NUMERICAL METHODS FOR FRACTIONAL DIFFUSION Lecture 2: Spectral Fractional Laplacian

Ricardo H. Nochetto

Department of Mathematics and Institute for Physical Science and Technology University of Maryland, USA

Nonlocal School on Fractional Equations, NSFE 2017 August 17-19, 2017

> Department of Mathematics Iowa State University

Outline			

The Spectral Fractional Laplacian

Regularity

A Priori Error Analysis

Tensor Product FEMs

A Posteriori Error Analysis

Conclusions and Open Problems

Spectral Laplacian			
Outline			

The Spectral Fractional Laplacian

Regularity

A Priori Error Analysis

Tensor Product FEMs

A Posteriori Error Analysis

Conclusions and Open Problems

- The Linear Elliptic Problem: Formulation
- **Domain:** Let Ω be a bounded domain with Lipschitz boundary $\partial \Omega$.
- Operator: Consider a second order, symmetric, elliptic differential operator:

$$\mathcal{L}u = -\operatorname{div} (a\nabla u) + cu$$

• **PDE:** Let $s \in (0,1)$. Given $f : \Omega \to \mathbb{R}$, find u such that

$$\mathcal{L}^s u = f \quad \text{in } \Omega$$

where \mathcal{L}^s denotes the fractional power of \mathcal{L} supplemented with Dirichlet boundary conditions (to be made precise).

- Spectral definition of nonlocal operator \mathcal{L}^s : Relation between spectral and integral definitions (Caffarelli and Stinga (2015)).
- Goal: design efficient PDE solution techniques for problems involving \mathcal{L}^s .
- Simplication: From now on $\mathcal{L} = -\Delta$. Our results hold for general operators!

Spectral Laplacian				
Basic Sp	ectral Theor	v		

- **Operator:** $-\Delta : H^2(\Omega) \cap H^1_0(\Omega) \subset L^2(\Omega) \to L^2(\Omega)$ is symmetric, closed and unbounded and its inverse is compact.
- Spectral decomposition: The eigenpairs $\{\lambda_k, \varphi_k\}_{k=1}^{\infty}$ satisfy $\lambda_k \ge \lambda_0 > 0$

$$-\Delta \varphi_k = \lambda_k \varphi_k, \qquad \varphi_k|_{\partial \Omega} = 0,$$

and $\{\varphi_k\}_{k=1}^{\infty}$ form an orthonormal basis of $L^2(\Omega)$ and orthogonal basis of $H_0^1(\Omega)$.

• Fractional Laplacian: For u sufficiently smooth and $0 < s \leq 1$

$$u = \sum_{k=1}^{\infty} u_k \varphi_k \quad \longmapsto \quad (-\Delta)^s u := \sum_{k=1}^{\infty} u_k \lambda_k^s \varphi_k$$

• Function spaces: $(-\Delta)^s : \mathbb{H}^s(\Omega) \to \mathbb{H}^{-s}(\Omega)$, where

$$\mathbb{H}^{s}(\Omega) = \left\{ w = \sum_{k=1}^{\infty} w_{k} \varphi_{k} : \sum_{k=1}^{\infty} \lambda_{k}^{s} w_{k}^{2} < \infty \right\} = \begin{cases} H^{s}(\Omega) & s \in (0, \frac{1}{2}) \\ H_{00}^{\frac{1}{2}}(\Omega) & s = \frac{1}{2} \\ H_{0}^{s}(\Omega) & s \in (\frac{1}{2}, 1). \end{cases}$$

The Dirichlet-to-Neumann Operator: $(-\Delta)^{1/2}$

• $DtN: u \mapsto -\partial_y \mathcal{U}(\cdot, 0)$ is such that

$$\operatorname{DtN}^{2} u = \partial_{y} \left(\partial_{y} \mathcal{U}(\cdot, 0) \right) = -\Delta_{x'} \mathcal{U}(\cdot, 0) = -\Delta_{x'} u.$$

• DtN is positive, then $DtN = (-\Delta_{x'})^{\frac{1}{2}}$ and $(-\Delta_{x'})^{\frac{1}{2}}u = \partial_{\nu}\mathcal{U}$.

- Parameters: $s \in (0, 1)$ and $\alpha = 1 2s \in (-1, 1)$.
- Neumann condition: $\partial_{\nu^{\alpha}} \mathcal{U} = -\lim_{y \downarrow 0} y^{\alpha} \partial_{y} \mathcal{U} = d_{s} f$ on $\Omega \times \{0\}$.
- Scaling constant: $d_s = 2^{\alpha} \Gamma(1-s) / \Gamma(s)$.
- Extension problem:
 - $\Omega = \mathbb{R}^d$: Caffarelli, Silvestre (2007);
 - $\Omega \subset \mathbb{R}^d$ bounded and $\mathcal{U} = 0$ on $\partial_L \mathcal{C}$: Stinga, Torrea (2010–2012), Cabré, Tan (2010); Capella et al. (2011).

The α -harmonic extension

• Fractional powers of $-\Delta$ can be realized as a DtN operator:

• Integral representation: (A. Bonito and J. Pasiack, 2014)

$$(-\Delta)^{-s} = \frac{\sin(\pi s)}{\pi} \int_0^\infty t^{-s} (tI - \Delta)^{-1} dt.$$

The α -harmonic extension

• Fractional powers of $-\Delta$ can be realized as a DtN operator:

• Integral representation: (A. Bonito and J. Pasiack, 2014)

$$(-\Delta)^{-s} = \frac{\sin(\pi s)}{\pi} \int_0^\infty t^{-s} (tI - \Delta)^{-1} dt.$$

• Space:

$$\mathring{H}^{1}_{L}(y^{\alpha},\mathcal{C}) = \left\{ w \in L^{2}(y^{\alpha},\mathcal{C}) : \nabla w \in L^{2}(y^{\alpha},\mathcal{C}), \ w|_{\partial_{L}\mathcal{C}} = 0 \right\}.$$

• Weight: y^{α} with $\alpha = 1 - 2s \in (-1, 1)$

The weight y^{α} is degenerate $(\alpha > 0)$ or singular $(\alpha < 0)!$

• Weak formulation: seek $\mathcal{U}\in \mathring{H}^1_L(y^\alpha,\mathcal{C})$ such that

$$\int_{\mathcal{C}} y^{\alpha} \nabla \mathcal{U} \cdot \nabla \phi = d_s \langle f, \operatorname{tr}_{\Omega} \phi \rangle_{\mathbb{H}^{-s}(\Omega), \mathbb{H}^s(\Omega)}, \qquad \forall \phi \in \mathring{H}^1_L(y^{\alpha}, \mathcal{C}).$$

Spectral Laplacian				
Muckenh	oupt Weight	ts		

• Key property: There is a constant C such that for every $a, b \in \mathbb{R}$, with a > b,

$$\frac{1}{b-a}\int_a^b |y|^\alpha \,\mathrm{d} y \cdot \frac{1}{b-a}\int_a^b |y|^{-\alpha} \,\mathrm{d} y \le C.$$

This means y^{α} belongs to the Muckenhoupt class A_2 .

- Important consequences:
 - The Hardy-Littlewood maximal operator is continuous on $L^2(y^{\alpha}, \mathcal{C})$.
 - Singular integral operators are continuous on $L^2(y^{\alpha}, \mathcal{C})$.
 - $\blacktriangleright \ L^2(y^{\alpha}, \mathcal{C}) \hookrightarrow L^1_{loc}(\mathcal{C}).$
 - $H^1(y^{\alpha}, \mathcal{C})$ is Hilbert and $\mathcal{C}^{\infty}_b(\mathcal{C})$ is dense.
 - Traces on $\partial_L C$ are well defined.

Spectral Laplacian				
Muckenh	oupt Weight	S		

• Key property: There is a constant C such that for every $a, b \in \mathbb{R}$, with a > b,

$$\frac{1}{b-a}\int_a^b |y|^\alpha \,\mathrm{d} y \cdot \frac{1}{b-a}\int_a^b |y|^{-\alpha} \,\mathrm{d} y \leq C.$$

This means y^{α} belongs to the Muckenhoupt class A_2 .

• Important consequences:

- The Hardy-Littlewood maximal operator is continuous on $L^2(y^{\alpha}, \mathcal{C})$.
- Singular integral operators are continuous on $L^2(y^{\alpha}, \mathcal{C})$.
- $\blacktriangleright \ L^2(y^{\alpha}, \mathcal{C}) \hookrightarrow L^1_{loc}(\mathcal{C}).$
- $H^1(y^{\alpha}, \mathcal{C})$ is Hilbert and $\mathcal{C}^{\infty}_b(\mathcal{C})$ is dense.
- Traces on $\partial_L C$ are well defined.

• Weighted Poincaré inequality: There is a constant C, s.t.

$$\int_{\mathcal{C}} y^{\alpha} |w|^2 \leq C \int_{\mathcal{C}} y^{\alpha} |\nabla w|^2 \quad \forall w \in \mathring{H}_L^1(y^{\alpha}, \mathcal{C}).$$

- Surjective trace operator: $\operatorname{tr}_{\Omega}: \overset{\circ}{H}^{1}_{L}(y^{\alpha}, \mathcal{C}) \to \mathbb{H}^{s}(\Omega).$
- Existence and uniqueness: Lax-Milgram applies for every $f \in \mathbb{H}^{-s}(\Omega)$. Also

$$\|\mathcal{U}\|_{H^1_L(y^{\alpha},\mathcal{C})}^{\circ} = \|u\|_{\mathbb{H}^s(\Omega)} = \sqrt{d_s} \|f\|_{\mathbb{H}^{-s}(\Omega)}.$$

- Regularity:
 - Anisotropic regularity
 - Singular behavior in extended variable y.

	Regularity		
Outline			

The Spectral Fractional Laplacian

Regularity

A Priori Error Analysis

Tensor Product FEMs

A Posteriori Error Analysis

Conclusions and Open Problems

Spectral Laplacian Regularity A Priori Analysis Tensor FEM A Posteriori Analysis Conclusions Spectral Representation of U (N, Otárola, Salgado (2015))

- Spectral representation: $\mathcal{U}(x,y) = \sum_{k=1}^{\infty} u_k \varphi_k(x) \psi_k(y)$ with $u_k = \lambda_k^{-s} f_k$.
- 2-point boundary value problem: the function ψ_k satisfies

$$\psi_k'' + \frac{\alpha}{y}\psi_k' = \lambda_k\psi_k, \quad \text{in } (0,\infty); \qquad \psi_k(0) = 1, \quad \lim_{y \to \infty} \psi_k(y) = 0,$$

whence for $s\neq \frac{1}{2}$ $\psi_k(y)=c_s(\sqrt{\lambda_k}y)^sK_s(\sqrt{\lambda_k}y),$

where $c_s = 2^{1-s}/\Gamma(s)$ and K_s denotes the modified Bessel function of the second kind. For $s = \frac{1}{2}$, we have $\psi_k(y) = \exp(-\sqrt{\lambda_k}y)$.

• Asymptotic behavior: function ψ_k satisfies as $y \to 0$

$$\psi'_k(y) \approx y^{-\alpha}, \qquad \psi''_k(y) \approx y^{-\alpha-1},$$

and $\psi_k(y) \approx \left(\sqrt{\lambda_k}y\right)^{s-\frac{1}{2}} e^{-\sqrt{\lambda_k}y}$ as $y \to \infty$.

- Global Sobolev Regularity (N, Otárola, Salgado (2015))
- Compatible data: Let $f \in \mathbb{H}^{1-s}(\Omega)$, which means that f has a vanishing trace for $s < \frac{1}{2}$.
- Space regularity:

$$\|\Delta_x \mathcal{U}\|_{L^2(y^\alpha, \mathcal{C})}^2 + \|\partial_y \nabla_x \mathcal{U}\|_{L^2(y^\alpha, \mathcal{C})}^2 = d_s \|f\|_{\mathbb{H}^{1-s}(\Omega)}^2$$

• Regularity in extended variable y: If $s \neq \frac{1}{2}$ and $\beta > 2\alpha + 1$ then

 $\|\partial_{yy}\mathcal{U}\|_{L^2(y^\beta,\mathcal{C})} \lesssim \|f\|_{L^2(\Omega)}.$

If $s = \frac{1}{2}$, then

$$\|\mathcal{U}\|_{H^2(\mathcal{C})} \lesssim \|f\|_{\mathbb{H}^{1/2}(\Omega)}.$$

Elliptic pick-up regularity: If Ω convex, then

 $\|w\|_{H^2(\Omega)} \lesssim \|\Delta_x w\|_{L^2(\Omega)} \quad \forall w \in H^2(\Omega) \cap H^1_0(\Omega).$

Under this assumption, we further have

$$\|D_x^2 \mathcal{U}\|_{L^2(y^{\alpha},\mathcal{C})} \lesssim \|f\|_{\mathbb{H}^{1-s}(\Omega)}.$$

Boundary Regularity (Caffarelli, Stinga (2016))

• Case $s \neq \frac{1}{2}$: If $dist(x, \partial \Omega)$ is the distance to $\partial \Omega$, then there exist functions v 'smooth' such that for all $x \in \Omega$

$$\begin{split} u(x) &\approx \operatorname{dist}(x, \partial \Omega)^{2s} + v(x) \qquad 0 < s < \frac{1}{2} \\ u(x) &\approx \operatorname{dist}(x, \partial \Omega) + v(x) \qquad \frac{1}{2} < s < 1. \end{split}$$

• Case $s = \frac{1}{2}$: This is an exceptional case (Costabel, Dauge (1993))

 $u(x) \approx \operatorname{dist}(x, \partial \Omega) |\log \operatorname{dist}(x, \partial \Omega)| + v(x)$

Analytic Regularity (Banjai, Melenk, N, Otárola, Salgado, Schwab (2017))

• Behavior of $\psi(z) = c_s z^s K_s(z)$ near z = 0:

$$\left| \frac{\mathrm{d}^{\ell}}{\mathrm{d}z^{\ell}} \psi(z) \right| \le C d_s \ell! z^{2s-\ell},$$

where $d_s = 2^{1-2s} \Gamma(1-s) / \Gamma(s)$.

• Behavior of $\psi(z)$ for z large:

$$\left|\frac{\mathrm{d}^{\ell}}{\mathrm{d}z^{\ell}}\psi(z)\right| \leq C_{\epsilon,s}\ell!\epsilon^{-\ell}z^{s-\ell-\frac{1}{2}}e^{-(1-\epsilon)z}$$

• Global regularity of U: If $0 \le \tilde{\nu} < s$ and $0 \le \nu < 1 + s$, then there exists $\kappa > 1$ such that

$$\begin{split} \|\partial_y^{\ell+1}\mathcal{U}\|_{L^2(\omega_{\alpha+2\ell-2\bar{\nu},\gamma},\mathcal{C})} &\lesssim \kappa^{\ell+1}(\ell+1)! \, \|f\|_{\mathbb{H}^{-s+\bar{\nu}}(\Omega)}, \\ \|\nabla_{x'}\partial_y^{\ell+1}\mathcal{U}\|_{L^2(\omega_{\alpha+2(\ell+1)-2\nu,\gamma},\mathcal{C})} &\lesssim \kappa^{\ell+1}(\ell+1)! \, \|f\|_{\mathbb{H}^{-s+\nu}(\Omega)}, \\ \|\mathcal{L}_{x'}\partial_y^{\ell+1}\mathcal{U}\|_{L^2(\omega_{\alpha+2(\ell+1)-2\nu,\gamma},\mathcal{C})} &\lesssim \kappa^{\ell+1}(\ell+1)! \, \|f\|_{\mathbb{H}^{1-s+\nu}(\Omega)}, \end{split}$$
weight $\omega_{\beta,\gamma}(y) = y^\beta e^{\gamma y}, 0 \leq \gamma < 2\sqrt{\lambda_1}. \end{split}$

with

	Regularity				
Domain 1	Fruncation:	$\mathcal{C} ightarrow \mathcal{C}_{\mathcal{Y}}$ (N	l, Otárola, Salg	ado (2015))	

- Unbounded domain: $C := \Omega \times (0, \infty)$
- Theorem (exponential decay). For every $\mathcal{Y} > 0$

$$\|\mathcal{U}\|_{H^1_L(y^\alpha,\Omega\times(\mathcal{Y},\infty))}^\circ\lesssim e^{-\sqrt{\lambda_1}\mathcal{Y}/2}\|f\|_{\mathbb{H}^{-s}(\Omega)}.$$

• Truncated domain: $C_{\gamma} := \Omega \times (0, \gamma)$. Let \mathcal{V} solve

$$\begin{cases} \operatorname{div} (y^{\alpha} \nabla \mathcal{V}) = 0 & \text{in } \mathcal{C}_{\mathcal{Y}} = \Omega \times (0, \mathcal{Y}), \\ \mathcal{V} = 0 & \text{on } \partial_L \mathcal{C}_{\mathcal{Y}} \cup \Omega \times \{\mathcal{Y}\}, \\ \partial_{\nu^{\alpha}} \mathcal{V} = d_s f & \text{on } \Omega \times \{0\}. \end{cases}$$

• Theorem (exponential convergence). For all $\mathcal{Y} > 0$,

$$\|\mathcal{U}-\mathcal{V}\|_{H^{-1}_L(y^{\alpha},\mathcal{C}_{\mathcal{Y}})} \lesssim e^{-\sqrt{\lambda_1}\mathcal{Y}/4} \|f\|_{\mathbb{H}^{-s}(\Omega)}.$$

	A Priori Analysis		
Outline			

The Spectral Fractional Laplacian

Regularity

A Priori Error Analysis

Tensor Product FEMs

A Posteriori Error Analysis

Conclusions and Open Problems

Finite Element Method: Anisotropic Mesh

- $\mathscr{T}_{\Omega} = \{K\}$: conforming and shape regular partition of Ω (simplices or cubes)
- $\mathscr{T}_{\mathscr{T}} = \{T\}$: partition of $\mathcal{C}_{\mathscr{T}}$ into cells of the form

 $T = K \times I, \quad K \in \mathscr{T}_{\Omega}, \quad I = (a, b).$

• Anisotropic meshes: $\mathcal{U}_{yy} \approx y^{-\alpha-1}$ as $y \downarrow 0 \Rightarrow$ anisotropic elements

• Geometric mesh condition: if $T = K \times I$ and $T' = K' \times I'$ are neighbors

The Finite E	Element Method				
• Discrete s	spaces: If $\Gamma_D = \partial$	$_L\mathcal{C}\cup\Omega imes\{\mathcal{Y}\}$ is the	1e Dirichlet boun	ıdary, then	

$$\mathbb{V}(\mathscr{T}_{\mathcal{Y}}) = \left\{ W \in \mathcal{C}^0(\overline{\mathcal{C}_{\mathcal{Y}}}) : W|_T \in \mathcal{P}_1(K) \otimes \mathbb{P}_1(I), W|_{\Gamma_D} = 0 \right\}$$

Here $\mathcal{P}_1 = \mathbb{P}_1$ if K is a simplex and $\mathcal{P}_1 = \mathbb{Q}_1$ if K is a "brick".

A Priori Analysis

• Galerkin method for the extension: Find $V \in \mathbb{V}(\mathscr{T}_{\mathcal{Y}})$ such that

$$\int_{\mathcal{C}_{\mathcal{Y}}} y^{\alpha} \nabla V \nabla W = d_s \langle f, \operatorname{tr}_{\Omega} W \rangle_{\mathbb{H}^{-s}(\Omega) \times \mathbb{H}^{s}(\Omega)}, \quad \forall W \in \mathbb{V}(\mathscr{T}_{\mathcal{Y}}).$$

Define the solution U as the trace of V:

 $U := \operatorname{tr}_{\Omega} V \in \mathbb{U}(\mathscr{T}_{\Omega}) = \operatorname{tr}_{\Omega} \mathbb{V}(\mathscr{T}_{\mathcal{Y}}).$

Quasi-best approximation: Projection Theorem implies

$$\|\mathcal{V} - V\|_{\dot{H}_{L}^{1}(y^{\alpha}, \mathcal{C}_{\mathcal{Y}})}^{\circ} = \inf_{W \in \mathbb{V}(\mathcal{T}_{\mathcal{Y}})} \|\mathcal{V} - W\|_{\dot{H}_{L}^{1}(y^{\alpha}, \mathcal{C}_{\mathcal{Y}})}^{\circ}$$

and reduces the a priori error analysis to a question of approximation theory in weighted spaces. Usually we set $W = \Pi v \in \mathbb{V}(\mathscr{T}_{\mathcal{Y}})$ where Π is a suitable interpolation operator.

		A Priori Analysis	A Posteriori Analysis	
The Finite	e Element l	Method		

• Discrete spaces: If $\Gamma_D = \partial_L C \cup \Omega \times \{\mathcal{Y}\}$ is the Dirichlet boundary, then

$$\mathbb{V}(\mathscr{T}_{\mathcal{T}}) = \left\{ W \in \mathcal{C}^0(\overline{\mathcal{C}_{\mathcal{T}}}) : W|_T \in \mathcal{P}_1(K) \otimes \mathbb{P}_1(I), W|_{\Gamma_D} = 0 \right\}$$

Here $\mathcal{P}_1 = \mathbb{P}_1$ if K is a simplex and $\mathcal{P}_1 = \mathbb{Q}_1$ if K is a "brick".

• Galerkin method for the extension: Find $V \in \mathbb{V}(\mathscr{T}_{\mathcal{Y}})$ such that

$$\int_{\mathcal{C}_{\mathcal{Y}}} y^{\alpha} \nabla V \nabla W = d_s \langle f, \operatorname{tr}_{\Omega} W \rangle_{\mathbb{H}^{-s}(\Omega) \times \mathbb{H}^s(\Omega)}, \quad \forall W \in \mathbb{V}(\mathscr{T}_{\mathcal{Y}}).$$

Define the solution U as the trace of V:

 $U := \operatorname{tr}_{\Omega} V \in \mathbb{U}(\mathscr{T}_{\Omega}) = \operatorname{tr}_{\Omega} \mathbb{V}(\mathscr{T}_{\mathscr{T}}).$

Quasi-best approximation: Projection Theorem implies

$$\|\mathcal{V} - V\|_{\dot{H}_{L}^{1}(y^{\alpha}, \mathcal{C}_{\mathcal{Y}})}^{\circ} = \inf_{W \in \mathbb{V}(\mathcal{T}_{\mathcal{Y}})} \|\mathcal{V} - W\|_{\dot{H}_{L}^{1}(y^{\alpha}, \mathcal{C}_{\mathcal{Y}})}^{\circ}$$

and reduces the a priori error analysis to a question of approximation theory in weighted spaces. Usually we set $W = \Pi v \in \mathbb{V}(\mathscr{T}_{\mathcal{Y}})$ where Π is a suitable interpolation operator.

		A Priori Analysis	A Posteriori Analysis	
The Finite	e Element l	Method		

• Discrete spaces: If $\Gamma_D = \partial_L C \cup \Omega \times \{\mathcal{Y}\}$ is the Dirichlet boundary, then

$$\mathbb{V}(\mathscr{T}_{\mathcal{T}}) = \left\{ W \in \mathcal{C}^0(\overline{\mathcal{C}_{\mathcal{T}}}) : W|_T \in \mathcal{P}_1(K) \otimes \mathbb{P}_1(I), W|_{\Gamma_D} = 0 \right\}$$

Here $\mathcal{P}_1 = \mathbb{P}_1$ if K is a simplex and $\mathcal{P}_1 = \mathbb{Q}_1$ if K is a "brick".

• Galerkin method for the extension: Find $V \in \mathbb{V}(\mathscr{T}_{\mathcal{Y}})$ such that

$$\int_{\mathcal{C}_{\mathcal{Y}}} y^{\alpha} \nabla V \nabla W = d_s \langle f, \operatorname{tr}_{\Omega} W \rangle_{\mathbb{H}^{-s}(\Omega) \times \mathbb{H}^{s}(\Omega)}, \quad \forall W \in \mathbb{V}(\mathscr{T}_{\mathcal{Y}}).$$

Define the solution U as the trace of V:

 $U := \operatorname{tr}_{\Omega} V \in \mathbb{U}(\mathscr{T}_{\Omega}) = \operatorname{tr}_{\Omega} \mathbb{V}(\mathscr{T}_{\mathscr{Y}}).$

Quasi-best approximation: Projection Theorem implies

$$\|\mathcal{V} - V\|_{\dot{H}_{L}^{1}(y^{\alpha}, \mathcal{C}_{\mathcal{Y}})}^{\circ} = \inf_{W \in \mathbb{V}(\mathscr{T}_{\mathcal{Y}})} \|\mathcal{V} - W\|_{\dot{H}_{L}^{1}(y^{\alpha}, \mathcal{C}_{\mathcal{Y}})}^{\circ}$$

and reduces the a priori error analysis to a question of approximation theory in weighted spaces. Usually we set $W = \Pi v \in \mathbb{V}(\mathscr{T}_{\mathcal{T}})$ where Π is a suitable interpolation operator.

Polynomial Approximation in Weighted Spaces

- Weight: Consider $\omega \in A_p(\mathbb{R}^N)$ and $\phi \in L^p(\omega, D)$, with $D \subset \mathbb{R}^N$.
- Stars and patches: Given a node z of the mesh, we define

• The averaged Taylor polynomial: Given $m \in \mathbb{N}$, we define

$$Q_z^m \phi(y) = \int \sum_{|\alpha| \le m} \frac{1}{\alpha!} D^{\alpha} \phi(x) (y - x)^{\alpha} \psi_z(x) \, \mathrm{d}x.$$

The Averaged Taylor Polynomial $Q^m_z\phi$

• **Definition:** Given $m \in \mathbb{N}$, we define

$$Q_z^m \phi(y) = \int \sum_{|\alpha| \le m} \frac{1}{\alpha!} D^{\alpha} \phi(x) (y-x)^{\alpha} \psi_z(x) \, \mathrm{d}x.$$

• Key property: We have

$$|v(x) - Q_z^m v(x)| \lesssim \int \frac{D^m v(y)}{|x - y|^{n - m}} \,\mathrm{d}y.$$

• Error analysis:

By Poincaré

$$\|v - Q_z^0 v\|_{L^p(\omega, S_z)} \le \operatorname{diam}(S_z) \|\nabla v\|_{L^p(\omega, S_z)}.$$

• Induction: apply Poincaré inductively on $0 \le k \le m$.

$$||v - Q_z^m v||_{W_p^k(\omega, S_z)} \le \operatorname{diam}(S_z)^{m-k} ||v||_{W_p^m(\omega, S_z)}.$$

• Averaged interpolation operator Π: *á la* Durán, Lombardi, 2005 (Sobolev 1950; Dupont, Scott 1980)

$$\Pi \phi(z) = Q_z^m \phi(z) \quad \text{for all nodes } z.$$

• Properties:

- This is defined for all polynomials of degree m and any element shape (simplices or rectangles).
- We do not go back to the reference element This is important for anisotropic estimates.
- Tensor product meshes $\mathscr{T}_{\mathscr{Y}}$: $T = K \times I \in \mathscr{T}_{\mathscr{Y}}$ where
 - $K \in \mathscr{T}_{\Omega}$ shape-regular and
 - I satisfies $|I|/|I'| \lesssim 1$ for all adjacent intervals I'.

	A Priori Analysis		

Error Estimates on Rectangles

• Theorem. If
$$\omega \in A_p(\mathbb{R}^N)$$
, and $\phi \in W_p^1(\omega, S_R)$

$$\|\phi - \Pi\phi\|_{L^p(\omega,R)} \lesssim \sum_{i=1}^N h_R^i \|\partial_i \phi\|_{L^p(\omega,S_R)}.$$

If $\phi \in W_p^2(\omega, S_R)$

$$\begin{aligned} \|\partial_j(\phi - \Pi\phi)\|_{L^p(\omega,R)} &\lesssim \sum_{i=1}^N h_R^i \|\partial_i \partial_j \phi\|_{L^p(\omega,S_R)}, \\ \|\phi - \Pi\phi\|_{L^p(\omega,R)} &\lesssim \sum_{i,j=1}^N h_R^i h_R^j \|\partial_i \partial_j \phi\|_{L^p(\omega,S_R)}. \end{aligned}$$

- Directional estimates: note products of the form $h_R^i h_R^j \|\partial_i \partial_j \phi\|_{L^p(\omega, S_R)}$.
- Extensions: simplicial elements, different metrics, and applications.

		A Priori Analysis				
Regularity of the Extension \mathcal{U}						

• **Regularity in** *y*: Uses separation of variables and properties of Bessel functions to obtain

 $\mathcal{U}_{yy} \approx y^{-\alpha - 1} \text{ as } y \downarrow 0 \implies \mathcal{U} \notin H^2(y^{\alpha}, \mathcal{C}).$

• Theorem (anisotropic regularity of the extension). If $f \in \mathbb{H}^{1-s}(\Omega)$ and Ω is $C^{1,1}$ or a convex polygon

$$\|\Delta_{x'}\mathcal{U}\|^2_{L^2(y^{\alpha},\mathcal{C})} + \|\partial_y \nabla_{x'}\mathcal{U}\|^2_{L^2(y^{\alpha},\mathcal{C})} = d_s \|f\|^2_{\mathbb{H}^{1-s}(\Omega)}.$$

If $\beta > 1 + 2\alpha$, then

 $\|\partial_{yy}\mathcal{U}\|_{L^2(y^\beta,\mathcal{C})} \lesssim \|f\|_{L^2(\Omega)}.$

- A Priori Error Estimates: Quasiuniform Meshes
- Quasiuniform meshes: $h \approx h_T \approx h_K \approx h_I$ for all $T = K \times I \in \mathscr{T}_{\mathcal{Y}}$.
- Theorem (a priori error estimates): The following estimate holds for all $\epsilon>0$

$$\begin{split} \|\nabla(\mathcal{V}-V)\|_{L^{2}(y^{\alpha},\mathcal{C}_{\mathcal{Y}})} &\lesssim h_{K} \|\partial_{y} \nabla_{x'} v\|_{L^{2}(y^{\alpha},\mathcal{C})} + h_{I}^{s-\epsilon} \|\partial_{yy} v\|_{L^{2}(y^{\beta},\mathcal{C})} \\ &\lesssim h^{s-\epsilon} \|f\|_{\mathbb{H}^{1-s}(\Omega)}. \end{split}$$

• A priori error estimates for trace:

$$||u - U||_{\mathbb{H}^{s}(\Omega)} \lesssim h^{s-\epsilon} ||f||_{\mathbb{H}^{1-s}(\Omega)}.$$

- Combine interpolation error estimate with truncation error estimate
- ▶ This is suboptimal in terms of order because $u \in \mathbb{H}^{1+s}(\Omega)$ (order $s \epsilon$ instead of 1ϵ)
- Is it sharp for quasi-uniform meshes?

Numerical Experiment: Quasiuniform Mesh

• Domain and exact solution: Let $\Omega = (0,1)$ and $f = \pi^{2s} \sin(\pi x)$, then

$$\mathcal{U} = \frac{2^{1-s}\pi^s}{\Gamma(s)}\sin(\pi x')y^s K_s(\pi y)$$

where K_s is a Bessel function of second kind.

• Experiment for s = 0.2: The energy error behaves like $\text{DOFs}^{-0.1} \approx h^{0.2}$, as predicted! Note that DOFs is measured in \mathbb{R}^2 .

• Theorem (a priori error estimates). If $f \in \mathbb{H}^{1-s}(\Omega)$ and $\mathcal{Y} \approx |\log N|$,

$$||u - U||_{\mathbb{H}^{s}(\Omega)} = ||\nabla(U - V)||_{L^{2}(y^{\alpha}, \mathcal{C})} \lesssim |\log N|^{s} N^{-\frac{1}{d+1}} ||f||_{\mathbb{H}^{1-s}(\Omega)},$$

or equivalently in terms of meshsize $h\approx N^{-1/(d+1)}$ in Ω

 $\|u - U\|_{\mathbb{H}^s(\Omega)} \lesssim h |\log h|^s \|u\|_{\mathbb{H}^{1+s}(\Omega)}.$

• Optimality:

- This is near optimal in terms of regularity $u \in \mathbb{H}^{1+s}(\Omega)$ and decay rate (almost linear in h);
- ► This is suboptimal in terms of total degrees of freedom (dofs) N which scales like $N \approx N_{\Omega}^{1+\frac{1}{d}} \gg N_{\Omega}$ w.r.t. dofs N_{Ω} in Ω .

• Domain and exact forcing: Set $\Omega = D(0,1) \subset \mathbb{R}^2$ and

$$f = j_{1,1}^{2s} J_1(j_{1,1}r) (A_{1,1}\cos(\theta) + B_{1,1}\sin(\theta)).$$

where J_1 is the 1-st Bessel function of the first kind.

• Experimental rates of convergence: With graded meshes we get

• Optimality: The experimental convergence rate -1/3 is optimal !

		Tensor FEM	
Outline			

The Spectral Fractional Laplacian

Regularity

A Priori Error Analysis

Tensor Product FEMs

A Posteriori Error Analysis

Conclusions and Open Problems

Spectral Laplacian Regularity A Priori Analysis Tensor FEM A Posteriori Analysis Conclusions

Diagonalization (w. Banjai, Melenk, Otárola, Salgado, and Schwab (2017))

- Discretization in y: Let \mathcal{G}^M be an arbitrary mesh in $(0, \mathcal{Y})$ with $M = \# \mathcal{G}^M$ and let $\mathbb{V}^r_M(\mathcal{C}_{\mathcal{Y}}) = H^1_0(\Omega) \otimes S^r(0, \mathcal{Y}; \mathcal{G}^M)$ be a space of polynomial degree r.
- Semidiscrete solution: $\mathcal{U}_M \in \mathbb{V}_M^{\boldsymbol{r}}(\mathcal{C}_{\mathcal{Y}})$ satisfies

$$\int_{\mathcal{C}_{\mathcal{Y}}} y^{\alpha} \nabla \mathcal{U}_M \nabla \phi = d_s \langle f, \mathrm{tr} \phi \rangle \quad \forall \phi \in \mathbb{V}_M^{\boldsymbol{r}}(\mathcal{C}_{\mathcal{Y}}).$$

• Eigenvalue problem: Let $\mathcal{M} = \dim S^r(0, \mathcal{Y}; \mathcal{G}^M)$ and $(\mu_i, v_i)_{i=1}^{\mathcal{M}}$ be (normalized) eigenpairs of

$$\mu \int_{y=0}^{\mathcal{Y}} y^{\alpha} v'(y) w'(y) \, dy = \int_{y=0}^{\mathcal{Y}} y^{\alpha} v(y) w(y) \, dy \qquad \forall w \in S^{\boldsymbol{r}}(0, \mathcal{Y}; \mathcal{G}^{M}).$$

• Representation: If $\mathcal{U}_M(x',y) = \sum_{j=1}^{\mathcal{M}} U_j(x')v_j(y)$ with $U_j \in H^1_0(\Omega)$, then

 $a_{\mu_i,\Omega}(U_i,V) = d_s v_i(0) \langle f,V \rangle \qquad \forall V \in H^1_0(\Omega),$

where $a_{\mu_i,\Omega}$ is the singularly perturbed bilinear form

$$a_{\mu_i,\Omega}(U,V) := \mu_i \int_{\Omega} \nabla U \nabla V \, \mathrm{d}x' + \int_{\Omega} U V \, \mathrm{d}x$$

Tensor Product Discretization

• Ritz projections: $\Pi_i u \in S_0^q(\mathscr{T}_\Omega)$ satisfies

$$a_{\mu_i,\Omega}(u - \Pi_i u, v) = 0 \quad \forall v \in S_0^q(\mathscr{T}_\Omega);$$

 $S_0^q(\mathscr{T}_\Omega) \subset H_0^1(\Omega)$ is the subspace of pw polynomials of degree $\leq q$ over \mathscr{T}_Ω .

• Discrete solution: Let $U_{h,M} \in S_0^q(\mathscr{T}_\Omega) \otimes S^r(0,\mathcal{Y};\mathcal{G}^M)$ satisfy

$$\int_{\mathcal{C}_{\mathcal{Y}}} y^{\alpha} \nabla U_{h,M} \nabla V = d_s \langle f, \operatorname{tr} V \rangle \quad \forall V \in S_0^q(\mathscr{T}_{\Omega}) \otimes S^r(0,\mathcal{Y};\mathcal{G}^M)$$

and note that it can be represented as follows

$$U_{h,M}(x',y) = \sum_{i=1}^{\mathcal{M}} \prod_{i} U_i(x') v_i(y).$$

- **Parallelization:** This corresponds to solving \mathcal{M} decoupled elliptic problems with the singularly perturbed bilinear form $a_{\mu_i,\Omega}$ for $1 \leq i \leq \mathcal{M}$.
- Exponential convergence: Let f ∈ H^{ν-s}(Ω) for 0 < ν < s. If 𝔅 ≈ 𝔄, the mesh 𝔅^𝔄 is geometric towards y = 0, and the polynomial degree r grows linearly from y = 0, then there exists b > 0 such that

$$\|\nabla(\mathcal{U}-\mathcal{U}_M)\|_{L^2(y^{\alpha},\mathcal{C})} \lesssim e^{-bM} \|f\|_{\mathbb{H}^{-s+\nu}(\Omega)}.$$

Spectral Laplacian Regularity A Priori Analysis Tensor FEM A Posteriori Analysis Conclusions
Tensor P1-FEM (w. Banjai, Melenk, Otárola, Salgado, Schwab (2017))

- Data regularity: $f \in L^2(\Omega)$ and $\Omega \subset \mathbb{R}^2$ polygonal with corners c.
- Solution regularity in weighted spaces: The solution to $-\Delta w = f$ in Ω and w = 0 on $\partial \Omega$ satisfies

$$\|w\|_{H^2_{\beta}(\Omega)} \lesssim \|f\|_{L^2(\Omega)}$$

with weight $\prod_{\mathbf{c}} |x - \mathbf{c}|^{2\beta}$.

- Graded mesh in Ω : Let \mathscr{T}_{Ω} be graded towards the reentrant corners so that, if $N = \#\mathscr{T}_{\Omega}$ and $h = N^{-1/2}$, for any $w \in S_0^1(\mathscr{T}_{\Omega})$ $N \| w - \Pi w \|_{L^2(\Omega)}^2 \lesssim \| w \|_{H^1(\Omega)}^2$, $N^2 \| w - \Pi w \|_{L^2(\Omega)}^2 \lesssim \| w \|_{H^2(\Omega)}^2$.
- Error estimates: If \mathcal{G}_{η}^{M} is a suitable graded radical mesh $\left\{y_{i} = \left(\frac{i}{M}\right)^{\eta}\mathcal{Y}\right\}_{i=0}^{M}$, with $\eta s > 1$ and $M \approx N^{\frac{1}{2}} = (\#\mathscr{T}_{\Omega})^{\frac{1}{2}}$, the discrete solution $U_{h,M}$ satisfies

$$\|u - \operatorname{tr} U_{h,M}\|_{\mathbb{H}^s(\Omega)} \le h \|f\|_{\mathbb{H}^{1-s}(\Omega)}$$

and

$$\dim \mathbb{V}_{h,M}^{1,1}(\mathscr{T}_{\Omega},\mathcal{G}^{M}) \approx h^{-3} \log |\log h| \approx N_{\Omega}^{1+\frac{1}{2}} \log \log N_{\Omega}.$$

Spectral Laplacian Regularity A Priori Analysis Tensor FEM A Posteriori Analysis Conclusions
Sparse Grid FEM (w. Banjai, Melenk, Otárola, Salgado, Schwab (2017))

- Complexity of tensor product: quantity $N_{\Omega}^{1+\frac{1}{2}}$ is suboptimal.
- Sparse grid space: Let

$$\mathbb{V}_{L}^{1,1}(\mathcal{C}_{\mathcal{Y}}) = \sum_{\ell,\ell' \ge 0, \, \ell + \ell' \le L} S_{0}^{1}(\mathscr{T}_{\Omega}^{\ell}) \otimes S^{1}(0,\mathcal{Y};\mathcal{G}_{\eta}^{2^{\ell'}}),$$

where $\mathscr{T}^{\ell}_{\Omega}$ and $\mathscr{G}^{2^{\ell'}}_{\eta}$ are nested meshes of levels ℓ and ℓ' graded towards corners \mathbf{c} of Ω and y = 0, respectively.

• Error estimate: Let $1 < \nu < 1 + s$, $\eta(\nu - 1) \ge 1$, and $\mathcal{Y} \approx |\log h_L|$. If $f \in \mathbb{H}^{\nu-s}(\Omega)$, then $\mathcal{U}_L \in \mathbb{V}_{L^1}^{1,1}(\mathcal{C}_{\mathcal{Y}})$ satisfies

 $\|\mathcal{U} - \mathcal{U}_L\|_{L^2(y^{\alpha}, \mathcal{C})} \lesssim h_L |\log h_L| \|f\|_{\mathbb{H}^{\nu-s}(\Omega)}$

 $\dim \mathbb{V}_L^{1,1}(\mathcal{C}_{\mathcal{Y}}) \lesssim N_{\Omega} \log \log N_{\Omega}.$

• Complexity of sparse grids: this is quasi-optimal in terms of N_{Ω} .

- hp-FEM in y and P_1 -FEM in Ω
- Graded geometric mesh: Let $\mathcal{G}_{\sigma}^{M} = \left\{\mathcal{Y}\sigma^{M-i}\right\}_{i=1}^{M}$ with $\sigma < 1$.
- Data regularity: $f \in \mathbb{H}^{1-s}(\Omega)$ and $\Omega \subset \mathbb{R}^2$ polygonal with corners c.
- **FE space:** $\mathbb{V}_{h,M}^{1,r}(\mathscr{T}_{\Omega}, \mathcal{G}_{\sigma}^{M})$ is the space of pw polynomials of degree 1 over \mathscr{T}_{Ω} and pw polynomials of degree r growing linearly from 0 over \mathcal{G}_{σ}^{M} .
- Error estimates: Let \mathscr{T}_{Ω} be a suitably graded mesh towards the reentrant corners c. If $\mathcal{Y} \approx |\log h|$ and $U_{h,M} \in \mathbb{V}_{h,M}^{1,r}(\mathscr{T}_{\Omega}, \mathcal{G}_{\sigma}^{M})$ is the Galerkin solution, then

 $\|\nabla (\mathcal{U} - U_{h,M})\|_{L^2(y^{\alpha},\mathcal{C})} \lesssim h \|f\|_{\mathbb{H}^{1-s}(\Omega)}$

$$\dim \mathbb{V}_{h,M}^{1,\boldsymbol{r}}(\mathscr{T}_{\Omega},\mathcal{G}_{\sigma}^{M}) \approx h^{-2} |\log h|^{2} \approx N_{\Omega} |\log N_{\Omega}|$$

• Complexity: This is quasi-optimal in terms of N_{Ω} . It extends Vexler et al (2017) to nonconvex domains.

			Tensor FEM				
<i>hp</i> -FEM in y and Ω : Exponential Rate of Convergence							

- Data regularity: The domain $\Omega \subset \mathbb{R}^2$ and f are analytic.
- Graded mesh in Ω : The mesh \mathscr{T}_{Ω} is inisotropic and graded towards $\partial\Omega$ so that it resolves the smallest scale $\mu_{\mathcal{M}}$ of the singularly perturbed problems originating from the diagonalization.
- Graded mesh in y: Let $\mathcal{G}_{\sigma}^{M} = \left\{\mathcal{Y}\sigma^{M-i}\right\}_{i=1}^{M}$ with $\sigma < 1$.
- Error estimate: If $\mathcal{Y} \approx M$, r grows linearly from y = 0, then the Galerkin solution $U_{h,M} \in S^q_0(\mathscr{T}_\Omega) \otimes S^r(\mathscr{G}^M_\sigma)$ and the total number $N_{\Omega,\mathcal{Y}}$ of degrees of freedom satisfy

$$\|\nabla (\mathcal{U} - U_{h,M})\|_{L^2(y^{\alpha},\mathcal{C})} \lesssim M^2 e^{-bq} + e^{-bM}$$
$$N_{\Omega,\mathcal{Y}} \approx q^2 M^3.$$

• Exponential rate of convergence: If $q \approx M$, then

$$\|\nabla(\mathcal{U}-U_{h,M})\|_{L^2(y^\alpha,\mathcal{C})} \lesssim e^{-b'N_{\Omega,\mathcal{Y}}^{1/5}}.$$

Complexity: Performance of Different FEMs

- Data: Ω L-shaped domain in \mathbb{R}^2 ; f = 1; s = 3/4.
- Error: It is always measured in the energy space $\mathbb{H}^{s}(\Omega)$.

• **Conclusions:** Both sparse grid FEM and *hp*-FEM reduced substantially the dofs relative to tensor FEM and deliver quasi-optimal complexity.

		A Posteriori Analysis	
Outline			

The Spectral Fractional Laplacian

Regularity

A Priori Error Analysis

Tensor Product FEMs

A Posteriori Error Analysis

Conclusions and Open Problems

Spectral Laplacian Regularity A Priori Analysis Tensor FEM **A Posteriori Analysis** Conclusions

Isotropic A Posteriori Error Indicators (w Chen, Otárola and Salgado (2015))

• Residual error indicator: If we were to integrate by parts the discrete problem over an element $T \in \mathscr{T}_{\mathcal{T}}$, we would get

$$\int_{T} y^{\alpha} \nabla V \nabla W = \int_{\partial T} y^{\alpha} W \nabla V \cdot \boldsymbol{\nu} - \int_{T} \operatorname{div} (y^{\alpha} \nabla V) W$$

Since $\alpha \in (-1, 1)$, the boundary integral is meaningless for y = 0.

- Alternative error indicators: Residual indicators are not the only possibility:
 - ► Local problems on stars: $\mathcal{E}_z^2 = \int_{S_z} y^{\alpha} |\nabla Z|^2$ (Z solution of a BVP in S_z).
 - Zienkiewicz-Zhu estimators
 - Hypercircle estimators
- Local problems on stars: We prove for all nodes $z \in \mathcal{N}$

$$\mathcal{E}_{z}^{2} \lesssim \left\|\nabla(v-V)\right\|_{L^{2}(y^{\alpha},S_{z})}^{2} \lesssim \mathcal{E}_{z}^{2} + \operatorname{osc}(y^{\alpha},V,f,S_{z})^{2}$$

- Domain and solution: Set $C_{\mathcal{Y}} = (0,1) \times (0,4)$ and $u = \sin(\pi x)$
- Experimental convergence rates:

- The error decays like $(\#\mathscr{T}_{\mathcal{T}})^{-(1-|\alpha|)/4}$ as in uniform/isotropic refinement!
- Adaptivity: does it help?

Anisotropic Error Estimation (w Chen, Otárola and Salgado (2015))

- Anisotropic a posteriori error estimator: we need to distinguish the behavior on the extended variable *y* from the rest.
- The theory of a posteriori error estimation (and adaptivity) on anisotropic discretizations is still in its infancy.
- Cylindrical stars: We propose an error estimator based on solving local problems on sets $C_{z'} = S_{z'} \times (0, \mathcal{Y})$ as depicted in red in the figure:

• Local space: For $z' \in \Omega$ a node, let $\mathcal{C}_{z'} = S_{z'} \times (0, \mathcal{Y})$ and define

$$\mathcal{W}(\mathcal{C}_{z'}) := \left\{ w \in H^1(y^{lpha}, \mathcal{C}_{z'}) : \quad w = 0 \text{ on } \partial \mathcal{C}_{z'} \setminus \Omega \times \{0\}
ight\}.$$

• Local star indicator: The error indicator $\eta_{z'} \in W(\mathcal{C}_{z'})$ is given by

$$\int_{\mathcal{C}_{z'}} y^{\alpha} \nabla \eta_{z'} \nabla w = d_s \langle f, tr_{\Omega} w \rangle_{\mathbb{H}^{-s}(\Omega) \times \mathbb{H}^{s}(\Omega)} - \int_{\mathcal{C}_{z'}} y^{\alpha} \nabla V \nabla w,$$

for all $w \in \mathcal{W}(\mathcal{C}_{z'})$.

• Global error estimator:

$$\mathcal{E}_{\mathscr{T}_{\Omega}} = \left(\sum_{z'} \mathcal{E}_{z'}^2\right)^{1/2}, \quad \mathcal{E}_{z'} = \|\nabla \eta_{z'}\|_{L^2(y^{\alpha}, \mathcal{C}_{z'})}$$

Spectral Laplacian Regularity A Priori Analysis Tensor FEM A Posteriori Analysis Conclusions

Anisotropic A Posteriori Error Analysis

• Theorem (oscillation free lower bound): For every node $z' \in \Omega$ we have

$$\mathcal{E}_{z'} \le \|\nabla e\|_{L^2(y^\alpha, \mathcal{C}_{z'})}.$$

• Data oscillation: If $f_{z'|K} = \frac{1}{|K|} \int_K f$ for every element $K \subset S_{z'}$, then

$$\operatorname{osc}_{\mathscr{T}_{\Omega}}(f)^{2} = \sum_{z'} \operatorname{osc}_{z'}(f)^{2}, \quad \operatorname{osc}_{z'}(f)^{2} = d_{s}h_{z'}^{2s} \|f - f_{z'}\|_{L^{2}(S_{z'})}^{2}$$

• Theorem (global upper bound):

$$\|\nabla e\|_{L^2(y^{\alpha},\mathcal{C}_{\mathcal{T}})}^2 \lesssim \mathcal{E}_{\mathscr{T}_{\Omega}}^2 + \operatorname{osc}_{\mathscr{T}_{\Omega}}(f)^2.$$

• **Computable estimator:** Restrict $\mathcal{W}(\mathcal{C}_{z'})$ to a discrete subspace

$$\left\{ W \in \mathcal{W}(\mathcal{C}_{z'}) : W|_T \in \mathcal{P}_2(K) \otimes \mathbb{P}_2(I), \forall T = K \times I \right\}$$

 $\mathcal{P}_2(K) = \mathbb{Q}_2(K)$ for rectangles, $\mathcal{P}_2(K) = \mathbb{P}_2(K) \oplus \mathbb{B}_3(K)$ for simplices.

• Open: Rigorous upper and lower bounds for computable estimator.

Spectral Laplacian Regularity A Priori Analysis Tensor FEM A Posteriori Analysis Conclusions

Anisotropic A Posteriori Error Analysis

• Theorem (oscillation free lower bound): For every node $z' \in \Omega$ we have

$$\mathcal{E}_{z'} \le \|\nabla e\|_{L^2(y^\alpha, \mathcal{C}_{z'})}.$$

• Data oscillation: If $f_{z'|K} = \frac{1}{|K|} \int_K f$ for every element $K \subset S_{z'}$, then

$$\operatorname{osc}_{\mathscr{T}_{\Omega}}(f)^{2} = \sum_{z'} \operatorname{osc}_{z'}(f)^{2}, \quad \operatorname{osc}_{z'}(f)^{2} = d_{s}h_{z'}^{2s} \|f - f_{z'}\|_{L^{2}(S_{z'})}^{2}$$

• Theorem (global upper bound):

$$\|\nabla e\|_{L^2(y^{\alpha},\mathcal{C}_{\mathcal{Y}})}^2 \lesssim \mathcal{E}_{\mathscr{T}_{\Omega}}^2 + \operatorname{osc}_{\mathscr{T}_{\Omega}}(f)^2.$$

• Computable estimator: Restrict $\mathcal{W}(\mathcal{C}_{z'})$ to a discrete subspace

$$\left\{ W \in \mathcal{W}(\mathcal{C}_{z'}) : W|_T \in \mathcal{P}_2(K) \otimes \mathbb{P}_2(I), \forall T = K \times I \right\}$$

 $\mathcal{P}_2(K) = \mathbb{Q}_2(K)$ for rectangles, $\mathcal{P}_2(K) = \mathbb{P}_2(K) \oplus \mathbb{B}_3(K)$ for simplices.

• Open: Rigorous upper and lower bounds for computable estimator.

- **Domain:** Ω is the standard L-shaped domain in 2d.
- Forcing: f = 1. For $s < \frac{1}{2}$ the data is incompatible with the problem and creates a boundary layer.
- **Regularity:** The nature of the singularity of the solution is not known.
- Experimental error and estimator: error computed against a very fine discrete solution.

• Optimal decay rate: We get $DOF^{-1/3}$ for all s.

L-Shaped Domain with Incompatible Data: Meshes

• Meshes: For s < 1/2 the solution exhibits a boundary layer.

$$s = 0.2$$
 $s = 0.8$

• **Question**: Is there any theory on anisotropic adaptive approximation? (Cohen Mirebeau 2010-2012) (Petrushev 2007-2009)?

			Conclusions
Outline			

The Spectral Fractional Laplacian

Regularity

A Priori Error Analysis

Tensor Product FEMs

A Posteriori Error Analysis

Conclusions and Open Problems

Conclusions and Open Problems

- **PDE approach:** Exploits the extension and converts the nonlocal problem into a local PDE problem in one higher dimension, which is rather flexible and applicable.
- A priori error analysis: Complete and quasi-optimal analysis for anisotropic meshes. Measuring complexity in terms of total degrees of freedom:
 - $P_1 P_1$ -elements: yields suboptimal complexity and linear rate for Ω convex and compatible data. Extension to non-convex domains.
 - Sparse tensor P₁ P₁-elements: yields quasi-optimal complexity and linear rate for Ω polygonal with compatible data.
 - hp-elements: yields quasi-optimal complexity and exponential rate for analytic but incompatible data.
- A posteriori error analysis: Ideal estimator based cylindrical stars.
 - Computable estimator: Rigorous upper and lower bounds missing.
 - Adaptivity: Convergence and optimality is still open (issue is anisotropic meshes and lack of shape regularity).

• 3*d*-computations:

- **Extended variable:** virtual implementation of extended variable is open.
- ▶ 3*d hp*-**FEM**: theory and implementation are open.