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Local jump random walk
• We consider a random walk of a particle along the real line.
• hZ = {hz : z ∈ Z} — possible states of the particle.
• u(x, t) — probability of the particle to be at x ∈ hZ at time
t ∈ τN.

• Local jump random walk: at each time step of size τ , the
particle jumps to the left or right with probability 1/2.

u(x, t+ τ) =
1

2
u(x+ h, t) +

1

2
u(x− h, t)

If we consider τ = 2h2, then we obtain

u(x, t+ τ)− u(x, t)

τ
=
u(x+ h, t) + u(x− h, t)− 2u(x, t)

h2

Letting h, τ ↓ 0 yields
ut −∆u = 0
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Long jump random walk
• The probability that the particle jumps from the point hk ∈ hZ

to the point hm ∈ hZ is K(k −m) = K(m− k).

u(x, t+ τ) =
∑
k∈Z
K(k)u(x+ hk, t),

since
∑

k∈ZK(k) = 1, this yields

u(x, t+ τ)− u(x, t) =
∑
k∈Z
K(k) (u(x+ hk, t)− u(x, t))

• Let K(y) ∼ |y|−(1+2s) with s ∈ (0, 1).

• Choose τ = h2s, then K(k)
τ = hK(kh).

Let h, τ ↓ 0,

∂tu =

∫
R

u(x+ y, t)− u(x, t)

|y|1+2s
dy ⇔ ∂tu = −(−∆)su



Long jump random walk

Question: What were the fundamental ingredients that led to a
fractional heat equation?

• K(y) ∼ |y|−(1+2s) with s ∈ (0, 1), but the construction would
have worked with another kernel, thus obtaining another
nonlocal operator.

• τ = h2s. The space and time must have a particular scaling!

Question: How do we find this scaling? How do we know the order
of the fractional diffusion?
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The model problem

• The data:

◦ Ω ⊂ Rn, open, convex and with Lipschitz boundary.
◦ f, ud : Ω→ R, “nice” enough.

• The problem: Find (s̄, ū) that minimize

J(s, u) =
1

2
‖u− ud‖2L2(Ω) + ϕ(s)

subject to (−∆)su = f.

• Where:

◦ For 0 ≤ α < β ≤ 1, ϕ ∈ C2(α, β) is nonnegative, convex and

lim
s↓α

ϕ(s) = lim
s↑β

ϕ(s) = +∞.

For instance,

ϕ(s) = (s− α)−1(β − s)−1, ϕ(s) = (s− α)−1e(β−s)
−1

.

◦ (−∆)s denotes the fractional powers of the Dirichlet Laplacian.



The model problem

• The problem: Find (s̄, ū) that minimize

J(s, u) =
1

2
‖u− ud‖2L2(Ω) + ϕ(s)

subject to
(−∆)su = f.

Question: What are we trying to model here?

• Given some “observations/measurements” ud, can we find the
order of fractional diffusion s that best represents them?

Comment: This problem was originally considered by (Sprekels,
Valdinoci 2016) for the fractional heat operator ∂t + (−∆)s, the
authors show existence of solutions and optimality conditions.
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Spectral theory 101

We consider the definition of (−∆)s based on spectral theory:

• −∆ : H2(Ω) ∩H1
0 (Ω) ⊂ L2(Ω)→ L2(Ω) is symmetric, closed

and unbounded and its inverse is compact.

• The eigenpairs {λk, ϕk}, i.e.

−∆ϕk = λkϕk, ϕk|∂Ω = 0

form an orthonormal basis of L2(Ω).

• For u sufficiently smooth:

u =
∞∑
k=1

ukϕk 7−→ (−∆)su :=
∞∑
k=1

ukλ
s
kϕk

• (−∆)s : Hs(Ω)→ H−s(Ω), Hs(Ω) = [H1
0 (Ω), L2(Ω)]1−s.



The control to state map
• For f =

∑
k fkϕk ∈ H−s(Ω) the solution to the state equation is

u =
∑
k

λ−sk fkϕk.

• This defines: (0, 1) 3 s 7→ S(s) =
∑

k λ
−s
k fkϕk ∈ L2(Ω).

Theorem (properties of S)

For f ∈ L2(Ω) the control to state map S is bounded
‖S(s)‖L2(Ω) . 1,
and three times Fréchet differentiable:

S ′(s) = −
∑
k

λ−sk ln(λk)fkϕk =: u′(s)

S ′′(s) =
∑
k

λ−sk ln2(λk)fkϕk =: u′′(s)

with
‖S(k)(s)‖R→L2(Ω) . s−k, k = 1, 2, 3.



Existence
Since the state equation always has a solution, we introduce the
reduced cost

f(s) = J(s,S(s)).

Theorem (existence)

There is an optimal pair (s̄, ū = S(s̄)) ∈ (α, β)×Hs̄(Ω) for which

f(s̄) ≤ f(s), ∀s ∈ (α, β).

Proof.

• The function f in continuous on (α, β).

• Consider sequences αk ↓ α, βk ↑ β and seek for

sk = argmin
s∈[αk,βk]

f(s).

• Any accumulation point of {sk}k≥1 is a minimizer.



Optimality conditions

Theorem (optimality conditions)

• First order necessary condition: If (s̄, ū(s̄)) is optimal, then

(ū(s̄)− ud, ū
′(s̄))L2(Ω) + ϕ′(s̄) = 0 (f ′(s̄) = 0).

• second order sufficient condition: If (s̄, ū(s̄)) satisfies the first
order condition and, in addition,

‖ū′(s̄)‖2L2(Ω) +(ū(s̄)−ud, ū
′′(s̄))L2(Ω) +ϕ′′(s̄) > 0, (f ′′(s̄) > 0)

then the pair is optimal.

• In essence, we are dealing with the unconstrained minimization
of a twice differentiable function over an open set.



What about (local) uniqueness?

Assume that ϕ is strongly convex, i.e., there is ξ > 0

(ϕ′(s1)− ϕ′(s2)) · (s1 − s2) ≥ ξ|s1 − s2|2, ∀s1, s2 ∈ (α, β)

then we have:

Theorem (local uniqueness)

Assume that ϕ is strongly convex, ‖f‖L2(Ω) and ‖ud‖L2(Ω) are
small enough. If s̄ is optimal, there is δ > 0 and η > 0 such that

f(s) ≥ f(s̄) + η|s− s̄|2, ∀s ∈ (α, β) ∩ (s̄− δ, s̄+ δ).

• This implies local uniqueness.
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Disclaimer

Up to now we could have

α = 0 β = 1

from now on we require

α > 0 β < 1



Discretization in s

• For σ > 0 introduce the centered difference operator

dσψ(s) =
1

2σ
(ψ(s+ σ)− ψ(s− σ)) .

• Recall that, for ψ ∈ C3

|ψ′(s)− dσψ(s)| = O(σ2).

• We will discretize the first order optimality condition and seek
for sσ ∈ (α, β) such that

jσ(sσ) = (u(sσ)− ud, dσu(sσ))L2(Ω) + ϕ′(sσ) = 0.



How do we find sσ?

0 < σ � 1 and set sl, sr ∈ (α, β), with sl < sr ; . Initialization
. We take care of possible degenerate cases

if jσ(sl) = 0 then
sσ = sl;

end if
if jσ(sr) = 0 then
sσ = sr ;

end if
. Root isolation

while jσ(sr) < 0 do
sr := sr + σ;

end while
while jσ(sl) > 0 do
sl := sl − σ;

end while
. Bisection

k = 1;
repeat
sk = 1

2
(sl + sr);

if jσ(sk) = 0 then
sσ = sk ;
break; . The solution has been found

end if
if jσ(sl)jσ(sk) > 0 then . Sign check
sl = sk ;

else
sr = sk ;

end if
k = k + 1;

until forever



Bisection method

Does the root isolation step finish?

Lemma (root isolation)

If σ is sufficiently small there are sl, sr ∈ (α, β) for which

jσ(s) < 0 s ∈ (α, sl), jσ(s) > 0 s ∈ (sr, β).

A standard argument then yields

Lemma (convergence of bisection)

The bisection method generates a sequence {sk}k≥1 that satisfies

|sσ − sk| . 2−k.

With jσ(sσ) = 0.



What about convergence of sσ?

• The optimal s̄ need not be unique. Thus, we do not expect
convergence of the whole family sσ to s.

• The following statement is the best we can hope for.

Lemma (convergence of sσ)

The family {sσ}σ>0 has a convergent subsequence and any
accumulation point satisfies the first order condition.

• If we focus on one of these subsequences we can establish a rate.

Theorem (rate in σ)

If σ is sufficiently small we have

|s̄− sσ| . σ2.
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The α-harmonic extension
Molčanov, Ostrovskĭi (1969), Caffarelli, Silvestre (2007), Cabré,
Tan (2010), Capella et al. (2011), Stinga Torrea (2010–2012).

• s ∈ (0, 1) and α = 1− 2s ∈ (−1, 1).

• ∂ναU = − limy↓0 y
α∂yU on Ω× {0}.

• ds = 2αΓ(1− s)/Γ(s).



The α-harmonic extension

• Recall that α = 1− 2s ∈ (−1, 1), yα is degenerate (α > 0) or
singular (α < 0)!

• But yα is a Muckenhoupt weight.

• The domain C = Ω× (0,∞) is infinite!

• We can consider a truncated version and incur in an
exponentially small error:

‖U − V‖ ◦
H1
L(yα,CY )

. e−
√
λ1Y /4.

• The solution has a rather bad behavior Uyy ≈ y−α−1 as y ≈ 0+.

• We use anisotropic meshes.



Discretization

• Denote: TY the mesh and V(TY ) the discrete space. Then

‖V − VTY ‖ ◦H1
L(yα,CY )

= inf
W∈V(TY )

‖V −W‖ ◦
H1
L(yα,CY )

,

and set W = ΠV ∈ V(TY ). We need to construct a suitable
interpolation operator.
N. O. S. Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces. Numer. Math 2016.

• If the mesh is suitably graded:

‖u− VTY (·, 0))‖Hs(Ω) ≤ ‖∇(U − VTY )‖L2(yα,C)

. | log #TY |s#T
− 1
n+1

Y .

which is near optimal estimate in terms of degrees of freedom.
N. O. S. A PDE approach to fractional diffusion. Found. Comp. Math. 2015.

• This formulation allows us to devise multigrid methods
L. Chen, N. O. S. Multilevel methods for nonuniformly elliptic equations. Math. Comp. 2016.



The discrete control to state map

• All the hidden constants in the previous discussion depend on s,
but since s ∈ (α, β) b (0, 1) they are uniformly controlled.

• Define ST : (α, β)→ U(TΩ) by s 7→ UTΩ
= VTY (·, 0)

Lemma (continuity of ST )

For every TY the map ST is continuous on (α, β).

• All norms in finite dimensions are equivalent.



Fully discrete scheme

Define

jσ,T (s) = (UTΩ
(s)− ud, dσUTΩ

(s))L2(Ω) + ϕ′(s).

We seek for sσ,T such that

jσ,T (sσ,T ) = 0.

• The continuity of ST implies that we can find it by using
bisection as before.



Error estimates

• As before, we can only expect that a subsequence of {sσ,T }T
converges to a sσ.

• If we extract this subsequence then we have.

Theorem (rate of convergence)

If f ∈ H1−ε(Ω) for all ε > 0 we have

|s̄− sσ,T | . σ−1| log(#TY )|2 (#TY )−1/(n+1) + σ2.

Corollary (explicit rate)

Choose σ ≈ | log(#TY )|2/3 (#TY )
− 1

3(n+1) then

|s̄− sσ,T | . | log(#TY )|2/3 (#TY )
− 2

3(n+1)
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Generalities

• Ω = (0, 1)2

• Y = 1 + 1
3(#TΩ)

• σ = 1
2.5 (#TY )−1/9

• The initial bounds are sl = 0.3 and sr = 0.9

In this geometry we have

λk,l = π2(k2 + l2), ϕk,l(x, y) = sin(kπx) sin(lπy).

So if, for s ∈ (0, 1)

f = λs2,2ϕ2,2 =⇒ u = ϕ2,2



Example 1: s̄ = 1/2

Set

ϕ(s) =
1

s(1− s)
The following table shows the computed value of sσ,T and the
number of bisection iterations.

#TY sσ,T jσ,T (sσ,T ) N

3146 4.96572e-01 -8.89011e-14 53
10496 4.98371e-01 -8.38218e-14 53
25137 4.99069e-01 3.49235e-14 53
49348 4.99402e-01 1.52327e-12 53
85529 4.99585e-01 6.28221e-12 53



Example 1: s̄ = 1/2. Convergence rate

10
4

10
−3

10
−2

| s̄−sσ ,T|

Degrees of Freedom (DOFs)

E
rr
o
r

 

 
|s − s σ , T

DOFs−0 . 6

• The rate of convergence is O(#T −0.6
Y ) which is better than the

predicted rate of −0.22!



Example 2: s̄ = (3−
√

5)/2

Set

ϕ(s) =
1

s
e

1
(1−s)

The following table shows the computed value of sσ,T and the
number of bisection iterations.

#TY sσ,T jσ,T (sσ,T ) N

3146 3.81417e-01 9.99201e-16 46
10496 3.81697e-01 -2.52812e-13 53
25137 3.81811e-01 1.36418e-12 53
49348 3.81866e-01 2.66251e-12 53
85529 3.81897e-01 3.53083e-12 53



Example 2: s̄ = (3−
√

5)/2. Convergence rate

10
4

10
−4

10
−3

| s̄−sσ ,T|
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E
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o
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• The rate of convergence is O(#T −0.6
Y ) which is better than the

predicted rate of −0.22!



Example 3. Unknown solution

ϕ(s) =
1

s
e

1
(1−s) ,

ud = max

{
0,

1

2
−
√
|x− 1

2
|2 + |y − 1

2
|2
}
,

f = 10 /∈ Hµ(Ω), µ ≥ 1

2

We do not know the solution, but we can still compute.
The following table shows the computed value of sσ,T and the
number of bisection iterations.

#TY sσ,T jσ,T (sσ,T ) N

3146 4.44005e-01 4.22951e-12 53
10496 4.47239e-01 2.97451e-11 53
25137 4.48182e-01 -3.20792e-11 53
49348 4.48544e-01 4.83542e-11 53
85529 4.48690e-01 2.68390e-10 53
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Recap

• Parameter identification problem: The parameter is the order of
the fractional elliptic operator.

• Existence and optimality conditions: Local uniqueness under
smallness assumptions.

• Semidiscrete scheme: Convergence up to subsequences. Rate of
convergence for subsequences.

• Fully discrete scheme: ı́dem.



Open questions

• Can we let α = 0 and β = 1? The numerics seem to indicate
that this is not an issue.

• Modulo technicalities we can also handle the time dependent
problem, where the state equation is ∂tu+ (−∆)su = f.

• Completely open: Space time fractional ∂γt u+ (−∆)su = f and
optimize in s and γ.

• Ongoing: Consider the integral version of (−∆)s (with M.
D’Elia).
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