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Motivation Integral Definition Regularity A Priori A Posteriori Extensions Open Problems

Local Jump Random Walk

• Consider a random walk of a particle along the real line.

• hZ = {hz : z ∈ Z} — possible states of the particle.

• u(x, t) — probability of the particle to be at x ∈ hZ at time t ∈ τN.

• Local jump random walk: at each time step of size τ , the particle jumps to
the left or right with probability 1/2.

u(x, t+ τ) =
1

2
u(x+ h, t) +

1

2
u(x− h, t)

If we consider 2τ = h2, then we obtain

u(x, t+ τ)− u(x, t)

τ
=
u(x+ h, t) + u(x− h, t)− 2u(x, t)

h2

Letting h, τ ↓ 0 yields the heat equation

ut −∆u = 0
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Long Jump Random Walk

• The probability that the particle jumps from the point hk ∈ hZ to the point
hm ∈ hZ is K(k −m) = K(m− k):

u(x, t+ τ) =
∑
k∈Z

K(k)u(x+ hk, t).

• No-time memory: Since
∑
k∈ZK(k) = 1, this yields

u(x, t+ τ)− u(x, t) =
∑
k∈Z

K(k) (u(x+ hk, t)− u(x, t))

• If K(y) ∼ |y|−(1+2s) with s ∈ (0, 1) and τ = h2s, then K(k)
τ

= hK(kh).
Letting h, τ ↓ 0 yields the fractional heat equation

∂tu =

ˆ
R

u(x+ y, t)− u(x, t)

|y|1+2s
dy ⇔ ∂tu+ (−∆)su = 0.

• Long-range time memory: ∂tu ⇒ ∂γt u (0 < γ < 1)

∂γt u+ (−∆)su = 0.
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Applications of Nonlocal Operators and Fractional Diffusion

I Modeling anomalous diffusion (Metzler, Klafter 2000, 2004).

I Peridynamics (Silling 2000; Du, Gunzburger 2012; Lipton 2015).

I Modeling contaminant transport in porous media (Benson et al 2000;
Seymour et al 2007).

I Finance (Carr et al. 2002; Matache, Schwab, von Petersdorff et al. 2004).

I Lévy processes (Bertoin 1996; Farkas, Reich, Schwab 2007).

I Nonlocal field theories (Eringen 1972, 2002).

I Materials science (Bates 2006).

I Image processing (Gilboa, Osher 2008).
Based on our PDE approach → Gatto, Hesthaven (2014)
Spectral method → Bartels, Antil (2017).

I Fractional Navier Stokes equation (Li et al 2012; Debbi 2014)

ut + u · ∇u+ (−∆)su+∇p = 0

I Fractional Cahn Hilliard equation (Segatti, 2014).

The domain Ω can be quite general!
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Nonlocal Models: Historical Remarks

• Nonlocal continuum physics:
I A.C. Eringen and D.G.B. Edelen, On nonlocal elasticity, International Journal

of Engineering Science, 10 (1972), 233-248 (913 google scholar citations).

I A.C. Eringen, On differential equations of nonlocal elasticity and solutions of
screw dislocation and surface waves, J. Appl. Phys. 54, 4703 (1983). (1321
google scholar citations).

I A.C. Eringen, Nonlocal Continuum Field Theories, Springer (2002).
Nonlocal continuum field theories are concerned with material bodies whose
behavior at any interior point depends on the state of all other points in the
body – rather than only on an effective field resulting from these points – in
addition to its own state and the state of some calculable external field.

• Recent developments:
I Peridynamics: S.A. Silling, Reformulation of elasticity theory for

discontinuities and long-range forces, Journal of the Mechanics and Physics of
Solids (2000) (968 google scholar citations).

I Dirichlet-to-Neumann map: L. Caffarelli and L. Silvestre, An extension
problem related to the fractional Laplacian, Communications in Partial
Differential Equations, (2007) (1078 google scholar citations).
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Definition in Rd for d ≥ 1

Let s ∈ (0, 1) and u : Rd → R be smooth enough (belongs to Schwartz class S ).

• Fourier transform:

F ((−∆)su) (ξ) = |ξ|2sF (u)

• Integral representation:

(−∆)su(x) = C(d, s) P.V.

ˆ
Rd

u(x)− u(x′)

|x− x′|d+2s
dx′,

where C(d, s) =
22ssΓ(s+ d

2
)

πd/2Γ(1−s) is a normalization constant involving the

Gamma-function Γ.

• Pointwise limits s→ 0, 1: there holds

lim
s→0

(−∆)su = u,

lim
s→1

(−∆)su = −∆u.
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Integral Definition for Bounded Domain Ω ⊂ Rd

Let Ω ⊂ Rd be open, with smooth boundary, and let f : Ω→ R be smooth.

• Boundary value problem:{
(−∆)su = f in Ω,

u = 0 in Ωc.

• Integral representation:

(−∆)su(x) = C(d, s) P.V.

ˆ
Rd

u(x)− u(x′)

|x− x′|d+2s
dx′ = f(x) x ∈ Ω

• Boundary condition: it is imposed in Ωc = Rd \ Ω

u = 0 in Ωc.

• Probabilistic interpretation: It is the same as over Rd except that particles
are killed upon reaching Ωc.
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Function Spaces

• Fractional Sobolev space in Rd:

Hs(Rd) =
{
w ∈ L2(Rd) : |w|Hs(Rd) <∞

}
with

〈u,w〉 :=

ˆ ˆ
Rd×Rd

(u(x)− u(x′))(w(x)− w(x′))

|x− x′|d+2s
dx′dx,

|w|Hs(Rd) := 〈w,w〉
1
2 , ‖w‖Hs(Rd) :=

(
|w|2Hs(Rd) + ‖w‖2L2(Rd)

) 1
2
.

• Fractional Sobolev space in Ω:

Hs(Ω) :=
{
w|Ω : w ∈ Hs(Rd), w|Rd\Ω = 0

}
, ‖w‖Hs(Ω) := ‖w‖Hs(Rd).

• Poincaré inequality in Hs(Ω):

‖w‖L2(Ω) ≤ c(Ω, d, s)|w|Hs(Rd) ∀w ∈ Hs(Ω)

and therefore | · |Hs(Rd) is a norm in Hs(Ω).

• Dual space: H−s(Ω) = Hs(Ω)∗.
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Non-locality

• The Hs-seminorms are not additive with respect to domain partitions.

• Functions with disjoint supports may have a non-zero inner product: if
u, v > 0 on its supports

supp(u)

supp(w)

〈u, v〉 =

¨
supp(u)×supp(w)

−2u(x)w(x′)

|x− x′|n+2s
dx dx′ < 0.

• Computation of integrals on unbounded domains Ω× Ωc (Ωc = Rd \ Ω):

ˆ
Ω

ˆ
Ωc

u(x)w(x)

|x− x′|d+2s
dxdx′.
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Variational Formulation

• Bilinear form in Hs(Ω):

Ju,wK :=
C(d, s)

2

ˆ ˆ
Rd×Rd

(u(x)− u(x′))(w(x)− w(x′))

|x− x′|d+2s
dx′dx︸ ︷︷ ︸

=〈u,w〉

This form is symmetric, continuous and coercive, and equivalent to the inner
product 〈·, ·〉 in Hs(Ω); recall Poincaré inequality

‖w‖L2(Ω) ≤ c(Ω, n, s)|w|Hs(Rd) ∀w ∈ Hs(Ω).

• Variational formulation: for any f ∈ H−s(Ω), consider

u ∈ Hs(Ω) : Ju,wK = (f, w) ∀w ∈ Hs(Ω),

where (·, ·) stands for the duality pairing. Existence, uniqueness, and stability
follows from Lax-Milgram.
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Sobolev Regularity of Solutions (Grubb (2015))

• Theorem (Vishik & Eskin (1965), Grubb (2015)). If f ∈ Hr(Ω) for some
r ≥ 0 and ∂Ω ∈ C∞, then for all ε > 0

u ∈

{
H2s+r(Ω) if s+ r < 1/2,

Hs+1/2−ε(Ω) if s+ r ≥ 1/2.

The Dirichlet boundary conditions preclude further gain of regularity.

• Example: If Ω = B(0, r) and f ≡ 1, then the solution u is given by

u(x) = C(r2 − |x|2)s+,

which does not belong to Hs+1/2(Ω). The regularity above is sharp!

• Boundary behavior (Grubb (2015)). If ∂Ω ∈ C∞ then

u(x) ≈ dist(x, ∂Ω)s + v(x)

with v smooth.

Numerical Methods for Fractional Diffusion Ricardo H. Nochetto



Motivation Integral Definition Regularity A Priori A Posteriori Extensions Open Problems

Sobolev Regularity of Solutions (Grubb (2015))

• Theorem (Vishik & Eskin (1965), Grubb (2015)). If f ∈ Hr(Ω) for some
r ≥ 0 and ∂Ω ∈ C∞, then for all ε > 0

u ∈

{
H2s+r(Ω) if s+ r < 1/2,

Hs+1/2−ε(Ω) if s+ r ≥ 1/2.

The Dirichlet boundary conditions preclude further gain of regularity.

• Example: If Ω = B(0, r) and f ≡ 1, then the solution u is given by

u(x) = C(r2 − |x|2)s+,

which does not belong to Hs+1/2(Ω). The regularity above is sharp!

• Boundary behavior (Grubb (2015)). If ∂Ω ∈ C∞ then

u(x) ≈ dist(x, ∂Ω)s + v(x)

with v smooth.

Numerical Methods for Fractional Diffusion Ricardo H. Nochetto



Motivation Integral Definition Regularity A Priori A Posteriori Extensions Open Problems

Hölder Regularity of Solutions (Ros-Oton & Serra (2014))

• Hölder regularity: If f ∈ L∞(Ω), then u ∈ Cs(Rd) and

‖u‖Cs(Rd) ≤ C(Ω, s)‖f‖L∞(Ω).

Furthermore, defining δ(x) := dist(x, ∂Ω), the function u/δs can be
continuously extended to Ω.

• Boundary behavior: if 1/2 < s < 1 and f ∈ Cβ(Ω) (β < 2− 2s), then
there exist constants C1, C2 > 0 such that

sup
x,x′∈Ω

δ(x, y)β+s |Du(x)−Du(x′)|
|x− x′|β+2s−1

≤ C1, sup
x∈Ω

δ(x)1−s|Du(x)| ≤ C2,

where δ(x, x′) = min{δ(x), δ(x′)}.
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Weighted Fractional Sobolev Regularity (Acosta & Borthagaray (2017))

• Definition of space H1+θ
α (Ω): Let α ≥ 0 and θ ∈ (0, 1).

‖v‖2
H1+θ
α (Ω)

:= ‖v‖2H1(Ω) +

¨
Ω×Ω

|Dv(x)−Dv(y)|2

|x− y|n+2θ
δ(x, y)2αdx dy

• Weighted estimates: Let 1/2 < s < 1, f ∈ C1−s(Ω), and ε > 0 small.
Then, the solution u of (−∆)su = f which vanishes in Ωc belongs to
H1+s−2ε

1/2−ε (Ω) and satisfies the estimate

‖u‖
H1+s−2ε

1/2−ε (Ω)
≤ C(Ω, s)

ε
‖f‖C1−s(Ω).

(This is based on results by Ros-Oton and Serra (2014)).

• Weighted Fractional Poincaré inequality: Let 0 < α < ` < 1 and S be
star-shaped w.r.t. a ball. Then, there exists C > 0 s.t. for all v ∈ L2(S)
satisfying

´
S
v = 0,

‖v‖L2(S) ≤ Cdiam(S)`−α|v|H`α(S).

(This is based on results by Hurri-Syrjänen and Vähäkangas (2013)).
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Formulation and Best Approximation

• Mesh: Let T be a shape-regular (with constant σ) and quasi-uniform mesh
of Ω of size h.

• Finite element space: Let

U(T ) = {v ∈ C0(Ω): v
∣∣
T
∈ P1 ∀T ∈ T }.

• Discrete problem: Find U ∈ U(T ) such that

JU,W K = (f,W ) ∀W ∈ U(T ).

• Best approximation: Since we project over U(T ) with respect to the energy
norm | · |Hs(Ω) induced by J·, ·K, we get

|u− U |Hs(Ω) = min
W∈U(T )

|u−W |Hs(Ω).
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Interpolation estimates in Hs(Ω)

• Localized estimates in Hs(Ω) (Faermann (2002)):

|w|2Hs(Ω) ≤
∑
K∈T

[ˆ
K

ˆ
SK

|w(x)− w(x′)|2

|x− x′|d+2s
dx′ dx+

C(d, σ)

sh2s
K

‖w‖2L2(K)

]
,

where SK is the patch associated with K ∈ T and σ is the shape regularity
constant of T .

• Quasi-interpolation (P. Ciarlet Jr (2013)): If ΠT is Scott-Zhang operator,
ˆ
K

ˆ
SK

|(w −ΠT w)(x)− (w −ΠT w)(x′)|2

|x− x′|d+2s
dx′ dx . h2`−2s

K |w|2H`(SK),

where the hidden constant depends on d, σ, ` and blows up as s ↑ 1.

• Error estimates for quasi-uniform meshes (Acosta-Borthagaray (2017))

|u− U |Hs(Ω) ≤ C(s, σ)h
1
2 | lnh| ‖f‖H1/2−s(Ω).

Example: u(x) = C(r2 − |x|2)s+ with Ω = B(0, 1) ⊂ R2, f = 1

s 0.1 0.3 0.5 0.7 0.9
Order 0.497 0.498 0.501 0.504 0.532

Rate is quasi-optimal! Q: Is it possible to improve the order of convergence?
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Error Estimates in Graded Meshes (Acosta & Borthagaray (2017))

• Weighted fractional Poincaré inequality: If S is star-shaped with respect
to a ball, dS is the diameter of S, and w =

ffl
S
w for w ∈ H2

κ(S), then

‖w − w‖L2(S) . ds−κS |w|Hsκ(S),

• Weighted quasi-interpolation:
ˆ
T

ˆ
ST

|(v −Πhv)(x)− (v −Πhv)(x′)|2

|x− x′|n+2s
dx′dx ≤ Ch1−2ε

T |v|2
H1+s−2ε

1/2−ε (ST )
.

• Energy error estimate: Let d = 2 and T be a graded mesh satisfying

hK ≤ C(σ)

{
h2, K ∩ ∂Ω 6= ∅,

h dist(K, ∂Ω)1/2, K ∩ ∂Ω = ∅,

whence #T ≈ h−2| log h|. If 1/2 < s < 1, then

‖u− U‖Hs(Ω) . (#T )−
1
2 | log(#T )| ‖f‖C1−s(Ω).

• Improvement: This also reads ‖u− U‖Hs(Ω) . h| log h| ‖f‖C1−s(Ω) and is
thus first order.
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Numerical Experiment (Acosta & Borthagaray (2017))

Exact solution: u(x) = C(r2 − |x|2)s+ with Ω = B(0, 1) ⊂ R2, f = 1.

Experiment with either uniform or graded T : let hK ≈ h dist(K, ∂Ω)1/2

Value of s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Uniform T 0.497 0.496 0.498 0.500 0.501 0.505 0.504 0.503 0.532
Graded T 1.066 1.040 1.019 1.002 1.066 1.051 0.990 0.985 0.977

Optimality: First order accuracy ‖u− U‖Hs(Ω) . h| log h| seems optimal.
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Implementation in 2d (Acosta, Bersetche & Borthagaray (2017))

• Basis functions: {φi}Ii=1 ⇒ span {φi}Ii=1 = U(T ).

• Matrix formulation: If K = (Kij)
I
ij=1 with

Ki,j = Jφi, φjK =
C(d, s)

2

¨
Q

(φi(x)− φi(x′))(φj(x)− φj(x′))
|x− x′|2+2s

dx′ dx.

and U = (Ui)
I
i=1, F = (〈f, φi〉)Ii=1 satisfy U =

∑I
i=1 Uiφi ∈ U(T ), then

KU = F.

• Computation: We have Ki,j = C(d,s)
2

∑I
`=1

(∑I
m=1 I

i,j
`,m + 2J i,j`

)
with

Ii,j`,m :=

ˆ
K`

ˆ
Km

(φi(x)− φi(x′))(φj(x)− φj(x′))
|x− x′|2+2s

dx′ dx,

J i,j` :=

ˆ
K`

ˆ
Bc

φi(x)φj(x)

|x− x′|2+2s
dx′ dx.

• Computational difficulties
I Non-integrable singularities
I Unbounded domains
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Implementation Details

• Case K` ∩Km = ∅: Integrand of Ii,j`,m is regular and can be integrated
approximately using high order quadrature.

• Case K` ∩Km 6= ∅: Integrand of Ii,j`,m is singular and require techniques
similar to BEM (Sauter & Schwab’s book (2011)).

I Map affinely to reference element K;

I Split 4d integration domain into subsimplices and use Duffy transformations
(1982) to map to 4d unit cubes;

I Exploit that Jacobians of Duffy maps are regularizing and split integrals into
singular but explicitly integrable part and numerically tractable part.

• Unbounded domain: Write

J i,j` =

ˆ
K`

φi(x)φj(x)%(x) dx, %(x) :=

ˆ
Bc

1

|x− x′|2+2s
dx′,

and compute accurately ρ(x) for x ∈ Ω using the radial structure and that
dist(x, x′) > dist(Ω, Bc) > 0 for x′ ∈ Bc.
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A Posteriori Error Analysis (N, von Petersdoff and C. Zhang (2010))

• Local structure: Local patch (star) and basis Function:

would obtain a nonzero upper bound due to nonzero values of λ in the contact

region. A good practical upper bound should be “localized” in the sense that only

the value of the residual in the noncontact region contributes to the error bound.

6.3.1 Discrete Contact and Noncontact Sets

Before we can define the discrete Lagrange multiplier λh which gives a “local-

ized” upper bound, we first need to define discrete sets that mimic the contact set

C := {u = χ} and noncontact set N := {u > χ}.

Let T be a triangulation of the polygonal domain Ω and S be the set of all

sides or faces of triangles or tetrahedrons in T . Denote by ωz the support of the

piecewise linear nodal basis functions {ψz}z∈Ph
; see Figure 6.1. Let γz ⊂ S be the

skeleton of ωz, namely the set of all interior sides of ωz which contain z; for d = 1, γz

reduces to the node z itself. Similarly, we denote ωS be the set of triangles sharing

z

(a) Local patch ωz

z

(b) Skeleton γz (c) Basis function ψz

Figure 6.1: Local Patch

the side S ∈ S and ωτ be the the union of elements surrounding τ ∈ T :

ωτ := ∪{τ ′ ∈ T | τ ′ ∩ τ %= ∅}.

We split Ph into three disjoint sets

Ph = Nh ∪ Ch ∪ Fh

with the noncontact nodes Nh, full-contact nodes Ch, and free boundary nodes Fh

70

• Partition of Unity:
∑
z∈P φz = 1

• Error-Residual: If R = f − (−∆)sU is the residual, then

Ju− U,wK = (R,w) =
∑
z∈P

(R,wφz) =
∑
z∈P

(R, (w − w̄z)φz)

=
∑
z∈P

(
R− R̄z, (w − w̄z)φz

)
=
∑
z∈P

(
(R− R̄z)φz, w − w̄z

)
where w̄z, R̄z ∈ R are weighted mean-values:

w̄z = (w, φz) / (1, φz) if z ∈ P ∩ Ω and w̄z = 0 if z ∈ P ∩ Γ.
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Residual Estimation

• Localized upper bound of dual norm. Assume that G =
∑
z∈P gz and

gz ∈ Hs(ωz)∗ vanish in Ω\ωz. Then for s ∈ [0, 1]

‖G‖2H−s(Ω) ≤ (d+ 1)
∑
z∈P

‖gz‖2Hs(ωz)∗ .

• Upper bound of local dual norm. Let gz ∈ Lp(ωz) satisfy
´
ωz
gz = 0 for

z ∈ P such that ∂ωz ∩ Γ has measure 0. If s ∈ [0, 1] and 1 ≤ p <∞ satisfy
1
p <

s
d

+ 1
2 , then

‖gz‖Hs(ωz)∗ . hs+d(1/2−1/p)
z ‖gz‖Lp(ωz) .

• Upper bound. Let f ∈ Lp(Ω) and p > 1, 0 < s < 1 satisfy the restriction
2s− 1 < 1

p
< s

d
+ 1

2
. Then

‖u− U‖2Hs(Ω) . E2 :=
∑
z∈P

h
2(s+ d

2
− d
p

)

z ‖(R−Rz)φz‖2Lp(ωz)
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Implementation Issues

• Data for Examples: d = 1,Ω = (−1, 1), s ≤ 3/4, p = 2.

• Graded mesh towards x = ±1: solution behaves as |x± 1|s so the grading
to restore optimal rate is |xj ± 1|s = (j/M)β with β > 4− 2s.

• Stiffness matrix:
I d = 1: Expressed analytically in terms of a fourth antiderivative of the kernel

function K(x) for d = 1. This circumvents quadrature.
I d > 1: Requires special quadrature (Sauter, Schwab, von Petersdorff).

• Residual: Singularities of R = f −AU at nodes xj are of the form
|x− xj |1−2s except for s = 1/2, in which case it is logarithm. We compute
L2-norms of R using special quadrature consisting of graded partitioning of
intervals and Gauss rules (Schwab, von Petersdorff).
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Experimental Order of Convergence for s = 1/2 and Smooth Solution

DOF ‖u− U‖Hs(Ω) E Effectivity

15 1.3021e-002 6.2052e-002 4.7655
31 4.4597e-003 2.2014e-002 4.9362
63 1.5618e-003 7.7849e-003 4.9846

127 5.5069e-004 2.7527e-003 4.9986
255 1.9455e-004 9.7327e-004 5.0027
EOC 1.501 1.500 –
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Extensions and Applications

• Eigenvalue problems (Borthagaray, Del Pezzo, and Mart́ınez (2016))

• Time-dependent problems (Acosta, Bersetche, and Borthagaray (2017))

• Non-homogeneous Dirichlet conditions (Acosta, Borthagaray, and Heuer
(2017)): mixed method and Lagrange multiplier (fractional flux).

• Non-local models for interface problems (Borthagaray and P. Ciarlet Jr.
(2017)).
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Open Problems

• Computations in 3d: implementation of fractional Laplacian; regularity and
numerical analysis are valid for d > 2.

• High-order methods: hp-FEM with suitable mesh refinement near boundary
might yield exponential convergence rates.

• Efficiency: Compression techniques and fast multilevel solvers (Ainsworth
and Glusa (2017)).

• Quadrature: Error analysis of effect of quadrature close to singularities of
kernel (Sauter and Schwab (2011)).

• A posteriori error analysis: implementation for d > 1 of residual-type
estimators; alternative approaches.

• Nonlinear problems: obstacle (elliptic and parabolic), fractional minimal
surfaces, fractional phase transitions, fractional fully-nonlinear problems.
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