).
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We now sum over all 1 ≤ k ≤ n. The inverse Fourier transform is linear, so we can move the
sum inside and pull out the negative:

n∑
k=1

∂2u

∂x2
k

(x) =
n∑
k=1

F−1
(
− (ξ2

k)û(ξ)
)
(x)

= −F−1

( n∑
k=1

(ξ2
k)û(ξ)

)
(x)

= −F−1
(
|ξ|2 û(ξ)

)
(x).

On the other hand, the sum of the non-mixed second partial derivatives is defined to be the
Laplacian of u, so

−∆u = F−1
(
|ξ|2 û(ξ)

)
.

Note that taking two partial derivatives in (2.5) corresponded to taking |ξ| to the second

power. This suggests that taking a power of the operator −∆ would lead to raising |ξ|2
to that same power. Therefore, this motivates the following definition of the fractional
Laplacian:

Definition 2.5. Let 0 < s < 1. The fractional Laplacian of order s of u is defined to be

(−∆)su = F−1
(
|ξ|2s û(ξ)

)
.

This definition gives great insight in where the fractional Laplacian comes from, but in
order for it to be useful, we must simplify the right side of the above equation. First, we
start by letting λ = |ξ|2 in (A.4):

|ξ|2s =
1

Γ(−s)

ˆ ∞
0

e−t|ξ|
2

− 1

t1+s
dt,

so multiplying both sides by û(ξ) gives

|ξ|2s û(ξ) =
1

Γ(−s)

ˆ ∞
0

e−t|ξ|
2

û(ξ)− û(ξ)

t1+s
dt,

and taking the inverse of the Fourier transform on both sides ultimately gives that

(−∆)su(x) =
1

Γ(−s)

ˆ ∞
0

(
F−1

(
e−t|ξ|

2

û(ξ)
)
(x)− u(x)

) dt

t1+s
.(2.6)

In the same way with the fractional left derivative, these manipulations allow us to move
from a power of |ξ|2 to a power of −∆. We again describe this connection with semigroups,
and the proof is identical to the argument for Rr being a semigroup.

Proposition 2.6. Let St : L2(Rn)→ L2(Rn) be defined such that

Ŝtu(ξ) = e−t|ξ|
2

û(ξ)

for ξ ∈ Rn and t ≥ 0. Then, St defines a semigroup.

This shows that v := Stu is a solution to{
vt = ∆u t 6= 0

v = u t = 0

and provides meaning to the following notation:

(2.7) et∆u = F−1(e−t|ξ|
2

û).
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We can substitute this expression back into (2.6) to get the following:

(−∆)su(x) =
1

Γ(−s)

ˆ ∞
0

(
et∆u(x)− u(x)

) dt
t1+s

,(2.8)

which shows how we can write the fractional power of the Laplacian using semigroups. If we
simplify (2.7), then we see that et∆u is the continuous convolution of the Gaussian Gt and
u, that is,

et∆u(x) = (Gt ∗ u)(x)

=

ˆ
Rn

e−
|x−y|2

4t

(4πt)
n
2

u(y)dy.

We continue in the calculation of (−∆)su(x). Plugging everything back into (2.8) gives

(−∆)su(x) =
1

Γ(−s)

ˆ ∞
0

[( ˆ
Rn

e−
|x−y|2

4t

(4πt)
n
2

u(y)dy

)
− u(x)

]
dt

t1+s

=
1

(4π)
n
2 Γ(−s)

ˆ ∞
0

ˆ
Rn

e−
|x−y|2

4t

t
n
2

(
u(y)− u(x)

)
dy

dt

t1+s
,

(2.9)

where this manipulation is justified since the integral of the Gaussian is 1. Make the change
of variables y = x− v, and thus

(−∆)su(x) =
1

(4π)
n
2 Γ(−s)

ˆ ∞
0

ˆ
Rn

e−
|v|2
4t

t
n
2

(
u(x− v)− u(x)

)
dv

dt

t1+s

=
1

(4π)
n
2 Γ(−s)

ˆ ∞
0

ˆ
Rn

e−
|y|2
4t

t
n
2

(
u(x− y)− u(x)

)
dy

dt

t1+s
.

(2.10)

Now, make a second change of variables y = −w, so

(−∆)su(x) =
1

(4π)
n
2 Γ(−s)

ˆ ∞
0

ˆ
Rn

e−
|−w|2

4t

t
n
2

(
u(x+ w)− u(x)

)
dw

dt

t1+s

=
1

(4π)
n
2 Γ(−s)

ˆ ∞
0

ˆ
Rn

e−
|y|2
4t

t
n
2

(
u(x+ y)− u(x)

)
dy

dt

t1+s
.

(2.11)

If we add (2.10) and (2.11), then we see that the sum is two times (2.9), or

(−∆)su(x) =
1

2

(
1

(4π)
n
2 Γ(−s)

ˆ ∞
0

ˆ
Rn

e−
|y|2
4t

t
n
2

(
u(x− y)− u(x)

)
dy

dt

t1+s

+
1

(4π)
n
2 Γ(−s)

ˆ ∞
0

ˆ
Rn

e−
|y|2
4t

t
n
2

(
u(x+ y)− u(x)

)
dy

dt

t1+s

)

=
1

2(4π)
n
2 Γ(−s)

ˆ ∞
0

ˆ
Rn

e−
|y|2
4t

t
n
2

(
u(x+ y) + u(x− y)− 2u(x)

)
dy

dt

t1+s
.

To continue to simplify this expression, we would like to apply Fubini’s theorem to swap
the order of the integrals. We will assume that Fubini’s theorem holds and solve for the
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range of s such that it does. Establishing this range will finish the calculation. Therefore,
swapping integrals gives

(−∆)su(x) =
1

2(4π)
n
2 Γ(−s)

ˆ
Rn

ˆ ∞
0

e−
|y|2
4t

t
n
2

(
u(x+ y) + u(x− y)− 2u(x)

) dt
t1+s

dy

=
1

2(4π)
n
2 Γ(−s)

ˆ
Rn

(
u(x+ y) + u(x− y)− 2u(x)

) ˆ ∞
0

e−
|y|2
4t

t
n
2

dt

t1+s
dy.

Let r = |y|2
4t , and dr = − |y|

2

4t2
dt, so dt = − |y|

2

4r2
dr. Substituting and simplifying gives the

following:

(−∆)su(x) =
−1

2(4π)
n
2 Γ(−s)

ˆ
Rn

(
u(x+ y) + u(x− y)− 2u(x)

) ˆ 0

∞
e−r
(

4r

|y|2

)n
2

+s |y|2
4r2
dr

|y|2
4r

dy

=
4

n
2

+s

2(4π)
n
2 Γ(−s)

ˆ
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s

ˆ ∞
0

e−rr
n
2

+sdr

r
dy

=
4sΓ(n2 + s)

2π
n
2 Γ(−s)

ˆ
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s dy,

(2.12)

which follows directly from the definition of the gamma function for positive real numbers.
This is the expression we are looking for, but it remains to show that the integral converges
absolutely for some desired range of s. Let

G(y) =
u(x+ y) + u(x− y)− 2u(x)

|y|n+2s ,

so we have that ∣∣∣∣ˆ
Rn

G(y)dy

∣∣∣∣ =

∣∣∣∣∣
ˆ
|y|<1

G(y)dy

∣∣∣∣∣+

∣∣∣∣∣
ˆ
|y|≥1

G(y)dy

∣∣∣∣∣
≤
ˆ
|y|<1

|G(y)| dy +

ˆ
|y|≥1

|G(y)| dy

=: A+B.

In the integrand of A, we have that

|u(x+ y) + u(x− y)− 2u(x)| =
∣∣(u(x+ y)− u(x)

)
+
(
u(x− y)− u(x)

)∣∣
= |∇u(ξ) · y +∇u(η) · (−y)|

for some ξ, η ∈ Rn by the mean value theorem. Now,

(2.13)
|u(x+ y) + u(x− y)− 2u(x)| =

∣∣(∇u(ξ)−∇u(η)
)
· y
∣∣

=
∣∣D2u(ν)(ξ − η) · y

∣∣
for some ν ∈ Rn by the mean value theorem again. Note that

ξ = λx+ (1− λ)(x+ y)

η = µx+ (1− µ)(x− y)

for some λ, µ ∈ (0, 1), so

ξ − η = λx+ (1− λ)(x+ y)− µx− (1− µ)(x− y)
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= (λx+ x+ y − λx− λy)− (µx+ x− y − µx+ µy)

= (1− λ)y + (1− µ)y

= (2− λ− µ)y.

Substituting back into (2.13) gives

|u(x+ y)− u(x− y)− 2u(x)| =
∣∣D2u(ν)(2− λ− µ)y · y

∣∣
≤ 2

∥∥D2u
∥∥
L∞(Rn)

|y|2 .

Note that this string of arguments relies on the fact that u has bounded first and second
derivatives, which we have since u is Schwartz. We now substitute back into A:

A ≤
ˆ
|y|<1

2
∥∥D2u

∥∥
L∞(Rn)

|y|2

|y|n+2s
dy

= 2
∥∥D2u

∥∥
L∞(Rn)

ˆ
|y|<1

1

|y|n+2s−2
dy.

Apply spherical coordinates to the integral above. Let y = rθ, where r ∈ (0, 1) and θ ∈ Sn−1,
and so |θ| = 1. Thus,

A ≤ 2
∥∥D2u

∥∥
L∞(Rn)

ˆ 1

0

(ˆ
Sn−1

1

|rθ|n+2s−2dθ

)
rn−1dr

= 2
∥∥D2u

∥∥
L∞(Rn)

ˆ 1

0

( ˆ
Sn−1

dθ

)
r1−2sdr

= 2
∥∥D2u

∥∥
L∞(Rn)

∣∣Sn−1
∣∣ˆ 1

0
r1−2sdr

=
2
∥∥D2u

∥∥
L∞(Rn)

∣∣Sn−1
∣∣

2− 2s
r2−2s

∣∣∣∣1
0

.

Observe that this difference converges if and only if 2− 2s > 0, i.e. s < 1. Next, we consider
B:

B =

ˆ
|y|≥1

|u(x+ y)− u(x− y)− 2u(x)|
|y|n+2s

dy

≤
ˆ
|y|≥1

|u(x+ y)|+ |u(x− y)|+ 2 |u(x)|
|y|n+2s

dy

≤ 4 ‖u‖L∞(Rn)

ˆ
|y|≥1

1

|y|n+2s
dy.

Apply spherical coordinates again. Let y = rθ, where r ∈ [1,∞) and θ ∈ Sn−1, and so |θ| = 1.
Thus,

B ≤ 4 ‖u‖L∞(Rn)

ˆ ∞
1

(ˆ
Sn−1

1

|rθ|n+2sdθ

)
rn−1dr

= 4 ‖u‖L∞(Rn)

ˆ ∞
1

(ˆ
Sn−1

dθ

)
r−1−2sdr

= 4 ‖u‖L∞(Rn)

∣∣Sn−1
∣∣ ˆ ∞

1
r−1−2sdr
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=
4 ‖u‖L∞(Rn)

∣∣Sn−1
∣∣

−2s
r−2s

∣∣∣∣∞
1

,

and this difference converges if and only if −2s < 0, i.e. s > 0. Therefore, G is integrable for
0 < s < 1, which is the range we started with. Combining this information with (2.12) gives
us the practical formula for the fractional Laplacian:

Theorem 2.7. Let u : Rn → R be sufficiently smooth and 0 < s < 1. Then,

(2.14) (−∆)su(x) =
4sΓ(n2 + s)

2π
n
2 Γ(−s)

ˆ
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s dy.

Notes:

We follow the derivation of the Fourier-Weyl-Marchaud fractional derivative in [6]. While
not essential to the computations, the semigroup method provides insight and meaning into
taking fractional powers of operators, and it is explained in [7]. We use a similar method
to derive the integral expression for the fractional Laplacian. We make the choice to write
the second-order incremental quotient of u instead of the first-order incremental quotient,
because it is desirable to use the boundedness of the second derivative of u, as described in
[8].
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3. Establishing anomalous diffusion models

With the language of fractional derivatives established, we can answer the question of how
the probabilities of waiting times and jumps impact the heat equation and create anomalous
diffusion models. The computations in the following three subsections are quite similar in
structure, but the physical differences in the three cases fundamentally change our initial
model from the law of total probability.

3.1. Random walks with waiting times.

We pick up from Section 1.2 with the first case, where there is a probability of the particle
getting stuck but still taking steps of size h. If we implement the probability of waiting
between steps given by ψ, we must consider all past times that the particle came from. Since
the size of the step is still bounded to h, we also must take into account the 2n directions
that these steps can be taken in. Putting this all together, by the law of total probability,
we have that

u(x, t) =
∞∑
m=1

n∑
k=1

ψ(m)
u(x+ hek, t− τm) + u(x− hek, t− τm)

2n
.

Recall that both ψ(m), 1
n both sum to 1 in their respective ranges. Therefore, we can make

the following rearrangement:

∞∑
m=1

ψ(m)
[
u(x, t)− u(x, t− τm)

]
=
∞∑
m=1

ψ(m)
n∑
k=1

u(x+ hek, t− τm) + u(x− hek, t− τm)− 2u(x, t− τm)

2n
.

Now, substitute in the expression for ψ(m) on the left side and make the following manipu-
lations:

∞∑
m=1

cα
[
u(x, t)− u(x, t− τm)

]
τ1+αm1+α

τ1+α

=
h2

2n

∞∑
m=1

ψ(m)
n∑
k=1

u(x+ hek, t− τm) + u(x− hek, t− τm)− 2u(x, t− τm)

h2
,

and rearranging once more gives

∞∑
m=1

u(x, t)− u(x, t− τm)

(τm)1+α
τ

=
h2

2cαταn

∞∑
m=1

ψ(m)
n∑
k=1

u(x+ hek, t− τm) + u(x− hek, t− τm)− 2u(x, t− τm)

h2
.

As before, in order to obtain a continuous random walk, we must take the limits as h, τ → 0+.
We require that

h2

2cαταn
→ Kα

2cαn
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as h, τ → 0+ for some Kα > 0. On the left-hand side, the limit as τ → 0+ is a limit of a
Riemann sum, and so after simplifying the right side, we haveˆ ∞

0

u(x, t)− u(x, t− r)
r1+α

dr =
Kα

2cαn

∞∑
m=1

ψ(m)
n∑
k=1

lim
h→0+

u(x+ hek, t) + u(x− hek, t)− 2u(x, t)

h2
.

The remaining limit in the sum is the limit of the second-order incremental quotient, which
is the second derivative in the k-th coordinate. On the left-hand side, we know that this
integral can be manipulated such that the bounds are −∞ and t. Thus,ˆ t

−∞

u(t)− u(r)

(t− r)1+α
dr =

Kα

2cαn

∞∑
m=1

ψ(m)
n∑
k=1

uxkxk

=
Kα

2cαn
∆u

∞∑
m=1

ψ(m)

=
Kα

2cαn
∆u.

Finally, by directly applying (2.4), we conclude with the following result:

Theorem 3.1. A particle undergoes a continuous random walk with unit space step and
arbitrary waiting times between steps. The probability of observing the particle at position
x ∈ Rn and observing the particle at time t ∈ R is given by the following PDE:

(3.1) (Dleft)
αu =

Kα

2cαn |Γ(−α)|
∆u

for some Kα > 0, where 0 < α < 1.

3.2. Random walks with jumps.

Next, we investigate the second case listed in Section 1.2, where the particle has a prob-
ability of making a jump of arbitrary size while still moving for every time step τ . Due to
this requirement in the time coordinate, we lose the consideration of the whole past, but we
now allow for the possibility of the particle coming from any point in space. By the law of
total probability, we have the following:

u(x, t) =
∑
k∈Zn

φ(k)u(x− hk, t− τ).

Since the sum of φ(k) over all k is 1, we can make the following rearrangement:∑
k∈Zn

φ(k)
[
u(x, t) + u(x+ hk, t− τ)− 2u(x, t− τ)

]
=
∑
k∈Zn

φ(k)
[
u(x− hk, t− τ) + u(x+ hk, t− τ)− 2u(x, t− τ)

]
.

Substituting in the expression for φ(k) on the right side and making necessary adjustments
gives that ∑

k∈Zn

φ(k)
u(x, t) + u(x+ hk, t− τ)− 2u(x, t− τ)

τ

=
dsh

2s

τ

∑
k∈Zn

u(x− hk, t− τ) + u(x+ hk, t− τ)− 2u(x, t− τ)

|hk|n+2s hn.
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We now must take the limits as h, τ → 0+ on both sides. Once again, we make the assumption
that the quantity

dsh
2s

τ
→ dsKs

for some Ks > 0. In the sum on the left-hand side, taking the limit as τ → 0+ gives the left
derivative of u. In the sum on the right side, taking the limits as h, τ → 0+ is the limit of a
Riemann sum, leaving∑

k∈Zn

φ(k)Dleftu = dsKs

ˆ
Rn

u(x+ y, t) + u(x− y, t)− 2u(x, t)

|y|n+2s
dy.

The remaining sum on the left side is 1. Finally, by direct comparison with (2.14), we arrive
at the following theorem:

Theorem 3.2. A particle undergoes a continuous random walk with jumps of arbitrary size
between steps and no waiting time between steps. The probability of observing the particle at
position x ∈ Rn and observing the particle at time t ∈ R is given by the following PDE:

(3.2) Dleftu =
2dsKsπ

n
2 Γ(−s)

4sΓ(n2 + s)
(−∆)su

for some Ks > 0, where 0 < s < 1.

3.3. Random walks with waiting times and jumps.

We conclude the modeling of these continuous random walks with the third case from
Section 1.2, where there is a probability of the particle getting stuck for some time and
another probability of making a jump of arbitrary size. It is interesting to note that given the
previous two models, the resulting PDE is exactly what one might expect, as it implements
both fractional derivatives and resulting constants. Now, the particle can come from any
point in space and any time from the past, and we must implement both probabilities ψ, φ.
By the law of total probability, we have

u(x, t) =

∞∑
m=1

∑
k∈Zn

ψ(m)φ(k)u(x− hk, t− τm).

In a similar fashion from the previous subsections, we make the following rearrangement:

∞∑
m=1

∑
k∈Zn

ψ(m)φ(k)
u(x, t) + u(x+ hk, t− τm)− 2u(x, t− τm)

τ1+α
τ

=
h2s

tα

∞∑
m=1

∑
k∈Zn

ψ(m)φ(k)
u(x− hk, t− τm) + u(x+ hk, t− τm)− 2u(x, t− τm)

|h|n+2s hn.

If we substitute the expression for ψ(m) on the left and the expression for φ(k) on the right,
we get

(3.3)

∞∑
m=1

∑
k∈Zn

φ(k)
u(x, t) + u(x+ hk, t− τm)− 2u(x, t− τm)

(τm)1+α
τ

=
dsh

2s

cαtα

∞∑
m=1

∑
k∈Zn

ψ(m)
u(x− hk, t− τm) + u(x+ hk, t− τm)− 2u(x, t− τm)

|hk|n+2s hn.
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As h, τ → 0+, we once more assume that

dsh
2s

cαtα
→ dsKα,s

cα

for some Kα,s > 0. On the left side, we recognize the limit of a Riemann sum as h, τ → 0+:

(3.4)
∞∑
m=1

u(x, t) + u(x+ hk, t− τm)− 2u(x, t− τm)

(τm)1+α
τ →

ˆ ∞
0

u(x, t)− u(x, t− r)
r1+α

dr.

On the right side, we also have the limit of another Riemann sum as h, τ → 0+:∑
k∈Zn

u(x− hk, t− τm) + u(x+ hk, t− τm)− 2u(x, t− τm)

|hk|n+2s hn

→
ˆ
Rn

u(x+ y, t) + u(x− y, t)− 2u(x, t)

|y|n+2s
dy.

(3.5)

Substituting in all these limits to (3.3) gives that∑
k∈Zn

φ(k)

ˆ ∞
0

u(x, t)− u(x, t− r)
r1+α

dr

=

∞∑
m=1

ψ(m)
dsKα,s

cα

ˆ
Rn

u(x+ y, t) + u(x− y, t)− 2u(x, t)

|y|n+2s
dy,

and since both of the remaining sums are equal to 1,ˆ ∞
0

u(x, t)− u(x, t− r)
r1+α

dr =
dsKα,s

cα

ˆ
Rn

u(x+ y, t) + u(x− y, t)− 2u(x, t)

|y|n+2s
dy.

Up to respective constants, the integral on the left is the fractional left derivative of order α
of u, and the integral on the right is the fractional Laplacian of order s of u, so by (2.4) and
(2.14),

|Γ(−α)| (Dleft)
αu =

dsKα,s

cα

2π
n
2 Γ(−s)

4sΓ(n2 + s)
(−∆)su.

Rearranging gives us the desired theorem:

Theorem 3.3. A particle undergoes a continuous random walk with jumps of arbitrary size
between steps and arbitrary waiting times between steps. The probability of observing the
particle at position x ∈ Rn and observing the particle at time t ∈ R is given by the following
PDE:

(3.6) (Dleft)
αu =

2π
n
2 dsKα,sΓ(−s)

4scαΓ(n2 + s) |Γ(−α)|
(−∆)su

for some Kα,s > 0, where 0 < α, s < 1.

Notes:

The computations in the first case are drawn from [6], but using ideas in [5], we are able
to extend this formula for any spacial dimension n ≥ 1. For the second case, we reference the
ideas of [8] but instead use the formulation involving the second-order incremental quotient.
Additionally, we take greater care in keeping track of constants so that there is no confusion
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with negative signs. Finally, the third case is a combination of the previous two, and the
resulting PDE was developed independently.
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4. Finding the kernels via discrete derivatives

In the previous section, the process of taking the limits as h, τ → 0+ could not have
worked better for us. In particular, up to respective constants, it was very nice that the
limits of the sums in (3.4) and (3.5) gave us the specific Riemann integrals that define the
fractional left derivative and fractional Laplacian. The reason why this convergence was
allowed was because of our choices of ψ and φ being reciprocal power functions. These
definitions were motivated by experimental observations, but how could we have derived our
anomalous diffusion models without knowing these beforehand? Can we solve the problem
purely mathematically without having to guess what the probability kernels are?

In this final section, we explore the answer to this question by using discrete calculus. We
will find that if we derive the fractional derivatives in a discrete sense and wait to take the
limit in the derivatives until the very end, we can arrive at the formulas without having to
guess the probability kernels that were ψ and φ.

Let Zh = {hj : j ∈ Z}, and we still let u be Schwartz class. We say that the restriction of
u to the mesh at j ∈ Z is rhuj = u(hj).

4.1. Discrete fractional left derivative.

After we restrict u to the mesh, we can no longer consider the continuous left derivative,
so we introduce the discrete left derivative:

Definition 4.1. The discrete left derivative of u is defined to be

δleftrhuj =
rhuj − rhuj−1

h
.

As motivated by previous sections, we know we can raise this operator acting on rhuj to
the 0 < α < 1 power, so we have the discrete fractional left derivative of order α of u:

(δleft)
αrhuj =

1

Γ(−α)

ˆ ∞
0

(e−rδleftrhuj − rhuj)
dr

r1+α
.(4.1)

In Section 2, we found that the operator exponential acting on u results in the continuous
convolution of u and some other function. In this case, we assume that the result will be
the discrete convolution between rhuj some function. Furthermore, we can show that this
function is a discrete semigroup:

Proposition 4.2. Define vj : Zh → R such that

rhvj(r) = e−rδleftrhuj :=
∞∑
m=0

Gm

( r
h

)
rhuj−m,

where Gm(r) = e−r r
m

m! . Then, Gm( rh) sums to 1, and {vjr} is a discrete semigroup.

Proof: First, we have the following:
∞∑
m=0

Gm

( r
h

)
=
∞∑
m=0

e−
r
h

( rh)m

m!

= e−
r
h

∞∑
m=0

( rh)m

m!

= e−
r
h e

r
h

= 1.
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Now, to show that {vjr} is a discrete semigroup, it suffices to show that vj is the solution to{
∂rrhvj = −δleftrhvj r 6= 0

rhvj = rhuj r = 0
.

We perform the following differentiation. Note that the derivative and sum can be inter-
changed because the series is absolutely convergent:

∂rrhvj = −
∞∑
m=0

1

h
e−

r
h

( rh)m

m!
rhuj−m +

∞∑
m=1

m

h
e−

r
h

( rh)m−1

m!
rhuj−m

= −1

h

( ∞∑
m=0

e−
r
h

( rh)m

m!
rhuj−m −

∞∑
m=1

e−
r
h

( rh)m−1

(m− 1)!
rhuj−m

)

= −1

h

( ∞∑
m=0

e−
r
h

( rh)m

m!
rhuj−m −

∞∑
m=0

e−
r
h

( rh)m

m!
rhuj−(m+1)

)

= −1

h

( ∞∑
m=0

e−
r
h

( rh)m

m!
rhuj−m −

∞∑
m=0

e−
r
h

( rh)m

m!
rhu(j−1)−m

)
= −rhvj − rhvj−1

h
= −δleftrhvj .

Also, at r = 0, we have that

rhvj(0) =

∞∑
m=0

e−
0
h

0m

m!
rhuj−m

= rhuj +
∞∑
m=1

0m

m!
rhuj−m

= rhuj .

�

Therefore, we can substitute this expression back into (4.1):

(δleft)
αrhuj =

1

Γ(−α)

ˆ ∞
0

( ∞∑
m=0

e−
r
h

( rh)m

m!
rhuj−m − rhuj

)
dr

r1+α

=
1

Γ(−α)

ˆ ∞
0

∞∑
m=0

e−
r
h

( rh)m

m!
(rhuj−m − rhuj)

dr

r1+α
.

Fubini’s theorem applies to swap the integral and sum since the integrand is absolutely
convergent, so

(δleft)
αrhuj =

1

Γ(−α)

∞∑
m=0

rhuj−m − rhuj
m!

ˆ ∞
0

e−
r
h

( r
h

)m dr

r1+α

=
1

hαΓ(−α)

∞∑
m=0

rhuj−m − rhuj
m!

ˆ ∞
0

e−
r
h

( r
h

)m(h
r

)αdr
r
.
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Make the change of variables τ = r
h , so dr = hdτ , and thus

(δleft)
αrhuj =

1

hαΓ(−α)

∞∑
m=0

rhuj−m − rhuj
Γ(m+ 1)

ˆ ∞
0

e−ττm
1

τα
hdτ

hτ

=
1

hαΓ(−α)

∞∑
m=0

rhuj−m − rhuj
Γ(m+ 1)

ˆ ∞
0

e−ττm−α
dτ

τ

=
1

hαΓ(−α)

∞∑
m=0

Γ(m− α)

Γ(m+ 1)
(rhuj−m − rhuj)

=
1

hα |Γ(−α)|

∞∑
m=0

Γ(m− α)

Γ(m+ 1)
(rhuj − rhuj−m).

This serves as a suitable expression, so we summarize below:

Theorem 4.3. Let u : R → R be a sufficiently smooth function restricted to the mesh and
0 < α < 1. Then, the discrete fractional left derivative of order α of u is given by

(δleft)
αrhuj =

1

hα |Γ(−α)|

∞∑
m=0

Γ(m− α)

Γ(m+ 1)
(rhuj − rhuj−m).(4.2)

4.2. Convergence of the discrete to continuous fractional left derivative.

Now that we have an expression for the discrete fractional left derivative of u, one would
hope that taking the limit as h→ 0+ would give us the Riemann integral in (2.3). However,
this is not immediately apparent, because the kernel in (4.2) does not even lead the way to
a Riemann sum, unlike the kernel in the sum of (3.4). Since the limit cannot be calculated
directly despite knowing what it should be, we will instead compare (4.2) to the restriction
of (2.3) to the mesh. If we can show that the size of their difference can be controlled by
h1−α, then taking the limit as h→ 0+ will prove that they are indeed equal.

Theorem 4.4. Let 0 < α < 1, and let u : R→ R be sufficiently smooth. Then,∣∣∣rh((Dleft)
αu
)
j
− (δleft)

αrhuj

∣∣∣ ≤ Kαh
1−α ‖Dleftu‖L∞(R)

|Γ(−α)|
.

for some Kα > 0. Moreover, it follows that

lim
h→0+

∣∣∣rh((Dleft)
αu
)
j
− (δleft)

αrhuj

∣∣∣ = 0.

Proof: Since j ∈ Z simply results in translation, then without loss of generality, we may let
j = 0. First, note that (2.3) restricted to Zh is given by

rh
(
(Dleft)

αu
)

0
=

1

|Γ(−α)|

∞∑
m=0

ˆ (m+1)h

mh

u(0)− u(−r)
r1+α

dr

=
1

|Γ(−α)|

∞∑
m=0

[
u(0)− u(−mh)

]ˆ (m+1)h

mh

1

r1+α
dr

+
1

|Γ(−α)|

∞∑
m=0

ˆ (m+1)h

mh

u(−mh)− u(−r)
r1+α

dr

=: A+B.
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We also have that

(δleft)
αrhu0 =

1

hα |Γ(−α)|

∞∑
m=0

Γ(m− α)

Γ(m+ 1)

[
u(0)− u(−mh)

]
=: C.

We start by bounding |A− C|:

|A− C| ≤ 1

|Γ(−α)|

∞∑
m=0

|u(0)− u(−mh)|

∣∣∣∣∣
ˆ (m+1)h

mh

1

r1+α
dr − Γ(m− α)

hαΓ(m+ 1)

∣∣∣∣∣ .
In the integral, start by letting r = hτ , so dr = hdτ , and

|A− C| ≤ 1

|Γ(−α)|

∞∑
m=0

|u(0)− u(−mh)|
∣∣∣∣ˆ m+1

m

h

(hτ)1+α
dτ − Γ(m− α)

hαΓ(m+ 1)

∣∣∣∣
=

1

hα |Γ(−α)|

∞∑
m=0

|u(0)− u(−mh)|
∣∣∣∣ˆ m+1

m

1

τ1+α
dτ − Γ(m− α)

Γ(m+ 1)

∣∣∣∣ .
Since u is left-differentiable on (0,mh), it follows that |u(0)− u(−mh)| ≤ (mh) ‖Dleftu‖L∞(R),
so

|A− C| ≤
h1−α ‖Dleftu‖L∞(R)

|Γ(−α)|

∞∑
m=0

m

∣∣∣∣ˆ m+1

m

1

τ1+α
dτ − Γ(m− α)

Γ(m+ 1)

∣∣∣∣ .
Note that the expression cancels out when m = 0, so we instead sum over all m ≥ 1. In the
case when m = 1, we see that∣∣∣∣ˆ 2

1

1

τ1+α
dτ − Γ(1− α)

Γ(2)

∣∣∣∣ =

∣∣∣∣ 1α − 2−α

α
+
α2Γ(1− α)

−α2

∣∣∣∣
<

∣∣∣∣ 1

2α
+
α2Γ(−α)

α

∣∣∣∣
<

1

2α
+
|Γ(−α)|

α
.

We now consider m ≥ 2. Since the length of the integral is 1, we may make the following
manipulation:
∞∑
m=2

m

∣∣∣∣ˆ m+1

m

1

τ1+α
dτ − Γ(m− α)

Γ(m+ 1)

∣∣∣∣ =
∞∑
m=2

m

∣∣∣∣ˆ m+1

m

(
1

τ1+α
− 1

m1+α

)
dτ +

1

m1+α
− Γ(m− α)

Γ(m+ 1)

∣∣∣∣ .
By applying the mean value theorem again, we have that

1

τ1+α
− 1

m1+α
≤ sup

m<τ<m+1

d

dτ

[ 1

τ1+α

]
= (−1− α) sup

m<τ<m+1

[ 1

τ2+α

]
=
−1− α
m2+α

,

and therefore,
∞∑
m=2

m

∣∣∣∣ˆ m+1

m

1

τ1+α
dτ − Γ(m− α)

Γ(m+ 1)

∣∣∣∣ ≤ ∞∑
m=2

m

∣∣∣∣ˆ m+1

m

−1− α
m2+α

dτ +
1

m1+α
− Γ(m− α)

Γ(m+ 1)

∣∣∣∣
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=
∞∑
m=2

m

∣∣∣∣−1− α
m2+α

+
1

m1+α
− Γ(m− α)

Γ(m+ 1)

∣∣∣∣
=
∞∑
m=2

m

∣∣∣∣1 + α

m2+α
− 1

m1+α
+

Γ(m− α)

mΓ(m)

∣∣∣∣
≤
∞∑
m=2

∣∣∣∣1 + α

m1+α
− 1

mα
+

Γ(m− α)

Γ(m)

∣∣∣∣
≤
∞∑
m=2

1 + α

m1+α
+
∞∑
m=2

∣∣∣∣Γ(m− α)

Γ(m)
− 1

mα

∣∣∣∣ .
The first sum is a p-series that converges to some Cα > 0 since α > 0. In the second sum,
we make the shift of k = m− 1, so

∞∑
m=2

m

∣∣∣∣ˆ m+1

m

1

τ1+α
dτ − Γ(m− α)

Γ(m+ 1)

∣∣∣∣ ≤ Cα +
∞∑
k=1

∣∣∣∣Γ(k + 1− α)

Γ(k + 1)
− 1

(k + 1)α

∣∣∣∣ .
By our corollary to Gautschi’s inequality (A.8), we have that

∞∑
m=2

m

∣∣∣∣ˆ m+1

m

1

τ1+α
dτ − Γ(m− α)

Γ(m+ 1)

∣∣∣∣ ≤ Cα +
∞∑
k=1

(
1

kα
− 1

(k + 1)α

)
.

This remaining sum is a telescoping series that converges to 1, so

∞∑
m=2

m

∣∣∣∣ˆ m+1

m

1

τ1+α
dτ − Γ(m− α)

Γ(m+ 1)

∣∣∣∣ ≤ Cα + 1,

and ultimately,

|A− C| ≤
h1−α ‖Dleftu‖L∞(R)

|Γ(−α)|

( 1

2α
+
|Γ(−α)|

α
+ Cα + 1

)
.

For |B|, we begin by applying the mean value theorem once again:

|B| ≤ 1

|Γ(−α)|

∣∣∣∣∣
∞∑
m=0

ˆ (m+1)h

mh

u(−mh)− u(−r)
r1+α

dr

∣∣∣∣∣
≤ 1

|Γ(−α)|

∞∑
m=0

∣∣∣∣∣
ˆ (m+1)h

mh

(r −mh) ‖Dleftu‖L∞(R)

r1+α
dr

∣∣∣∣∣
≤
‖Dleftu‖L∞(R)

|Γ(−α)|

∣∣∣∣ˆ h

0

r

r1+α
dr

∣∣∣∣+
‖Dleftu‖L∞(R)

|Γ(−α)|

∞∑
m=1

ˆ (m+1)h

mh

∣∣∣∣(m+ 1)h−mh
(mh)1+α

∣∣∣∣ dr
≤
‖Dleftu‖L∞(R)

|Γ(−α)|

∣∣∣∣ˆ h

0

1

rα
dr

∣∣∣∣+
‖Dleftu‖L∞(R)

hα |Γ(−α)|

∞∑
m=1

ˆ (m+1)h

mh

1

m1+α
dr

=
h1−α ‖Dleftu‖L∞(R)

(1− α) |Γ(−α)|
+
‖Dleftu‖L∞(R)

hα |Γ(−α)|

∞∑
m=1

h

m1+α

=
h1−α ‖Dleftu‖L∞(R)

|Γ(−α)|

(
1

1− α
+

∞∑
m=1

1

m1+α

)
,

(4.3)
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and this sum also converges to some Dα > 0 for α > 0. Finally, we have the following:∣∣rh((Dleft)
αu
)

0
− (δleft)

αrhu0

∣∣ ≤ h1−α ‖Dleftu‖L∞(R)

|Γ(−α)|

( 1

2α
+
|Γ(−α)|

α
+ Cα + 1 +

1

1− α
+Dα

)
≤
Kαh

1−α ‖Dleftu‖L∞(R)

|Γ(−α)|
,

and taking the limit as h→ 0+ implies that

lim
h→0+

∣∣rh((Dleft)
αu
)

0
− (δleft)

αrhu0

∣∣ = 0.

�

4.3. Discrete fractional Laplacian.

We now prove similar results for the discrete fractional Laplacian. Due to the mathematical
complexity that will follow, we shall only work in the spatial dimension n = 1. Additionally,
we will use the formulation of the fractional Laplacian in terms of the first-order incremental
quotient. The construction of the discrete fractional Laplacian also relies on properties of
the modified Bessel function of the first kind, and these can be found in Section A.2.

Definition 4.5. The discrete second derivative of u is

−∆hrhuj =
rhuj+1 + rhuj−1 − 2rhuj

−h2
.

Note that since the spacial dimension is n = 1, this discrete second derivative of u is the
discrete Laplacian of u. Once more, we can raise this object to the 0 < s < 1 power, giving
us a discrete fractional Laplacian of order s of u:

(−∆h)srhuj =
1

Γ(−s)

ˆ ∞
0

(et∆hrhuj − rhuj)
dt

t1+s
.(4.4)

To determine the meaning of et∆hrhuj , we choose a particular definition for it and show that
it is a discrete semigroup.

Proposition 4.6. Define vj : Zh → R such that

rhvj(t) = et∆hrhuj :=
∑
k∈Z

Gk

( t

h2

)
rhuj−k,

where Gk(t) = e−2tIk(2t), and Ik is the modified Bessel function of the first kind. Then,
rhvj(t) is well-defined, and {vjt} is a discrete semigroup.

Proof: Since u is bounded, we immediately have that

|rhvj(t)| ≤ ‖u‖L∞(R)

∑
k∈Z

e−
2t
h2 Ik

( 2t

h2

)
= ‖u‖L∞(R) ,

since the leftover sum is equal to 1 by (A.11). Next, we make the following differentiation,
which is allowed due to the absolute convergence of the series.

∂trhvj =
∑
k∈Z

∂

∂t

[
e−

2t
h2 Ik

( 2t

h2

)]
rhuj−k
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=
1

h2

∑
k∈Z

e−
2t
h2

[
Ik+1

( 2t

h2

)
+ Ik−1

( 2t

h2

)
− 2Ik

( 2t

h2

)]
rhuj−k

=
1

h2

∑
k∈Z

e−
2t
h2 Ik

( 2t

h2

)
rhu(j+1)−k +

1

h2

∑
k∈Z

e−
2t
h2 Ik

( 2t

h2

)
rhu(j−1)−k

− 2

h2

∑
k∈Z

e−
2t
h2 Ik

( 2t

h2

)
rhuj−k

=
rhuj+1 + rhuj−1 − 2rhuj

h2

= ∆hrhvj ,

where the second line is due to (A.10). Also, rhvj(0) = rhuj by direct substitution. �

Therefore, we have shown that vj is a solution to{
∂trhvj = ∆hrhvj r 6= 0

rhvj = rhuj r = 0
,

and so we can substitute back into (4.4):

(−∆h)srhuj =
1

Γ(−s)

ˆ ∞
0

(∑
k∈Z

Gk

( t

h2

)
rhuj−k − rhuj

)
dt

t1+s

=
1

Γ(−s)

ˆ ∞
0

∑
k∈Z

Gk

( t

h2

)
(rhuj−k − rhuj)

dt

t1+s
,

since the sum in the integrand is equal to 1. Fubini applies once again to give us

=
1

Γ(−s)
∑
k∈Z

(rhuj−k − rhuj)
ˆ ∞

0
Gk

( t

h2

) dt

t1+s

=
1

Γ(−s)
∑
k∈Z

(rhuj−k − rhuj)
ˆ ∞

0
e−

2t
h2 Ik

( 2t

h2

) dt

t1+s

=
4sΓ(1

2 + s)

h2s
√
πΓ(−s)

∑
k∈Z

Γ(|k| − s)
Γ(|k|+ 1 + s)

(rhuj−k − rhuj),

where the last line follows from the integral identity (A.12). We can pause here and summa-
rize:

Theorem 4.7. Let u : R → R be a sufficiently smooth function restricted to the mesh and
0 < s < 1. Then, the discrete fractional Laplacian of order s of u is given by

(−∆h)srhuj =
4sΓ(1

2 + s)

h2s
√
πΓ(−s)

∑
k∈Z

Γ(|k| − s)
Γ(|k|+ 1 + s)

(rhuj−k − rhuj).(4.5)

4.4. Convergence of the discrete to continuous fractional Laplacian.

Again, if we take the limit as h → 0+, this does not give us a Riemann integral on the
right-hand side. However, if we restrict the original fractional Laplacian to Zh and compare
it with the discrete fractional Laplacian above, we can see that the difference between the
two is controlled by some positive power of h. Due to the form of the discrete fractional
Laplacian that we just derived, we have two cases for this final result:
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Theorem 4.8. Let u : R→ R be sufficiently smooth. If 0 < s < 1
2 , then,∣∣∣rh((−∆)su

)
j
− (−∆h)s(rhuj)

∣∣∣ ≤ 4sΓ(1
2 + s)Ksh

1−2s ‖Du‖L∞(R)√
π |Γ(−s)|

for some Ks > 0. If 1
2 < s < 1, then∣∣∣rh((−∆)su

)
j
− (−∆h)s(rhuj)

∣∣∣ ≤ 4sΓ(1
2 + s)Ksh

2−2s ‖Du‖L∞(R)√
π |Γ(−s)|

for some Ks > 0. Moreover,

lim
h→0+

∣∣∣rh((−∆)su
)
j
− (−∆h)s(rhuj)

∣∣∣ = 0.

Proof: We only prove the case for 0 < s < 1
2 , and we will find that the some of the following

calculations are similar or identical to those of the corresponding proof for the fractional left
derivative. By the same reasoning as before, without loss of generality, let j = 0. If we use
the formulation of the fractional Laplacian using just the first-order incremental quotient,
then we lose the factor of 1

2 in (2.14) and instead have

(−∆)su(x) =
4sΓ(1

2 + s)
√
πΓ(−s)

ˆ
R

u(x− y)− u(x)

|y|1+2s dy,

and restricting this to the mesh gives us

rh
(
(−∆)su

)
0

=
4sΓ(1

2 + s)
√
πΓ(−s)

∑
k∈Z

ˆ (k+1)h

kh

u(−y)− u(0)

|y|1+2s dy

=
4sΓ(1

2 + s)
√
πΓ(−s)

[ˆ h

−h

u(−y)− u(0)

|y|1+2s dy +
∞∑
k=1

ˆ (k+1)h

kh

u(−y)− u(0)

|y|1+2s dy

+
∞∑
k=1

ˆ −kh
−(k+1)h

u(−y)− u(0)

|y|1+2s dy

]
=: S0 + S1 + S2.

Note that we can decompose (−∆h)srhu0 in a similar way:

(−∆h)srhu0 =
4sΓ(1

2 + s)

h2s
√
πΓ(−s)

[ ∞∑
k=1

Γ(k − s)
Γ(k + 1 + s)

[
u(−hk)− u(0)

]
+

∞∑
k=1

Γ(k − s)
Γ(k + 1 + s)

[
u(hk)− u(0)

]]
=: C1 + C2.

Next, we break up S1 as we did in the previous corresponding proof:

S1 =
4sΓ(1

2 + s)
√
πΓ(−s)

[ ∞∑
k=1

[
u(−hk)− u(0)

]ˆ (k+1)h

kh

1

|y|1+2sdy +
∞∑
k=1

ˆ (k+1)h

kh

u(−y)− u(−hk)

|y|1+2s dy

]
=: A1 +B1.

Make the change of variables of negating y for S2 to get

S2 = −
4sΓ(1

2 + s)
√
πΓ(−s)

∞∑
k=1

ˆ kh

(k+1)h

u(y)− u(0)

|y|1+2s dy
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=
4sΓ(1

2 + s)
√
πΓ(−s)

∞∑
k=1

ˆ (k+1)kh

kh

u(y)− u(0)

y1+2s
dy,

and we can do the same decomposition for S2:

S2 =
4sΓ(1

2 + s)
√
πΓ(−s)

[ ∞∑
k=1

[
u(hk)− u(0)

]ˆ (k+1)h

kh

1

y1+2s
dy +

∞∑
k=1

ˆ (k+1)h

kh

u(y)− u(hk)

y1+2s
dy

]
=: A2 +B2.

Therefore, we have that∣∣rh((−∆)su
)

0
− (−∆h)s(rhu0)

∣∣ = |S0 +A1 +B1 +A2 +B2 − C1 − C2|
≤ |S0|+ |A1 − C1|+ |A2 − C2|+ |B1|+ |B2| .

If we can show that this sum is controlled above by the factor h1−2s, then we are done. For
S0, by the mean value theorem, we quickly see that

|S0| ≤
4sΓ(1

2 + s)
√
π |Γ(−s)|

ˆ h

−h

|u(−y)− u(0)|
|y|1+2s dy

≤
4sΓ(1

2 + s) ‖Du‖L∞(R)√
π |Γ(−s)|

ˆ h

−h
|y|−2s dy

=
2(4s)Γ(1

2 + s) ‖Du‖L∞(R)√
π |Γ(−s)|

ˆ h

0
y−2sdy

=
2(4s)Γ(1

2 + s) ‖Du‖L∞(R) h
1−2s

√
π |Γ(−s)| (1− 2s)

.

For both |B1| , |B2|, the computation to bound these is the exact same process as in (4.3), so
we immediately have that

|B1|+ |B2| ≤
2(4s) ‖Du‖L∞(R) Γ(1

2 + s)h1−2s

√
π |Γ(−s)|

(
1

1− 2s
+
∞∑
k=1

1

k1+2s

)
,

and the series converges to some Ds > 0 since s > 0. Furthermore, bounding |A1 − C1| is
very similar as well, but there is a slight difference towards the end the process due to a
different ratio of gamma functions. To begin, we have that

|A1 − C1| ≤
4sΓ(1

2 + s)
√
π |Γ(−s)|

∞∑
k=1

|u(−hk)− u(0)|

∣∣∣∣∣
ˆ (k+1)h

kh

1

y1+2s
dy − Γ(k − s)

h2sΓ(k + 1 + s)

∣∣∣∣∣
≤

4s ‖Du‖L∞(R) Γ(1
2 + s)h

√
π |Γ(−s)|

∞∑
k=1

k

∣∣∣∣∣
ˆ (k+1)h

kh

1

y1+2s
dy − Γ(k − s)

h2sΓ(k + 1 + s)

∣∣∣∣∣ .
Let y = hz in the integral, so

|A1 − C1| ≤
4s ‖Du‖L∞(R) Γ(1

2 + s)h1−2s

√
π |Γ(−s)|

∞∑
k=1

k

∣∣∣∣ˆ k+1

k

1

z1+2s
dz − Γ(k − s)

Γ(k + 1 + s)

∣∣∣∣
=

4s ‖Du‖L∞(R) Γ(1
2 + s)h1−2s

√
π |Γ(−s)|

·
∞∑
k=1

k

∣∣∣∣ˆ k+1

k

( 1

z1+2s
− 1

k1+2s

)
dz +

1

k1+2s
− Γ(k − s)

Γ(k + 1 + s)

∣∣∣∣ .
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As before, by applying the mean value theorem to the integrand and evaluating the integral,
we get

|A1 − C1| ≤
4s ‖Du‖L∞(R) Γ(1

2 + s)h1−2s

√
π |Γ(−s)|

∞∑
k=1

k

∣∣∣∣−1− 2s

k2+2s
+

1

k1+2s
− Γ(k − s)

Γ(k + 1 + s)

∣∣∣∣
≤

4s ‖Du‖L∞(R) Γ(1
2 + s)h1−2s

√
π |Γ(−s)|

∞∑
k=1

1 + 2s

k1+2s
+
∞∑
k=1

k

∣∣∣∣ Γ(k − s)
Γ(k + 1 + s)

− 1

k1+2s

∣∣∣∣ .
Applying (A.9) on the rightmost summand gives us

|A1 − C1| ≤
4s ‖Du‖L∞(R) Γ(1

2 + s)h1−2s

√
π |Γ(−s)|

∞∑
k=1

1 + 2s

k1+2s
+

∞∑
k=1

kEs
k2+2s

=
4s ‖Du‖L∞(R) Γ(1

2 + s)h1−2s

√
π |Γ(−s)|

∞∑
k=1

1 + 2s+ Es
k1+2s

,

and this sum converges to some Fs > 0 since s > 0, giving us an upper bound for our
penultimate object. However, we are done, because finding the upper bound for |A2 − C2| is
an identical calculation. Finally, we compile our information:∣∣rh((−∆)su

)
0
− (−∆h)s(rhu0)

∣∣ ≤ 2(4s)h1−2s ‖Du‖L∞(R) Γ(1
2 + s)

√
π |Γ(−s)|

∣∣∣∣ 2

1− 2s
+Ds + Fs

∣∣∣∣
≤

4sKsh
1−2s ‖Du‖L∞(R) Γ(1

2 + s)
√
π |Γ(−s)|

.

Therefore, taking the limit as h→ 0+ yields

lim
h→0+

∣∣rh((−∆)su)j − (−∆h)s(rhuj)
∣∣ = 0.

�

Notes:

There are a few open problems in this last subsection. It would be desirable to compare the
discrete fractional Laplacian using a second-order incremental quotient with the restriction
of (2.14) to the mesh, because this could possibly eliminate the need for cases in the last
theorem. Additionally, it may allow for the case of s = 1

2 , which we do not currently have.
Extending the spacial dimension to any n ≥ 1 would be a challenging problem, because it
would likely involve multidimensional modified Bessel functions of the first kind.

The development of the discrete fractional left derivative and its convergence to the con-
tinuous fractional left derivative is given in [1], but the argument utilizing the corollary of
Gautschi’s inequality was constructed independently. Likewise, [3] gives the derivation for
the discrete fractional Laplacian. However, for the discrete to continuous convergence, we
constructed the restriction of the continuous fractional Laplacian to the mesh in such a way
that would mimic the same proof for the fractional left derivative. The proof of convergence
in the second case of the last theorem is also given in [3].
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5. Future work

In this paper, we discussed the probability of locating a particle at some location and some
time that is undergoing a continuous random walk in Euclidean space. We derived various
PDEs that model the probability while considering different types of anomalous diffusion.
With these models, some initial condition may be implemented, allowing one to investigate
the existence, uniqueness, and regularity of solutions. [6] makes an effort to find a solution
of the problem where the particle might get stuck but still move with unit space step while
assuming a Dirac delta initial condition.

It may also be of interest to add boundaries on the random walk, because it is reasonable
to expect that such a particle is contained in some way. The particle might under go a drift
force, which would result in a non-symmetric random walk, and the probability of moving
left or right would not be equal.

One final scenario we may consider is for a particle to undergo a random walk in non-
Euclidean space, such as in a sphere or on its surface. This example would likely require the
use of spherical coordinates, so one would be finding the probability of observing the particle
at some radius, angle, and time.
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Appendix A. Some special functions

A.1. Gamma function.

The importance of the content in the following section cannot be understated. The gamma
function is the key to defining our fractional derivative operators. Also, the fractional left
derivative revolves around the fact that we can define unique fractional powers of complex
numbers. The aim of this section is to establish important definitions and relevant properties.

Definition A.1. Define Γ : (0,∞)→ R by:

(A.1) Γ(s) :=

ˆ ∞
0

e−tts
dt

t
.

We call Γ the gamma function at s > 0.

Note that this function is always positive. It is well known that the gamma function
interpolates integer factorials to the real numbers, so it maintains the property that the
factorial of some number is equal to that number multiplied by the factorial of one less than
it, i.e.

Γ(s+ 1) = sΓ(s).

As given above, the gamma function is defined only for positive real numbers, so suppose we
would like to extend this definition to some subset of negative numbers. In particular, the
goal is to find Γ(−s). If we were to substitute in −s in place of s in (A.1), we would have

Γ(−s) =

ˆ ∞
0

e−tt−s
dt

t
,

but this is not integrable near 0, so it is not well-defined. Despite this, we still have the
recursive formula above, so

(A.2) Γ(−s) =
Γ(1− s)
−s

.

Here, it must be that 0 < s < 1 so Γ(−s) is well-defined. Also, since Γ(1− s) > 0, it follows
that Γ(−s) < 0. Now, we present the formula for Γ(−s). While the following reads as a
theorem, since we are technically considering a different domain, this should also be thought
of as a definition:

Theorem A.2. Let 0 < s < 1. Then,

(A.3) Γ(−s) =

ˆ ∞
0

e−t − 1

t1+s
dt.

Proof: From the relation above, applying (A.1) gives that

Γ(−s) =
1

−s

ˆ ∞
0

e−tt1−s−1dt

=
1

s

ˆ ∞
0

d

dt

[
e−t
]
t−sdt

=
1

s

ˆ ∞
0

d

dt

[
e−t − 1

]
t−sdt.

Integration by parts gives that

Γ(−s) =
e−t − 1

sts

∣∣∣∣∞
0

− 1

s

ˆ ∞
0

−s(e−t − 1)

t1+s
dt
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= lim
t→∞

e−t − 1

sts
− lim
t→0

e−t − 1

sts
+

ˆ ∞
0

e−t − 1

t1+s
dt.

The first limit clearly goes to 0. For the second one, we apply L’Hôpital’s rule:

lim
t→0

e−t − 1

sts
= lim

t→0

−e−t

s2ts−1

= lim
t→0

−t1−s

s2et

= 0,

since s < 1. Therefore,

Γ(−s) =

ˆ ∞
0

e−t − 1

t1+s
dt.

�

Remark A.3. For any positive integer n and n < s < n + 1, a formula can be found for
Γ(−s) by repeatedly using the recursive formula (A.2) n times. This has its uses, but it is
not focused on in this paper.

From here, it does not take much effort to derive a formula for fractional powers of positive
real numbers from (A.3).

Proposition A.4. Let λ > 0 and 0 < s < 1. Then,

(A.4) λs =
1

Γ(−s)

ˆ ∞
0

e−λt − 1

t1+s
dt.

Proof: From the integral on the right-hand side, we make the substitution r = λt, so dt = dr
λ ,

and we have

1

Γ(−s)

ˆ ∞
0

e−λt − 1

t1+s
dt =

1

Γ(−s)

ˆ ∞
0

e−r − 1

( rλ)1+s

dr

λ

=
λs

Γ(−s)

ˆ ∞
0

e−r − 1

r1+s
dr

=
λs

Γ(−s)
Γ(−s)

= λs.

�

Given this integral formula above, one might ask if λ can take a value from a different
domain. To answer this question, we must go back to (A.3). In this definition, it turns out
that we can actually choose any ray in the first quadrant of the complex plane whose initial
point is the origin as the path of integration. It is interesting to note that we still retain the
value of Γ(−s) for 0 < s < 1. This gives us the following result:

Theorem A.5. Let z ∈ C, 0 < s < 1, and let rayϕ0 ⊂ C for 0 ≤ ϕ0 ≤ π
2 . Then,

(A.5) Γ(−s) =

ˆ
rayϕ0

e−z − 1

z1+s
dz.
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Proof: To start, let F (z) =
e−z − 1

z1+s
. For t ∈ R, observe that

ˆ ∞
0

F (t)dt = lim
ε→0

ˆ 1
ε

ε
F (t)dt.

F is holomorphic on the positive real axis but has a singularity at the origin. Let ε > 0 and
γ be a contour given by

γ :=
{
t | ε ≤ t ≤ 1

ε

}
∪
{1

ε
eit | 0 ≤ t ≤ ϕ0

}
∪
{
teiϕ0 | ε ≤ t ≤ 1

ε

}
∪
{
εeit | 0 ≤ t ≤ ϕ0

}
,

and call each curve γ1, γ2, γ3, γ4 respectively. Let U ⊂ C be open such that U ⊃ γ and 0 /∈ U .
F is holomorphic in all of U , so by Cauchy’s integral theorem,˛

U
F (z)dz = 0.

On the other hand,

0 =

ˆ
γ1

F (z)dz +

ˆ
γ2

F (z)dz +

ˆ
γ3

F (z)dz +

ˆ
γ4

F (z)dz.

As we take the limit as ε→ 0, note that the integral along γ1 is Γ(−s) and the integral along
γ3 is the opposite of the integral along rayϕ0. That is,

(A.6) 0 = Γ(−s)−
ˆ

rayϕ0

F (z)dz + lim
ε→0

( ˆ
γ2

F (z)dz +

ˆ
γ4

F (z)dz

)
.

We investigate the convergence of these two remaining integrals. For γ2,∣∣∣∣ˆ
γ2

F (z)dz

∣∣∣∣ =

∣∣∣∣∣
ˆ ϕ0

0

e−
1
ε
eit − 1(

1
εe
it
)1+s

ieitdt

ε

∣∣∣∣∣
=

∣∣∣∣∣i
ˆ ϕ0

0

εs
(
e−

1
ε
eit − 1

)
eist

dt

∣∣∣∣∣
≤
ˆ ϕ0

0
εs
∣∣∣e− 1

ε
eit − 1

∣∣∣ dt
≤
ˆ ϕ0

0
εs
( ∣∣∣e− 1

ε
eit
∣∣∣+ 1

)
dt

=

ˆ ϕ0

0
εs
( ∣∣∣e− 1

ε
cos(t)

∣∣∣+ 1
)
dt.

This last line follows since |ez| = e<(z). Since t ≤ ϕ0 ≤ π
2 , then cos(t) ≥ 0, and so

e−
1
ε

cos(t) ≤ e−
1
ε

(0) = 1. Thus, ∣∣∣∣ˆ
γ2

F (z)dz

∣∣∣∣ ≤ ˆ ϕ0

0
2εsdt

= 2ϕ0ε
s

→ 0

as ε→ 0. For γ4, we have ∣∣∣∣ˆ
γ4

F (z)dz

∣∣∣∣ =

∣∣∣∣∣
ˆ 0

ϕ0

e−εe
it − 1(

εeit
)1+s iεe

itdt

∣∣∣∣∣
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=

∣∣∣∣∣−i
ˆ ϕ0

0

e−εe
it − 1

εseist
dt

∣∣∣∣∣
≤
ˆ ϕ0

0
ε−s

∣∣∣e−εeit − 1
∣∣∣ dt.

Consider the exponential inside the absolute value as a function G(ε). Here, note that∣∣∣e−εeit − 1
∣∣∣ = |G(ε)−G(0)|. G is continuous on [0, ε] and differentiable on (0, ε), so by the

mean value theorem, there exists some ζ ∈ (0, ε) such that

|G(ε)−G(0)| = (ε− 0)
∣∣G′(ζ)

∣∣
= ε

∣∣∣−eite−ζeit∣∣∣
= ε

∣∣∣e−ζeit∣∣∣
= ε

∣∣∣e−ζ cos(t)
∣∣∣

≤ ε,
which follows from the reasoning in the previous integral. Thus,∣∣∣∣ˆ

γ4

F (z)dz

∣∣∣∣ ≤ ˆ ϕ0

0
ε1−sdt

= ϕε1−s

→ 0

as ε→ 0. Plugging back into (A.6) gives

0 = Γ(−s)−
ˆ

rayϕ0

F (z)dz,

and the result follows. �

While this result is interesting in its own right, we can use it to obtain a quick result that
is essential in defining the fractional left derivative. In particular, if we integrate the ray
along the angle ϕ0 = π

2 , (A.4) can be extended to include fractional powers of imaginary
numbers with positive imaginary part.

Corollary A.6. Let ω > 0, and let 0 < s < 1. Then,

(A.7) (iω)s =
1

Γ(−s)

ˆ ∞
0

e−iωt − 1

t1+s
dt.

Proof: In (A.5), use the parameterization z(t) = iωt for t > 0. Differentiating gives dz =
iωdt, and proper substitution gives that

Γ(−s) =

ˆ ∞
0

e−iωt − 1

(iωt)1+s
iωdt

=
1

(iω)s

ˆ ∞
0

e−iωt − 1

t1+s
dt,

so rearranging gives the result. �

It is worth pausing here to discuss the implications of this result. First, if we compare
(A.4) and (A.7), we notice that the only difference is that we substitute an imaginary number
with positive imaginary part iω in place of a positive real number λ. This begs the question
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of if we could just make this substitution without working through the complex analysis, and
the answer is no. Recall that in order to define Γ(−s), we could not simply substitute −s in
place of s in (A.1), because it would no longer be well-defined. We had to use properties of
the gamma function to derive a different expression for Γ(−s). This is why we have to check
what happens when we extend the domain in (A.4).

This brings us to the second observation. Powers of complex numbers are multi-valued,
so we might ask which value of (iω)s are we taking. By considering the ray along ϕ0, we are
taking the branch that corresponds to the angle ϕ0. Thus, (iω)s is given by the unique value
of the integral given in (A.7). Therefore, the previous corollary is as much of a result as it is
a definition.

Finally, we can extend the idea of raising numbers to fractional powers to raising operators
to fractional powers. If L is a differential operator, then the previous work suggests that we
can say that

Ls =
1

Γ(−s)

ˆ ∞
0

e−Lt − 1

t1+s
dt,

provided we can deduce a meaning for e−Lt. We can do this via semigroups, which is explored
in Section 2.

This process can be replicated to include fractional powers of negative operators, which is
useful for deriving expressions for the continuous and discrete fractional Laplacian.

The gamma function is the unique function that interpolates integer factorials to real
numbers that is also logarithmically convex. A consequence of this property, known as
Gautschi’s inequality, gives lower and upper bounds for a quotient of gamma functions.

Theorem A.7 (Gautschi’s inequality). For any x > 0 and 0 < s < 1,

x1−s <
Γ(x+ 1)

Γ(x+ s)
< (x+ 1)1−s.

It is beneficial for us to instead consider an alternate form of Gautschi’s inequality, so we
have the following corollary:

Corollary A.8. For any x > 0 and 0 < α < 1,

(A.8)
1

(x+ 1)α
<

Γ(x+ 1− α)

Γ(x+ 1)
<

1

xα
.

Proof: Let s = 1− α in Gautschi’s inequality. Since 0 < 1− α < 1, we have that

xα <
Γ(x+ 1)

Γ(x+ 1− α)
< (x+ 1)α,

and taking reciprocals on all three sides gives the result. �

We also have another estimate when considering quotients of gamma functions that may
be applicable when Gautschi’s inequality is not:

Proposition A.9. For any x > 0 and 0 < s < 1, then there exists some Es > 0 such that∣∣∣∣ Γ(x− s)
Γ(x+ 1 + s)

− 1

x1+2s

∣∣∣∣ ≤ Es
x2+2s

.(A.9)
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A.2. Modified Bessel function of the first kind.

The construction of the discrete fractional Laplacian requires the use of the modified Bessel
function of the first kind. In this subsection, we list without proof a few of its properties.

Definition A.10. Let ν ∈ Z. The modified Bessel function of the first kind Iν : R → R is
defined by

Iν(t) =
∞∑
m=0

( t2)2m+ν

Γ(m+ 1)Γ(m+ ν + 1)
.

From the definition, it is clear that Iν(t) ≥ 0. For the boundary values, we see that
Iν(0) = 0 for ν ≥ 1, and we take I0(0) = 1. It is proven that this function is even in ν, that
is, Iν = I−ν . This function also satisfies the relation

∂

∂t

[
e−2tIν(2t)

]
= e−2t

[
Iν+1(2t)− 2Iν(2t) + Iν−1(2t)

]
.(A.10)

We can view {Iν} as a sequence of functions and thus can be described via generating
functions. In particular, a Laurent series generating function for Iν leads the way to the
following property:

Proposition A.11. For all t ∈ R, ∑
ν∈Z

Iν(t) = et.(A.11)

Finally, an important integral identity that contains the modified Bessel function of the
first kind is given below:

Proposition A.12. If c > 0 and −1
2 < s < ν, thenˆ ∞

0
e−ctIν(ct)

dt

t1+s
=

(4c)sΓ(1
2 + s)Γ(ν − s)

√
πΓ(ν + 1 + s)

.(A.12)

Notes:

The results concerning the gamma function evaluation at negative entries, including the
integration along a ray on the complex plane, are found in [2]. Gautschi’s inequality is a
generally known result, but its slightly modified form was developed independently. The
final inequality regarding the quotient of gamma functions and all the properties of the
modified Bessel function of the first kind are found in [3].
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