NUMERICAL METHODS FOR FRACTIONAL DIFFUSION Lecture 3: Spectral Laplacian and Dunford-Taylor Approach

Ricardo H. Nochetto

Department of Mathematics and Institute for Physical Science and Technology University of Maryland, USA

Nonlocal School on Fractional Equations, NSFE 2017 August 17-19, 2017

> Department of Mathematics Iowa State University

Outline			

Space-Time Fractional PDEs

Multilevel Methods

Fractional Obstacle Problems

Spectral Fractional Laplacian: Balakrihsnan Formula

Integral Laplacian: Dunford-Taylor Formula

Conclusions

Fractional Time			
Outline			

Space-Time Fractional PDEs

Multilevel Methods

Fractional Obstacle Problems

Spectral Fractional Laplacian: Balakrihsnan Formula

Integral Laplacian: Dunford-Taylor Formula

Conclusions

Space-Time Fractional Parabolic Problem (w. E. Otárola and A. Salgado)

• Fractional derivatives: Powerful tools to describe memory properties of materials (R. Gorenflo, 2002)

R. Gorenflo and F. Mainardi, *Fractional Calculus*, Springer (1997). (1467 google scholar citations).

- Riemann-Liouville fractional derivative: W. McLean, V. Thomee (2013); M. Zayernouri, G. Karniadakis (2014); J.S. Hesthaven.
- Caputo fractional derivative: B. Jin, R. Lazarov, and Z. Zhou (2013).

- Data: T > 0 total time, $f : \Omega \times (0, T) \to \mathbb{R}$ forcing, and $u_0 : \Omega \to \mathbb{R}$ initial condition.
- **PDE:** Given $\gamma \in (0, 1]$ find u such that

$$\partial_t^{\gamma} u + (-\Delta)^s u = f \text{ in } \Omega \times (0,T] \quad u|_{t=0} = u_0 \text{ in } \Omega.$$

• Caputo derivative: For $\gamma < 1$, we consider the Caputo derivative

$$\partial_t^{\gamma} u(x,t) = \frac{1}{\Gamma(1-\gamma)} \int_0^t \frac{\partial_r u(x,r)}{(t-r)^{\gamma}} \, \mathrm{d}r = \left[I^{1-\gamma} \partial_r u(x,\cdot) \right](t).$$

For $\gamma=1\text{, }\partial_t^\gamma$ is the usual time derivative.

 Nonlocality: both in space and time! We will overcome the nonlocality in space using the Caffarelli-Silvestre extension to the cylinder C = Ω × (0, ∞). Obstacle

Extended Evolution Problem

• Dynamic boundary condition: The Caffarelli-Silvestre extension turns our problem into a quasistationary elliptic problem with dynamic boundary condition (recall *d_s* is a constant depending on *s*)

$$\begin{cases} -\operatorname{div} \ (y^{\alpha}\nabla\mathcal{U}) = 0, & \text{ in } \mathcal{C}, \ t \in (0,T), \\ \mathcal{U} = 0, & \text{ on } \partial_L \mathcal{C}, \ t \in (0,T), \\ d_s \partial_t^{\gamma} \mathcal{U} + \frac{\partial \mathcal{U}}{\partial \nu^{\alpha}} = d_s f, & \text{ on } \Omega \times \{0\}, \ t \in (0,T), \\ \mathcal{U} = \mathbf{u}_0, & \text{ on } \Omega \times \{0\}, \ t = 0. \end{cases}$$

- Role of extension: $u = tr_{\Omega} \mathcal{U}$, $\alpha = 1 2s$. Nonlocality just in time!
- Weak formulation: seek $\mathcal{U} \in \mathbb{V}$ such that for a.e. $t \in (0,T)$,

 $\langle \operatorname{tr}_{\Omega} \partial_t^{\gamma} \mathcal{U}, \operatorname{tr}_{\Omega} \phi \rangle_{\mathbb{H}^{-s}(\Omega) \times \mathbb{H}^{s}(\Omega)} + a(w, \phi) = \langle f, \operatorname{tr}_{\Omega} \phi \rangle_{\mathbb{H}^{-s}(\Omega) \times \mathbb{H}^{s}(\Omega)},$ $\operatorname{tr}_{\Omega} \mathcal{U}(0) = \mathsf{u}_0$

for all $\phi\in \mathring{H}^1_L(\mathcal{C},y^lpha)$, where

$$a(w,\phi) = \frac{1}{d_s} \int_{\mathcal{C}} y^{\alpha} \nabla w \cdot \nabla \phi.$$

• Truncation $\mathcal{C} \to \mathcal{C}_{\mathcal{Y}}$: Exponential decay as in the elliptic case.

Extended Evolution Problem

• Dynamic boundary condition: The Caffarelli-Silvestre extension turns our problem into a quasistationary elliptic problem with dynamic boundary condition (recall *d_s* is a constant depending on *s*)

$$\begin{cases} -\operatorname{div} \ (y^{\alpha}\nabla\mathcal{U}) = 0, & \text{ in } \mathcal{C}, \ t \in (0,T), \\ \mathcal{U} = 0, & \text{ on } \partial_L \mathcal{C}, \ t \in (0,T), \\ d_s \partial_t^{\gamma} \mathcal{U} + \frac{\partial \mathcal{U}}{\partial \nu^{\alpha}} = d_s f, & \text{ on } \Omega \times \{0\}, \ t \in (0,T), \\ \mathcal{U} = \mathbf{u}_0, & \text{ on } \Omega \times \{0\}, \ t = 0. \end{cases}$$

- Role of extension: $u = tr_{\Omega} \mathcal{U}$, $\alpha = 1 2s$. Nonlocality just in time!
- Weak formulation: seek $\mathcal{U} \in \mathbb{V}$ such that for a.e. $t \in (0,T)$,

 $\begin{cases} \langle \operatorname{tr}_{\Omega} \partial_t^{\gamma} \mathcal{U}, \operatorname{tr}_{\Omega} \phi \rangle_{\mathbb{H}^{-s}(\Omega) \times \mathbb{H}^{s}(\Omega)} + a(w, \phi) = \langle f, \operatorname{tr}_{\Omega} \phi \rangle_{\mathbb{H}^{-s}(\Omega) \times \mathbb{H}^{s}(\Omega)}, \\ \operatorname{tr}_{\Omega} \mathcal{U}(0) = \mathsf{u}_{0} \end{cases}$

for all $\phi \in \overset{\circ}{H}{}^{1}_{L}(\mathcal{C},y^{lpha})$, where

$$a(w,\phi) = \frac{1}{d_s} \int_{\mathcal{C}} y^{\alpha} \nabla w \cdot \nabla \phi.$$

• Truncation $\mathcal{C} \to \mathcal{C}_{\mathcal{Y}}$: Exponential decay as in the elliptic case.

- Uniform time step: $\tau = T/\mathcal{K}$.
- Backward differences: $\partial V^{k+1} = \frac{1}{\tau} (V^{k+1} V^k).$
- Backward Euler method: Compute V^τ = {V^k}^K_{k=0} ⊂ H¹_L(y^α, C), where V^k denotes an approximation at each time step.
 - Initialization: Set $\operatorname{tr}_{\Omega} V^0 = \mathsf{u}_0$.
 - ▶ Scheme: For $k = 0, ..., \mathcal{K} 1$, we find $V^{k+1} \in \overset{\circ}{H}{}^{1}_{L}(y^{\alpha}, \mathcal{C})$ solution of $(\operatorname{tr}_{\Omega} \partial V^{k+1}, \operatorname{tr}_{\Omega} W)_{L^{2}(\Omega)} + a(V^{k+1}, W) = \langle f^{k+1}, \operatorname{tr}_{\Omega} W \rangle_{\mathbb{H}^{-s}(\Omega) \times \mathbb{H}^{s}(\Omega)},$ for all $W \in \overset{\circ}{H}{}^{1}_{L}(\mathcal{C}, y^{\alpha})$, where $f^{k+1} = f(t^{k+1})$.
 - Unconditional stability:

$$\|\mathrm{tr}_{\Omega}V^{\tau}\|_{\ell^{\infty}(L^{2}(\Omega))}^{2}+\|V^{\tau}\|_{\ell^{2}(\overset{\circ}{H_{L}^{1}}(y^{\alpha},\mathcal{C}))}^{2}\lesssim\|\mathsf{u}_{0}\|_{L^{2}(\Omega)}^{2}+\|f^{\tau}\|_{\ell^{2}(\mathbb{H}^{-s}(\Omega))}^{2}.$$

Fractional Time xMultilevel Methods Obstacle Balakrihsnan Formula Dunford-Taylor Formula Conclusions

Time discretization for $\gamma \in (0, 1)$: Backward Differences

• Approximate Caputo derivative: Replace $\partial_r u(x,r)$ by backward differences

$$\partial_t^{\gamma} u(x, t_{k+1}) = \frac{1}{\Gamma(1-\gamma)} \int_0^{t_{k+1}} \frac{\partial_r u(x, r)}{(t_{k+1}-r)^{\gamma}} dr$$
$$\approx \frac{1}{\Gamma(2-\gamma)} \sum_{j=0}^k a_j \frac{u(x, t_{k+1-j}) - u(x, t_{k-j})}{\tau^{\gamma}} =: D^{\gamma} u(x)^{k+1}$$

where $a_j = (j+1)^{1-\gamma} - j^{1-\gamma}$.

- Backward differences:
 - Initialization: Set $tr_{\Omega}V^0 = u_0$.
 - ▶ Scheme: For $k = 0, ..., \mathcal{K} 1$, we find $V^{k+1} \in H^1_L(y^{\alpha}, \mathcal{C})$ solution of $(\operatorname{tr}_{\Omega} D^{\gamma} V^{k+1}, \operatorname{tr}_{\Omega} W)_{L^2(\Omega)} + a(V^{k+1}, W) = \langle f^{k+1}, \operatorname{tr}_{\Omega} W \rangle_{\mathbb{H}^{-s}(\Omega) \times \mathbb{H}^s(\Omega)}$
 - ▶ Unconditional stability: If $\mathcal{H} := L^2(\Omega)$ and $\mathcal{V} := \overset{r}{H^1_L}(y^{\alpha}, \mathcal{C})$, then we have $I^{1-\gamma} \| V^{\tau} \|^2_{\mathcal{H}}(T) + \| V^{\tau} \|^2_{\ell^2(\mathcal{V})} \leq I^{1-\gamma} \| v^0 \|^2_{\mathcal{H}}(T) + \| f^{\tau} \|_{\ell^2(\mathcal{V}')}$

Fractional Time xMultilevel Methods Obstacle Balakrihsnan Formula Dunford-Taylor Formula Conclusions

Time discretization for $\gamma \in (0, 1)$: Backward Differences

• Approximate Caputo derivative: Replace $\partial_r u(x, r)$ by backward differences

$$\partial_t^{\gamma} u(x, t_{k+1}) = \frac{1}{\Gamma(1-\gamma)} \int_0^{t_{k+1}} \frac{\partial_r u(x, r)}{(t_{k+1}-r)^{\gamma}} dr$$
$$\approx \frac{1}{\Gamma(2-\gamma)} \sum_{j=0}^k a_j \frac{u(x, t_{k+1-j}) - u(x, t_{k-j})}{\tau^{\gamma}} =: D^{\gamma} u(x)^{k+1}$$

where $a_j = (j+1)^{1-\gamma} - j^{1-\gamma}$.

- Backward differences:
 - Initialization: Set $tr_{\Omega}V^0 = u_0$.
 - ► Scheme: For $k = 0, ..., \mathcal{K} 1$, we find $V^{k+1} \in \overset{\circ}{H}{}^{1}_{L}(y^{\alpha}, \mathcal{C})$ solution of $(\operatorname{tr}_{\Omega} D^{\gamma} V^{k+1}, \operatorname{tr}_{\Omega} W)_{L^{2}(\Omega)} + a(V^{k+1}, W) = \langle f^{k+1}, \operatorname{tr}_{\Omega} W \rangle_{\mathbb{H}^{-s}(\Omega) \times \mathbb{H}^{s}(\Omega)}.$
 - ► Unconditional stability: If $\mathcal{H} := L^2(\Omega)$ and $\mathcal{V} := \overset{\circ}{H^1_L}(y^{\alpha}, \mathcal{C})$, then we have $I^{1-\gamma} \| V^{\tau} \|_{\mathcal{H}}^2(T) + \| V^{\tau} \|_{\ell^2(\mathcal{V})}^2 \leq I^{1-\gamma} \| v^0 \|_{\mathcal{H}}^2(T) + \| f^{\tau} \|_{\ell^2(\mathcal{V}')}$

Time Discretization for $\gamma \in (0,1)$: Regularity and Consistency

• Usual regularity: Typical smoothness assumption of the solution is

 $u_{tt} \in L^2([0,T], \mathbb{H}^{-s}(\Omega)).$

- Validity: For general data this assumption is not valid!
- New regularity: We show that

 $\partial_t u \in L \log L(0, T; \mathbb{H}^{-s}(\Omega))$

and

$$\partial_{tt} u \in L^2(t^{\sigma}, (0, T); \mathbb{H}^{-s}(\Omega)),$$

for $\sigma > 3 - 2\gamma$.

- Validity: These are valid under realistic assumptions on f and u_0 .
- Consistency: The remainder $r_{\gamma}^{\tau} = \partial_t^{\gamma} u(x, t_{k+1}) D^{\gamma} u(x)^{k+1}$ satisfies

$$\|\mathbf{r}_{\gamma}^{\tau}\|_{L^{2}(0,T;\mathbb{H}^{-s}(\Omega)} \lesssim \tau^{\theta} \left(\|\mathbf{u}_{0}\|_{\mathbb{H}^{2s}(\Omega)} + \|f\|_{H^{2}(0,T;\mathbb{H}^{-s}(\Omega))}\right) \quad \forall \theta < \frac{1}{2}$$

Time Discretization for $\gamma \in (0,1)$: Regularity and Consistency

• Usual regularity: Typical smoothness assumption of the solution is

 $u_{tt} \in L^2([0,T], \mathbb{H}^{-s}(\Omega)).$

- Validity: For general data this assumption is not valid!
- New regularity: We show that

$$\partial_t u \in L \log L(0,T; \mathbb{H}^{-s}(\Omega))$$

and

$$\partial_{tt} u \in L^2(t^{\sigma}, (0, T); \mathbb{H}^{-s}(\Omega)),$$

for $\sigma > 3 - 2\gamma$.

- Validity: These are valid under realistic assumptions on f and u_0 .
- Consistency: The remainder $r_{\gamma}^{\tau} = \partial_t^{\gamma} u(x, t_{k+1}) D^{\gamma} u(x)^{k+1}$ satisfies

$$\|\mathbf{r}_{\gamma}^{\tau}\|_{L^{2}(0,T;\mathbb{H}^{-s}(\Omega)} \lesssim \tau^{\theta} \left(\|\mathbf{u}_{0}\|_{\mathbb{H}^{2s}(\Omega)} + \|f\|_{H^{2}(0,T;\mathbb{H}^{-s}(\Omega))}\right) \quad \forall \theta < \frac{1}{2}$$

Time Discretization for $\gamma \in (0,1)$: Regularity and Consistency

• Usual regularity: Typical smoothness assumption of the solution is

 $u_{tt} \in L^2([0,T], \mathbb{H}^{-s}(\Omega)).$

- Validity: For general data this assumption is not valid!
- New regularity: We show that

$$\partial_t u \in L \log L(0,T; \mathbb{H}^{-s}(\Omega))$$

and

$$\partial_{tt} u \in L^2(t^{\sigma}, (0, T); \mathbb{H}^{-s}(\Omega)),$$

for $\sigma > 3 - 2\gamma$.

- Validity: These are valid under realistic assumptions on f and u_0 .
- Consistency: The remainder $r_{\gamma}^{\tau} = \partial_t^{\gamma} u(x, t_{k+1}) D^{\gamma} u(x)^{k+1}$ satisfies

$$\|\mathbf{r}_{\gamma}^{\tau}\|_{L^{2}(0,T;\mathbb{H}^{-s}(\Omega)} \lesssim \tau^{\theta} \left(\|\mathbf{u}_{0}\|_{\mathbb{H}^{2s}(\Omega)} + \|f\|_{H^{2}(0,T;\mathbb{H}^{-s}(\Omega))}\right) \quad \forall \theta < \frac{1}{2}.$$

Fractional Time xMultilevel Methods Obstacle Balakrihsnan Formula Dunford-Taylor Formula Conclusions

Error Estimates for Fully Discrete Schemes: $0<\gamma<1$

- Lax's Theorem: Stability plus consistency yields convergence.
- Error estimates for $\mathcal{U}: \mathcal{C} \times (0,T) \to \mathbb{R}$: If $s \in (0,1)$ and $\gamma \in (0,1)$, then

$$\begin{split} [I^{1-\gamma} \| \operatorname{tr}_{\Omega} (\mathcal{U}^{\tau} - V_{\mathscr{T}_{\mathcal{T}}}^{\tau}) \|_{L^{2}(\Omega)}^{2}(T)]^{\frac{1}{2}} &\lesssim \tau^{\theta} + |\log N|^{2s} N^{\frac{-(1+s)}{n+1}} \\ \| \mathcal{U}^{\tau} - V_{\mathscr{T}_{\mathcal{T}}}^{\tau} \|_{\ell^{2}(\overset{0}{H}^{1}_{L}(\mathcal{C}_{\mathcal{T}}, y^{\alpha}))} &\lesssim \tau^{\theta} + |\log N|^{s} N^{\frac{-1}{n+1}}, \end{split}$$

for any $\theta < \frac{1}{2}$.

• Error estimates for $u:\Omega\times(0,T)\to\mathbb{R}\text{:}$ If $s\in(0,1)$ and $\gamma\in(0,1),$ then

$$\begin{split} \left[I^{1-\gamma} \| u^{\tau} - U^{\tau} \|_{L^{2}(\Omega)}^{2}(T)\right]^{\frac{1}{2}} &\lesssim \tau^{\theta} + |\log N|^{2s} N^{\frac{-(1+s)}{n+1}} \\ \| u^{\tau} - U^{\tau} \|_{\ell^{2}(\mathbb{H}^{s}(\Omega))} &\lesssim \tau^{\theta} + |\log N|^{s} N^{\frac{-1}{n+1}}, \end{split}$$

for any $\theta < \frac{1}{2}$.

	×Multilevel Methods		
Outline			

Space-Time Fractional PDEs

Multilevel Methods

Fractional Obstacle Problems

Spectral Fractional Laplacian: Balakrihsnan Formula

Integral Laplacian: Dunford-Taylor Formula

Conclusions

ime xMultilevel Methods Obstacle

Multilevel Methods (w. L. Chen, E. Otárola and A. Salgado)

- **Optimal methods:** Multilevel methods have linear complexity for uniformly elliptic PDE. How do they perform for non-uniformly elliptic PDE?
- Space decompositions: Consider the space macro and micro decompositions

$$\mathbb{V} = \sum_{k=0}^{J} \mathbb{V}_k = \sum_{k=0}^{J} \sum_{j=1}^{\mathcal{M}_k} \mathbb{V}_{k,j}.$$

- Smoothers: We use line smoothers in the extended y direction.
- Convergence of multigrid: The contraction rate δ of the symmetric V-cycle multigrid algorithm with line smoothers is

$$\delta \le 1 - \frac{1}{1 + CJ},$$

where the constant C is independent of the mesh size, and it depends on y^{α} only through the Muckenhoupt $C_{2,y^{\alpha}}$, and J is the number of levels.

• Iteration count: Start from 0 and stop when ℓ^2 relative residual is $< 10^{-7}$.

$h_{\mathscr{T}_{\Omega}}$	DOFs	s = 0.3	s = 0.6	s = 0.8
$\frac{1}{16}$	4,913	7	6	5
$\frac{1}{32}$	35,937	8	6	6
$\frac{1}{64}$	274,625	9	6	6
$\frac{1}{128}$	2,146,689	9	6	6

Table: Number of iterations for a multigrid method for the two dimensional fractional Laplacian using a line smoother in the extended direction. The mesh in Ω is uniform of size $h_{\mathcal{T}\Omega}$. The mesh in the extended direction is geometrically graded.

• **Robustness:** Experiments show robustness with respect to 0 < s < 1 and mesh anisotropy.

	Obstacle		
Outline			

Space-Time Fractional PDEs

Multilevel Methods

Fractional Obstacle Problems

Spectral Fractional Laplacian: Balakrihsnan Formula

Integral Laplacian: Dunford-Taylor Formula

Conclusions

- Data: $f \in \mathbb{H}^{-s}(\Omega)$ and an obstacle $\psi \in \mathbb{H}^{s}(\Omega) \cap C(\overline{\Omega})$ with $\psi \leq 0$ on $\partial \Omega$.
- Variational inequality: Find $u \in \mathcal{K}$ such that

$$\langle (-\Delta)^s u, u - w \rangle \leq \langle f, u - w \rangle \quad \forall w \in \mathcal{K}$$

where ${\cal K}$ is the convex set

$$\mathcal{K} := \{ w \in \mathbb{H}^s(\Omega) : w \ge \psi \text{ a.e. in } \Omega \}.$$

• Complementarity condition: It reads for $s \in (0, 1)$

$$u \ge \psi, \qquad (-\Delta)^s u \ge 0, \qquad (-\Delta)^s u = 0 \text{ if } u > \psi,$$

- Structure: nonlinear and nonlocal problem, because of $(-\Delta)^s$!
- PDE approach: Use the Caffarelli-Silvestre extension, which in turn gives optimal regularity (L. Caffarelli, S. Salsa, and L. Silvestre).

Fractional Time xMultilevel Methods **Obstacle** Balakrihsnan Formula Dunford-Taylor Formula Conclusions

Reformulation: Thin Obstacle Problem

• We convert the fractional obstacle problem into a thin obstacle problem over the extended domain (cylinder) $C = \Omega \times (0, \infty)$.

• The restriction $\mathcal{U} \ge \psi$ only applies when y = 0 (thin obstacle).

• Error estimate: If ${\mathcal U}$ is the exact solution and $V_{{\mathscr T}_{\mathcal Y}}$ the discrete solution, then

 $\|\mathcal{U} - V_{\mathscr{T}_{\mathcal{Y}}}\|_{H^{1}_{L}(y^{\alpha},\mathcal{C})}^{\circ} \lesssim |\log(\#\mathscr{T}_{\mathcal{Y}})|^{s} (\#\mathscr{T}_{\mathcal{Y}})^{-1/(n+1)},$

where C depends on the Hölder moduli of smoothness of ${\cal U}$ and ${\cal V},$ and sobolev regularity of f and $\psi.$

- Ingredients:
 - Optimal regularity in Ω : $u \in C^{1,s}$ by Caffarelli, Salsa and Silvestre (2008).
 - This implies that $\partial_{\nu}^{\alpha} \mathcal{U}(\cdot, 0) \in C^{0, 1-s}$.
 - ▶ For y "small" use Hölder estimates of Allen, Lindgren, and Petrosyan (2014): $s \leq \frac{1}{2} \Rightarrow \mathcal{V} \in C^{0,2s}(\mathcal{C}_{\mathcal{Y}}) \text{ and } s > \frac{1}{2} \Rightarrow \mathcal{V} \in C^{1,2s-1}(\mathcal{C}_{\mathcal{Y}}).$
 - For y "big" use bounds of NOS (2014) $\mathcal{V} \in H^2(y^{\beta}, \mathcal{C}_{\mathcal{Y}})$ with $\beta > 1 + 2\alpha$.

		Obstacle		
FEM an	d Error Estimat	e		

• Error estimate: If ${\mathcal U}$ is the exact solution and $V_{{\mathscr T}_{\mathcal Y}}$ the discrete solution, then

 $\left\|\mathcal{U}-V_{\mathscr{T}_{\mathcal{T}}}\right\|_{\dot{H}^{-1}_{L}(y^{\alpha},\mathcal{C})}^{\circ} \lesssim \left|\log(\#\mathscr{T}_{\mathcal{T}})\right|^{s} (\#\mathscr{T}_{\mathcal{T}})^{-1/(n+1)},$

where C depends on the Hölder moduli of smoothness of $\mathcal U$ and $\mathcal V,$ and sobolev regularity of f and $\psi.$

Ingredients:

- Optimal regularity in Ω : $u \in C^{1,s}$ by Caffarelli, Salsa and Silvestre (2008).
- This implies that $\partial_{\nu}^{\alpha} \mathcal{U}(\cdot, 0) \in C^{0, 1-s}$.
- ▶ For *y* "*small*" use Hölder estimates of Allen, Lindgren, and Petrosyan (2014): $s \leq \frac{1}{2} \Rightarrow \mathcal{V} \in C^{0,2s}(\mathcal{C}_{\mathcal{Y}}) \text{ and } s > \frac{1}{2} \Rightarrow \mathcal{V} \in C^{1,2s-1}(\mathcal{C}_{\mathcal{Y}}).$
- For y "big" use bounds of NOS (2014) $\mathcal{V} \in H^2(y^\beta, \mathcal{C}_{\mathcal{Y}})$ with $\beta > 1 + 2\alpha$.

		Balakrihsnan Formula	
Outline			

Space-Time Fractional PDEs

Multilevel Methods

Fractional Obstacle Problems

Spectral Fractional Laplacian: Balakrihsnan Formula

Integral Laplacian: Dunford-Taylor Formula

Conclusions

Integral Representation of Spectral Laplacian

- Spectral Fractional Laplacian: Recall $(-\Delta)^s w = \sum_{k=1}^{\infty} \lambda_k^s w_k \varphi_k$ with $w_k = \int_{\Omega} w \varphi_k$ for $s \in (0, 1)$.
- Dunford Integral: If $z^{-s} = |z|^{-s} e^{-is \arg z}$, then

$$(-\Delta)^{-s}f = \frac{1}{2\pi i} \int_{\mathcal{C}} z^{-s} (zI - \Delta)^{-1} f \, dz.$$

• Contour C:

• Balakrishnan formula: Deform $\mathcal C$ upon taking $r \to 0$ and $\theta \to \pi$

$$(-\Delta)^{-s}f = \frac{\sin(\pi s)}{\pi} \int_0^\infty \mu^{-s} (\mu I - \Delta)^{-1} f \, d\mu.$$

Balakrishnan Formula (Bonito and Pasciak (2015))

$$u = (-\Delta)^{-s} f = \underbrace{\frac{\sin(\pi s)}{\pi}}_{=C(s)} \int_0^\infty \mu^{-s} (\mu I - \Delta)^{-1} f \, d\mu.$$

• Sanity Check: If $\psi \in H_0^1(\Omega)$ is an eigenfunction of $(-\Delta)$ with associated eigenvalue $\lambda > 0$ then

$$(-\Delta)^{-s}\psi = C(s)\psi \int_0^\infty \frac{\mu^{-s}}{\mu+\lambda} d\mu \stackrel{\mu=\lambda t}{=} \lambda^{-s}C(s)\psi \int_0^\infty \frac{t^{-s}}{t+1} dt = \lambda^{-s}\psi.$$

• Numerical method: Game plan

- Step 1: use quadrature for the μ variable;
- Step 2: use standard finite element methods on the same mesh to approximate

 $u_{\mu} \in H_0^1(\Omega): \qquad \mu u_{\mu} - \Delta u_{\mu} = f \quad \text{in} \quad \Omega.$

This means $u_{\mu} = (\mu I - \Delta)^{-1} f$.

Step 3: Gather all contributions.

• Change of variable: let $\mu = e^y$ to get

$$u = (-\Delta)^{-s} f = \frac{\sin(\pi s)}{\pi} \int_{-\infty}^{\infty} e^{(1-s)y} (e^y I - \Delta)^{-1} f \, dy.$$

• Quadrature: Given $N \in \mathbb{N}$, define $k = 1/\sqrt{N}$, $y_j = jk$ and the quadrature approximation

$$U^{N} = Q^{N} f = \underbrace{\frac{\sin(\pi s)k}{\pi}}_{=C(s,k)} \sum_{j=-N}^{N} e^{(1-s)y_{j}} (e^{y_{j}}I - \Delta)^{-1} f.$$

• Exponential convergence (Bonito, Pasciak (2015)): Let $s \in [0, 1)$ and $r \in [0, 1]$. If $f \in \mathbb{H}^r(\Omega)$, then

$$\|u - U^N\|_{\mathbb{H}^r(\Omega)} \le C e^{-c\sqrt{N}} \|f\|_{\mathbb{H}^r(\Omega)}.$$

In practice N = 20. This uses decay when $|z| \to \infty$ and holomorphic properties of integrand $z^{-s}(zI - \Delta)^{-1}$.

Steps 2 and 3: Finite Element Method and Parallelization

- Discrete Laplacian: $-\Delta_{\mathscr{T}}: \mathbb{U}(\mathscr{T}) \to \mathbb{U}(\mathscr{T})$ is given by $\int_{\Omega} -\Delta_{\mathcal{T}} V W = \int_{\Omega} \nabla V \nabla W \quad \forall V, W \in \mathbb{U}(\mathcal{T}).$
- L^2 -projection onto $\mathbb{U}(\mathcal{T})$: $\Pi_{\mathcal{T}}: L^2(\Omega) \to \mathbb{U}(\mathcal{T})$ is given by

$$\int_{\Omega} \Pi_{\mathcal{T}} v W = \int_{\Omega} v W \quad \forall W \in \mathbb{U}(\mathcal{T}).$$

• Semidiscrete solution: Let $U = U_T \in \mathbb{U}(T)$ be defined by

$$U_{\mathcal{T}} = \frac{\sin(s\pi)}{\pi} \int_{-\infty}^{\infty} e^{(1-s)y} (e^y I - \Delta_{\mathcal{T}})^{-1} \Pi_{\mathcal{T}} f \, dy \ (= Q^{\infty} \Pi_{\mathcal{T}} f).$$

• Fully discrete solution: Let $U=U_{\mathcal{T}}^{N}\in\mathbb{U}(\mathcal{T})$ satisfy

$$U = Q^{N} \Pi_{\mathcal{T}} f = C(s,k) \sum_{j=-N}^{N} e^{(1-s)y_{j}} \underbrace{(e^{y_{j}} I - \Delta_{\mathcal{T}})^{-1} \Pi_{\mathcal{T}} f}_{=U_{j}}.$$

• Parallelization: Each $U_j \in \mathbb{U}(\mathcal{T})$ solves $(e^{y_j}I - \Delta_{\mathcal{T}})U_j = \prod_{\mathcal{T}} f$, i.e.

$$\int_{\Omega} e^{y_j} U_j W + \nabla U_j \nabla W = \int_{\Omega} f W \quad \forall W \in \mathbb{U}(\mathcal{T}).$$

• Assumptions

 \blacktriangleright Pick-up regularity: There is $0<\alpha\leq 1$ such that for all $0\leq r\leq \alpha$

$$(-\Delta)^{-1}: \mathbb{H}^{-1+r}(\Omega) \to \mathbb{H}^{1+r}(\Omega)$$

is an isomorphism. Note that $\alpha = 1$ when Ω is convex.

- the L_2 -projection $\Pi_{\mathcal{T}}$ onto the finite element space $\mathbb{U}(\mathcal{T})$ is bounded as an operator from $H^1(\Omega)$ to $H^1(\Omega)$ (e.g. quasi-uniform meshes).
- Error estimate: (Bonito and Pasciak (2015). Given $r \in [0, 1]$, $r \leq 2s$, set

$$\alpha_* = \frac{1}{2}(\alpha + \min(1 - r, \alpha)), \quad \gamma = \max(r + 2\alpha_* - 2s, 0).$$

If $f\in \mathbb{H}^\gamma$ then

$$\|u - U\|_{\mathbb{H}^r(\Omega)} \lesssim h^{2\alpha_*} \|f\|_{\mathbb{H}^\gamma(\Omega)} + e^{-c\sqrt{N}} \|f\|_{L^2(\Omega)},$$

where the hidden constant is of the form $C |\log h|$.

- > Proof: it uses eigenvalue decomposition and equivalence of functional spaces.
- ▶ Balancing errors: choose $N \approx |\log h|$ and use $h \approx (\mathcal{T})^{-1/d}$ for quasi-uniform meshes \mathcal{T} , and let $\gamma = r + 2\alpha_* 2s = 2\alpha_* s$, $\sigma = \max(2\alpha_* s, 0)$, to get

$$\|u - U\|_{\mathbb{H}^{s}(\Omega)} \leq Ch^{2\alpha_{*}} \|f\|_{\mathbb{H}^{\sigma}(\Omega)} \approx (\#\mathcal{T})^{-2\alpha_{*}/d} \|f\|_{\mathbb{H}^{\sigma}(\Omega)}.$$

Comparison with Extension Approach

- Convex domains: pick-up regularity $0 < \alpha \leq 1$.
- Comparison 1: If r = s and $\alpha = 1$, then

$$2\alpha_* = 2 - s, \quad \sigma = 2 - 2s$$

whence

$$||u - U||_{\mathbb{H}^{s}(\Omega)} \le Ch^{2-s} ||f||_{\mathbb{H}^{2-2s}(\Omega)}.$$

This estimate is of optimal order 2 - s > 1 and regularity $f \in \mathbb{H}^{2-2s}(\Omega)$; or equivalently $u \in \mathbb{H}^2(\Omega)$ which is not generic. In contrast, the Extension Approach cannot deliver orders larger than 1.

Comparison 2: Extension approach requires f ∈ H^{1-s}(Ω) to deliver order 1 accuracy. What is the regularity of f for order 1 with Dunford-Taylor?

 $f \in \mathbb{H}^{1-s}(\Omega).$

• Setting: This corresponds to s = 1/2 and f with checkerboard pattern

$$\Omega = (0,1)^2, \quad f(x_1, x_2) = \begin{cases} 1, & \text{if } (x_1 - 0.5)(x_2 - 0.5) > 0\\ 0, & \text{otherwise} \end{cases}$$

The error measured in $L_2(\Omega)$ (r=0)

• Parameters:

- ▶ $N = 1,000,000, 0 < \alpha \le 1$ (pick-up regularity),
- $f \in H^{1/2-\epsilon}(\Omega)$ because of jump discontinuity, i.e. $\gamma < 1/2$.
- Convergence rate: it is $2\alpha_*$ provided

$$\gamma = \max(2\alpha_* - 2s, 0) = 2\alpha_* - 2s.$$

This implies

$$2\alpha_* = \begin{cases} 2 & s > \frac{3}{4} \\ 2s + \frac{1}{2} & 0 < s \le \frac{3}{4}. \end{cases}$$

Computational L^2 -Errors

		$ s = \beta$	> 3/4						
	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
OBS	0.92	1.06	1.22	1.4	1.52	1.72	1.86	1.94	1.96
THM	0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.0	2.0

Fractional Time

Obstacle

Balakrihsnan Formula

Dunford-Taylor Form

Conclusions

Effect of Varying s on Discontinuous Chekerboard f

- ▶ The method is (embarrassingly) parallelizable: For each quadrature point t_* , the finite element solves are independent (tried up to 15'000 cores).
- ▶ Minimal changes in existing codes: It relies on standard finite elements in \mathbb{R}^d , i.e. the quadrature component adds an additional external loop.
- Preconditionner: Standard preconditionners can be used. Moreover, the iterative solvers at each quadrature points benefits from the previous quadrature point as starting guess.

Extension I: Self-Adjoint Coercive Operators

- Pick-up regularity depends on the operator.
- Examples: diffusion with discontinuous coefficients, different boundary conditions, Laplace-Beltrami operators.

Obstacle

Extension II: non-Hermitian problems

• Sectorial operator A: consider sesquilinear form $a: \mathbb{V} \times \mathbb{V} \to \mathbb{R}$ satisfying

 $\mathfrak{Re}(a(v,v)) \ge c_0 \|v\|_{\mathbb{V}}^2, \quad |a(u,v)| \le c_1 \|u\|_{\mathbb{V}} \|v\|_{\mathbb{V}} \qquad \forall u,v \in \mathbb{V}.$

Then Balakhrisnan formula is valid

$$A^{-s}f = \frac{\sin(\pi s)}{\pi} \int_0^\infty \mu^{-s} (\mu I + A)^{-1} f d\mu$$

Complex Eigenvalues \rightarrow Kato property $D(A^{1/2}) = D((A^*)^{1/2}) = \mathbb{V}$

		Dunford-Taylor Formula	
Outline			

Space-Time Fractional PDEs

Multilevel Methods

Fractional Obstacle Problems

Spectral Fractional Laplacian: Balakrihsnan Formula

Integral Laplacian: Dunford-Taylor Formula

Conclusions

Definition of Integral Laplacian (Bonito, Lei, Pasciak (2017))

• Fourier definition:

$$\llbracket u, w \rrbracket = C \int \int_{\mathbb{R}^d \times \mathbb{R}^d} \frac{(u(x) - u(x'))(w(x) - w(x'))}{|x - x'|^{d+2s}} dx dx'$$
$$= \int_{\mathbb{R}^d} |\xi|^s \mathscr{F}(u) |\xi|^s \overline{\mathscr{F}(w)} d\xi = \int_{\mathbb{R}^d} \mathscr{F}((-\Delta)^s u)(\xi) \overline{w(\xi)} d\xi = (f, w)$$

• Equivalent representation:

$$\llbracket u, w \rrbracket = \frac{2\sin(s\pi)}{\pi} \int_0^\infty \mu^{1-2s} \int_{\mathbb{R}^d} \left((-\Delta)(I - \mu^2 \Delta)^{-1} u \right) w \, dx d\mu.$$

• Proof:

Parseval's theorem:

$$\int_{\mathbb{R}^d} \left((-\Delta)(I - \mu^2 \Delta)^{-1} u \right) w \, dx = \int_{\mathbb{R}^d} \frac{|\xi|^2}{1 + \mu^2 |\xi|^2} \mathscr{F}(u)(\xi) \overline{\mathscr{F}(w)(\xi)} d\xi$$

• Change of variables: $t = \mu |\xi|$ yields

$$\int_0^\infty \frac{t^{1-2s}}{1+t^2} dt = \frac{\pi}{2\sin(\pi s)}.$$

• Auxiliary problem: given $\psi \in L^2(\mathbb{R}^d)$ let $v(\psi, \mu) = v(\mu) \in H^1(\mathbb{R}^d)$ satisfy

$$\int_{\mathbb{R}^d} v(\mu)\phi + \mu^2 \int_{\mathbb{R}^d} \nabla v(\mu) \cdot \nabla \phi = - \int_{\mathbb{R}^d} \psi \phi \qquad \forall \phi \in H^1(\mathbb{R}^d),$$

which corresponds to

$$v - \mu^2 \Delta v = -\psi \quad \Rightarrow \quad v = -(I - \mu^2 \Delta)^{-1} \psi.$$

Note that the support of $v(\psi,\mu)$ is all of \mathbb{R}^d regardless of the support of $\psi.$

• Equivalent expression: Inserting back into $[\![u,w]\!]$ gives

$$\llbracket u, w \rrbracket = \frac{2\sin(s\pi)}{\pi} \int_0^\infty \mu^{-1-2s} \Big(\int_\Omega \big(u + v(u, \mu) \big) w \, \mathrm{d}x \Big) \, \mathrm{d}\mu \quad \forall u, w \in \mathbb{H}^s(\Omega).$$

• Variational problem: given $f \in \mathbb{H}^{-s}(\Omega)$ find $u \in \mathbb{H}^{s}(\Omega)$ such that

$$\llbracket u,w \rrbracket = (f,w) \quad \forall w \in \mathbb{H}^{s}(\Omega).$$

• Change of variables: $\mu = e^{-\frac{y}{2}}$ yields

$$\llbracket u, w \rrbracket = \frac{\sin(s\pi)}{\pi} \int_{-\infty}^{\infty} e^{sy} \left(\int_{\Omega} \left(u + v(u, \mu(y)) \right) w \, \mathrm{d}x \right) \, \mathrm{d}y$$

• Sinc quadrature: uniform spacing $k \approx 1/N$ and $y_j = jk$ yields

$$\llbracket u, w \rrbracket^N = \frac{\sin(s\pi)}{\pi} k \sum_{j=-N}^N e^{sy_j} \left(\int_\Omega \left(u + v(u, \mu(y_j)) \right) w \, \mathrm{d}x \right) \, \mathrm{d}y$$

• Quadrature consistency: given $w \in \mathbb{H}^{s}(\Omega)$ and $u \in \mathbb{H}^{\delta}(\Omega)$ with $s < \delta \leq \min(2 - s, \sigma)$ and $\sigma < \frac{3}{2}$, there holds

$$|a(u,w) - a^{N}(u,w)| \lesssim e^{-c\sqrt{N}} ||u||_{\mathbb{H}^{\delta}(\Omega)} ||w||_{\mathbb{H}^{s}(\Omega)}$$

Fractional Time

Domain Truncation

- Support of $v(u, \mu)$: since this support is all of \mathbb{R}^d we must truncate the domain to solve with FEMs.
- Truncated domains: The truncated domain diameter depends on the quadrature point y_j . If B is a ball enclosing Ω of diameter 1, then for a truncation parameter M, we define the dilated domains

$$B^{M}(\mu) := \begin{cases} \{y = (1 + \mu(1 + M))x : x \in B\}, & \mu \ge 1, \\ \{y = (2 + M)x : x \in B\}, & \mu < 1. \end{cases}$$

- Truncated solution: $v^M = v^M(u, \mu) \in H^1_0(B^W(\mu)) : v^M \Delta v^M = -u.$
- Truncated bilinear form:

$$\llbracket u, w \rrbracket^{N,M} = \frac{\sin(s\pi)}{\pi} k \sum_{j=-N}^{N} e^{sy_j} \int_{\Omega} (u + v^M(u, \mu(y_j))) w \, \mathrm{d}x.$$

• Error estimate: the exponential decay of $v(u,\mu)$ at ∞ implies

$$\left| [\![u,w]\!] - [\![u,w]\!]^{N,M} \right| \lesssim e^{-cM} \|u\|_{L^2(\Omega)} \|w\|_{L^2(\Omega)}.$$

			Dunford-Taylor Formula	
Finite I	Element Approxi	mation		

- **Domain:** Ω is polytopal in \mathbb{R}^d
- Mesh of Ω : conforming partition ${\mathscr T}$ shape regular and quasi-uniform
- Mesh of $B^M(\mu)$: conforming partition \mathscr{T}_M which matches \mathscr{T}
- Finite element spaces: Compatible $\mathbb{U}(\mathscr{T})$ and $\mathbb{U}(\mathscr{T}_M)$.
- Finite element solution: given $U \in \mathbb{U}(\mathscr{T})$ let $V(U, \mu) \in \mathbb{U}(\mathscr{T}_M)$ be the FE approximation of $v^M(U)$.
- Fully discrete bilinear form:

$$\llbracket U, W \rrbracket_{\mathscr{T}}^{N,M} = \frac{\sin(s\pi)}{\pi} k \sum_{j=-N}^{N} e^{sy_j} \int_{\Omega} (U + V^M(U, \mu(y_j))) W \, \mathrm{d}x.$$

• Finite element consistency: If $\beta \in (s, 3/2)$, for all $V, W \in \mathbb{U}(\mathscr{T})$ we have

$$\left| \llbracket U, W \rrbracket^{N,M} - \llbracket U, W \rrbracket^{N,M}_{\mathscr{F}} \right| \lesssim |\log h| h^{\beta-s} \| U \|_{\mathbb{H}^{\beta}(\Omega)} \| W \|_{\mathbb{H}^{s}(\Omega)}.$$

	×Multilevel Methods		Dunford-Taylor Formula	
Fully D	iscrete Scheme			

- Finite element solution: find $U=U_{\mathscr{T}}^{N,M}\in\mathbb{U}(\mathscr{T})$ such that

$$\llbracket U, W \rrbracket_{\mathscr{T}}^{M, N} = \int_{\Omega} f W \quad \forall W \in \mathbb{U}(\mathscr{T}).$$

This bilinear form is elliptic provided $e^{-c\sqrt{N}}h^{s-\delta} \leq C$ and $\delta = \min(2-s,\beta)$.

• Error estimate: Let $\beta \in (s, 3/2)$. Then

$$\|u - U\|_{\mathbb{H}^{s}(\Omega)} \lesssim \left(e^{-c\sqrt{N}} + e^{-cM} + |\log h|h^{\beta-s}\right) \|u\|_{\mathbb{H}^{\beta}(\Omega)}.$$

• Order: Take $\beta = s + \frac{1}{2} - \epsilon$, which is consistent with the regularity of $u \in \mathbb{H}^{\frac{1}{2}+s-\epsilon}(\Omega)$ and $M \approx |\log h|$, $N \approx |\log h|^2$ to obtain

$$\|u - U\|_{\mathbb{H}^{s}(\Omega)} \lesssim h^{\frac{1}{2}-\epsilon} \|u\|_{\mathbb{H}^{\frac{1}{2}+s-\epsilon}(\Omega)}.$$

• Comparison with integral method:

- Similar convergence rate for quasi-uniform \mathcal{T}
- Effect of locally refined meshes towards $\partial \Omega$ remains open.

	×Multilevel Methods		Dunford-Taylor Formula	
Numer	ical Experiment			

• Setting: Ω is the unit ball in \mathbb{R}^2 and the exact solution $u \in \mathbb{H}^s(\Omega)$ is

$$u(r) = \frac{2^{-2s}\Gamma(n/2)}{\Gamma(n/2+s)\Gamma(1+s)} (1-r^2)^s.$$

- Regularity: $u \in \mathbb{H}^{\sigma}(\Omega)$ with $\sigma = \min(2s, s + \frac{1}{2} \epsilon)$.
- FE solution for s = 0.3 and s = 0.7:

Implementation:

- Implementation tool: Deal.II Library
- Four node quadrilateral bilinear element
- Non-uniform extended mesh \mathscr{T}_M :
 - > The same nodes distribution as one dimensional case on each radial direction
 - The same number of nodes on angular direction.

 $\blacktriangleright~\mathbb{V}_h^M$ depends on μ and keeps the same number degree of freedom for all $\mu.$

Obstacle

Finite Element Approximation: Quantitative Study

- **Parameters:** M = 4, k = 0.25
- Computed error: $||u U||_{L^2(\Omega)}$
- Expected rate: $\min(s + \frac{1}{2}, 1)$
- Simulations:

			Conclusions
Outline			

Space-Time Fractional PDEs

Multilevel Methods

Fractional Obstacle Problems

Spectral Fractional Laplacian: Balakrihsnan Formula

Integral Laplacian: Dunford-Taylor Formula

Conclusions

Conclusions about the Spectral Fractional Laplacian

• PDEs with fractional time derivatives

- Global estimates: quasi-optimal in terms of regularity but suboptimal in terms of approximability.
- Estimates for graded meshes is open; this may cure suboptimality.
- Optimal local estimates for Balakhrisnan formula which degenerate for small t (Bonito, Lei, Pasciak (2017)).

• Multilevel methods:

- Robust performance with respect to s and anisotropy; valid for Muckenhoupt weights.
- Standard multilevel solvers usable for Balakhrisnan formula (Bonito, Pasciak (2015)).

• Fractional obstacle problems:

- Optimal a priori error analysis for spectral method (thin obstacle). No a
 posteriori error analysis available.
- A priori error analysis for integral method (Schwab, Matache, Nitsche (2005); a posteriori error analysis (N, von Petersdorff, Zhang (2010).
- Open for Balakhrisnan formula.

Conclusions about Dunford-Taylor Approach

- Spectral Dirichlet Laplacian: Balakrishnan formula
 - \blacktriangleright Representation of the solution $(-\Delta)^{-\beta}f$ using the Balakrishnan formula
 - Exponential convergent SINC quadrature
 - Optimal FEM discretizations.
 - ► Applicable in 3d.
 - A posteriori error analysis is open.

• Fractional Laplacian:

- The Balakrishnan formula cannot be used to represent the solution
- \blacktriangleright Derivation of the bilinear form using Fourier transform \rightarrow non conforming method \rightarrow Strang's lemma
- Additional exponentially convergent domain truncation and sinc quadrature.
- ► Applicable in 3d.
- A posteriori error analysis is open.