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1. Introduction

We develop the basic theory of non-local minimal surfaces and follow mostly the
original paper [CRS]. We start with some motivating examples about non-local
minimal surfaces.

1.1. Motion of sets. Assume that E ⊂ Rn is a smooth bounded set.
We can generate a motion for the set E by the following scheme introduced by

Bence-Merriam-Osher (BMO scheme):
Let

ϕ(x) = g(|x|) ≥ 0,

be a smooth radial symmetric kernel with integral 1, and ε a small parameter. We
define Ek inductively as the 1/2 level set of the convolution between Ek−1 and ϕε,
the ε rescaling of ϕ:

Ek :=

{
u >

1

2

}
, u := χEk−1

∗ ϕε,

ϕε(x) := ε−nϕ(x/ε), E0 = E.

We obtain a continuous evolution of sets as the parameter ε → 0. It turns out
that the evolution depends on the decay properties of ϕ at infinity.

Indeed, assume that
0 ∈ ∂E,

and denote by

e(r) : =

´
∂Br

χEc − χE dσ
rn−1

=
Hn−1(Ec ∩ ∂Br)−Hn−1(E ∩ ∂Br)

rn−1
,

the excess function. Notice that

|e(r)| ≤ C, e(r) = cnHr + o(r2)

where C, cn are universal constants depending only on n and H denotes the mean
curvature of ∂E at 0 with respect to the inner normal ν. We have

u(0)− 1

2
= −1

2

ˆ ∞
0

e(r)rn−1ε−ng(r/ε)dr

= −1

2

ˆ ∞
0

e(εr)g(r)rn−1dr(1.1)

If ϕ decays at infinity so that

(1.2)

ˆ
ϕ(x)|x|dx <∞,

1
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then, by the expansion of e(r) near 0 we obtain

u(0)− 1

2
= −ε(c′H + o(1)),

with o(1)→ 0 as ε→ 0, and

c′ = cn

ˆ ∞
0

g(r)rndr,

is a positive constant depending on g and n.
On the other hand, if ϕ has fatter tails at ∞, for example

(1.3) g(r) = r−n−s for large r, s ∈ (0, 1),

then the integral in (1.1) is of order εs � ε,

u(0)− 1

2
= −1

2
εs
(ˆ ∞

0

e(r)

r1+s
dr + o(1)

)
,

with

(1.4) Hs :=

ˆ ∞
0

e(r)

r1+s
dr.

In the borderline case s = 1 we obtain

u(0)− 1

2
= −ε| log ε| (cnH + o(1)) .

Since

uν(0) = χE ∗ ∂νϕε(0) = ε−1(c′′ + o(1)), |D2u| ≤ Cε−2,

with c′′ = c′′(g, n) > 0 it follows that 0 ∈ E moves in the ν direction by an amount

c0ε
2(H + o(1)) if (1.2) holds,

or

c0ε
1+s(Hs + o(1)), if (1.3) holds,

or

c0ε
2| log ε|(H + o(1)), if s = 1.

By taking the time interval between consecutive iterations accordingly, we obtain
that E evolves either by mean curvature motion H, or by nonlocal mean curvature
motion Hs defined in (1.4). Notice that we can rewrite Hs formally as

Hs(0) = 4s/2(χEc − χE)(0).

1.2. Phase transitions. Let u : Ω → R be a density, and W : R → R+ a double
well potential, say with minima at −1 and 1. A typical example is given by

W (t) = (1− t2)2.

The Ginzburg-Landau energy model associated to u is given by

J(u,Ω) :=

ˆ
Ω

ε|∇u|2 +W (u)dx,

where W (u) represents the potential energy and ε|∇u|2 the kinetic energy which
accounts for the changes in the density at small scales. A minimizer u is expected
to stay close to the least energy phases ±1 except on a region of thickness ∼

√
ε

where it transitions between the two values. Modica and Mortola showed that as
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the parameter ε → 0, the transition region converges to a a surface of least area,
i.e. a minimal surface :

uε → χE − χEc in L1
loc(Ω), and E minimizes perimeter in Ω.

A similar analysis can be made for a model where long range interactions are
present, and the kinetic energy is replaced by

ε[u]2Hs/2 =
ε

2

ˆ
(u(x)− u(y))2

|x− y|n+s
dxdy, s ∈ (0, 2).

It turns out that the value of s plays an important role in establishing the behavior
of minimizers as ε→ 0. If s ∈ [1, 2) then, interfaces converge to a classical minimal
surface as before, while if s ∈ (0, 1) the interfaces converge to a non-local minimal
surface. (see [SV] for further details)

Next we review some of the main results for classical minimal surfaces.

1.3. Classical minimal surfaces. It is convenient to think of surfaces as bound-
aries of measurable sets E, and define the surface area of ∂E or the perimeter of E
in Ω by

PΩ(E) = [χE ]BV (Ω)

= sup

ˆ
Ω

χE div g dx with g ∈ C∞0 (Ω), |g| ≤ 1.

Notice that if ∂E is of class C1 then

PΩ(E) = Hn−1(∂E ∩ Ω),

as expected. We list some of the key steps and refer to the classical book of Giusti
[G] for the details.

We assume that Ω is Lipschitz and bounded.

1) Lower semicontinuity:

Ek → E in L1
loc(Ω) =⇒ lim inf PΩ(Ek) ≥ PΩ(E).

2) Compactness: If PΩ(Ek) are uniformly bounded there exists a convergent
subsequence of the Ek in L1(Ω).

3) Existence: There exists a minimizer E which minimizes the perimeter PRn(E)
among all sets which are fixed outside Ω.

We remark that uniqueness does not hold in general. Also, E minimizes perime-
ter in Ω (or ∂E is a minimal surface in Ω) in the sense that PΩ(F ) ≥ PΩ(E) for
any set F which equal E outside a compact subset of Ω.

4) Density estimates: If E minimizers perimeter in Ω, and 0 ∈ ∂E then

(1− c0)|Br| ≥ |E ∩Br| ≥ c0|Br|, ∀Br ⊂ Ω,

for some c0 > 0 small depending only on n.

5) Compactness of minimizers: If Ek minimize perimeter in Ω, there exists a
convergent subsequence in L1(Ω) to another minimizer of the perimeter.
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6) Monotonicity formula: If E minimizers perimeter in Ω, and 0 ∈ ∂E then

PBr (E)

rn−1

is monotone increasing in r, as long as Br ⊂ Ω.

7) Blow-ups: If E minimizers perimeter near 0 ∈ ∂E, there exists λk →∞ such
that

λkE → C in L1
loc(Rn), with C a minimal cone.

A minimal cone is a homogenous of degree 0 set which minimizes perimeter in Rn.
The above cone C is called a blow-up cone of E at 0.

8) Flatness implies regularity: If the blow-up come C is a half-space, then the
original surface ∂E is smooth near 0.

9) Rigidity up to dimension n ≤ 7: The only minimal cones are the half-spaces
if n ≤ 7. Moreover, in R8 the Simons cone

x2
1 + ..+ x2

4 ≤ x2
5 + ..+ x2

8

is a minimal cone.

10) Dimension reduction: If E minimizes perimeter in Ω, then ∂E is a smooth
hypersurface except on a closed singular set of Hausdorff dimension n− 8.

11) Minimal graphs: Let Ω be a mean convex domain, and ϕ a continuous
function on ∂Ω. There exists a unique minimizer E of the perimeter functional
in the cylinder Ω × R ⊂ Rn+1 with boundary data given by the subgraph of ϕ.
Moreover, E is the subgraph of a function u which is smooth in Ω and achieves the
boundary data ϕ continuously.

2. The fractional s-perimeter and nonlocal minimal sets

We introduce the fractional s-perimeter and the corresponding s-nonlocal mini-
mal sets.

Definition 2.1. For s ∈ (0, 1), we define the s-perimeter in Ω of a measurable set
E ∈ Rn as

Ps,Ω(E) := [χE ]2Hs/2(Ω) =
1

2

ˆ
(Rn×Rn)\(Ωc×Ωc)

|χE(x)− χE(y)|2

|x− y|n+s
dxdy.

We use the notation

Ls(A,B) :=

ˆ
A×B

1

|x− y|n+s
dxdy,

and often drop the subindex s whenever there is no possibility of confusion.
Notice that

L(A,B) = L(B,A),

L(A1 ∪A2, B) = L(A1, B) + L(A2, B) if A1 ∩A2 = ∅
L(λA, λB) = λn−sL(A,B),
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and if E is a smooth bounded set then

L(E,Ec) <∞, and lim
s→1−

(1− s)Ls(E,Ec) = cnPRn(E),

for some constant cn > 0 depending only on n. We can rewrite

Ps,Ω(E) =

ˆ
(Rn×Rn)\(Ωc×Ωc)

χE(x)χEc(y)

|x− y|n+s
dxdy

= L(E ∩ Ω, Ec) + L(E ∩ Ωc, Ec ∩ Ω).

Definition 2.2. We say that E is a s-nonlocal minimal set (or that ∂E is a s
nonlocal minimal surface) in a bounded Lipschitz domain Ω if

Ps,Ω(E) ≤ Ps,Ω(F ) if E ∩ Ωc = F ∩ Ωc.

It follows that E is a nonlocal minimal surface if and only if it satisfies the
sub/supersolution properties (with respect to outward direction to E)

i) subsolution property

L(A,E \A)− L(A,Ec) ≥ 0, ∀A ⊂ E ∩ Ω,

ii) supersolution property

L(A,E)− L(A,Ec \A) ≤ 0, ∀A ⊂ Ec ∩ Ω.

Heuristically, if we take A ∼ δx0
with x0 ∈ ∂E, the left hand sides are “equal”

to the nonlocal curvature

Hs(x0) =

ˆ
Rn

χE − χEc
|x− x0|n+s

dx.

The Euler-Lagrange equation states that Hs(x0) = 0, see Proposition 2.8.
The goal is to develop basic properties of s-nonlocal minimal surfaces analogous

to the classical setting. We start with a few simple results.

Proposition 2.3 (Lower semicontinuity). If Ek → E in L1
loc then

lim inf Ps,Ω(Ek) ≥ Ps,Ω(E).

Proof. It follows from the lower semicontinuity of L:
If Ak → A and Bk → B in L1

loc, then up to subsequences we have

χAk(x)χBk(y)→ χA(x)χB(y) for a.e. (x, y),

and
lim inf L(Ak, Bk) ≥ L(A,B),

by Fatou’s theorem.
�

Proposition 2.4 (Existence). Given a measurable set E0 ⊂ Ωc (boundary data),
there exists a minimizer E to the problem

min
E∩Ωc=E0

Ps,Ω(E).

Proof. Since Ps,Ω(E0) < ∞, the infimum is finite. Let Ek be a sequence of
sets for which Ps,Ω(Ek) converges to the infimum value. The uniform bound on

‖χEk‖Hs/2(Ω) and the compactness properties of local Hs/2 functions imply that, up

to subsequences, Ek → E in L2
loc(Ω). This convergence is valid in L1(Rn) because

the functions agree outside Ωc and are uniformly bounded. Now the minimality of
E follows from the lower semicontinuity property.
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�

Proposition 2.5 (Compactness of minimizers). Let Ek be nonlocal minimal sets
in Ω and assume that

Ek → E in L1
loc.

Then E is a nonlocal minimal set in Ω and

limPs,Ω(Ek) = Ps,Ω(E).

Proof. Let F be competitor of E which agrees with E outside Ω, and let Fn be the
set which equals to F in Ω and En outside Ω. By minimality of En we have

Ps,Ω(Fk) ≥ Ps,Ω(Ek).

We claim that the left hand side converges to Ps,Ω(F ) as k → ∞ and the result
follows from the lower semicontinuity. Indeed,

|Ps,Ω(Fk)− Ps,Ω(F )| ≤ L((Ek∆E) ∩ Ωc,Ω)

and the right hand side tens to 0 by the Lebesgue dominated convergence theorem.
Precisely, if Ak ⊂ Ω, Bk ⊂ Ωc, and Ak → A, Bk → B in L1

loc then

L(Ak, Bk)→ L(A,B),

since
χAk(x)χBk(y) ≤ χΩ(x)χΩc(y),

and the right hand side is integrable.
�

Proposition 2.6 (Density estimates). Assume that 0 ∈ ∂E, and E is a nonlocal
minimal set in Ω. Then

|E ∩Br| ≥ c|Br|, ∀Br ⊂ Ω.

for some small c depending on n and s.

Remark 2.7. We understand ∂E in the measure theoretical sense, i.e. the set of
points x0 ∈ Ω for which

|Br(x0) ∩ E| > 0, |Br(x0) ∩ Ec| > 0 for all r small.

The remaining points are either interior to E or to Ec.
Notice that ∂E is a closed set.

Proof. Assume that |E ∩ B1| ≤ c, with c sufficiently small, and we want to show
that |E ∩B1/2| = 0. Denote by

Er := E ∩Br, v(r) := |Er|, a(r) = Hn−1(E ∩ ∂Br).
We use E \Br as a competitor and find

L(Er, E
c) ≤ L(Er, E \ Er)

which gives
L(Er, E

c
r) ≤ 2L(Er, E \ Er) ≤ 2L(Er, B

c
r).

Now we use the Sobolev inequality

L(Er, E
c
r) ≥ c|Er|1−

s
n ,

and obtain

v(r)1− s
n ≤ C

ˆ r

0

a(ρ)(r − ρ)−sdρ.
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We integrate in r from 0 to t:ˆ t

0

v(r)1− s
n dr ≤

ˆ t

0

a(ρ)(t− ρ)1−sdρ ≤ Ct1−sv(t).

We set

tk :=
1

2
+ 2−k, vk := v(tk),

and obtain
(tk − tk+1)v

1− s
n

k+1 ≤ Cvk,
which gives vk → 0 if v0 sufficiently small.

�

As a consequence of the density estimates we obtain the uniform convergence of
∂Ek to ∂E whenever Ek → E in L1.

Next we discuss the Euler-Lagrange equation in the viscosity sense.

Proposition 2.8 (Euler-Lagrange equation). Assume that E is a variational su-
persolution, and it has an interior ball tangent to ∂E at x0. Then

Hs(x0) :=

ˆ
Rn

χE − χEc
|x− x0|n+s

dx ≤ 0.

We remark that the integral above is understood in the principal value sense,
i.e.

Hs(x0) =

ˆ ∞
0

e(r)

r1+s
dr,

with

e(r) := r1−n
ˆ
∂Br(x0)

χE − χEc dHn−1, |e(r)| ≤ Cn.

Notice that Hs(x0) ∈ (−∞,∞] is well defined due to the existence of the tangent
interior ball which implies

e(r) ≥ −Mr for small r.

Proof. We use a calibration argument. Assume that

B1(−en) ⊂ E,
and denote by

At : = Ec ∩B 1
2 +t(−

1

2
en), t ∈ [0, δ],

A′t : = Ec ∩ ∂B 1
2 +t(−

1

2
en).

We claim that

(2.1) L(At, E)− L(At, E
c \At) =

ˆ
At

Hs(x)dx,

where Hs(x) represents the curvature of the set Aρ∪E, ρ ∈ [0, t], for which x ∈ A′ρ.
Notice that the terms in the equality are well defined in (−∞,∞] as the term
L(At, E

c \At) is bounded above, and Hs(x) is bounded below.
The conclusion follows easily from (2.1). Indeed, by continuity, if Hs(0) > 0

then Hs(x) > 0 for all x ∈ Aδ provided that δ is sufficiently small. We contradict
the variational supersolution property for A = Aδ.
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First we establish (2.1) for the truncated kernel

K(x) := |x|−n−sχBε ,

and the corresponding expressions LK(A,B), Hs,K(x). For this we differentiate the
left hand side of (2.1) with respect to t and for a.e. t ∈ [0, δ] we obtain

ˆ
Rn

(ˆ
A′t

LK(x− y)dHn−1
x

)(
χE(y)− χEc\At(y)

)
dy

+

ˆ
Rn

(ˆ
A′t

LK(x− y)dHn−1
y

)
χA(x)dx.

We interchange x and y in the second integral and obtain

=

ˆ
A′t

ˆ
Rn
LK(x− y)

(
χAt∪E(y)− χEc\At(y)

)
dy dHn−1

x

=

ˆ
A′t

Hs,K(x)dHn−1
x

=
d

dt

ˆ
At

Hs,Kdx

Both sides of (2.1) are Lipschitz in the variable t, thus we have established (2.1) for
the truncated kernels K. Now the result follows by letting ε→ 0, and using that

LK(A,B)→ L(A,B), Hs,K(x)→ Hs(x),

and − C ≤ Hs,K(x) ≤ Hs(x) + o(1),

with o(1)→ 0 as ε→ 0.
�

Problems

1. Assume that E is a nonlocal minimal set in B1.
a) If x0 ∈ ∂E, show that

L(E ∩Br(x0), Ec ∩Br(x0)) ≥ crn−s, ∀Br(x0) ⊂ B1.

b) Deduce that

Hn−s(∂E) = 0.

c) Show that E ∩Br(x0), and Ec ∩Br(x0) contain a ball of radius cr.

2. Assume that s ∈ [1/2, 1).
a) Let Q be the unit cube, and assume that 1− δ ≥ |Q ∩A| ≥ δ. Show that

(1− s)Ls(A,Q \A) ≥ c(n, δ),

with c(n, δ) depending only on n and δ (but not on s).
b) Show that the constant in the density estimate depends only on n.
c) Prove that if sk → 1 and (1 − sk)Psk,Ω(Ek) ≤ M , then there exists a subse-

quence Ekl → E in L1(Ω), and E is a set of locally finite perimeter in Ω.
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3. The extension problem and monotonicity formula

We consider the Caffarelli-Silvestre extension of u ∈ Hs/2(Rn) in the upper
half-space of one dimension higher

Rn+1
+ := {X = (x, z)|x ∈ Rn, z > 0}.

Recall that U ∈ H1(Rn+1
+ , z1−sdX) is defined as the solution to

div(z1−s∇U) = 0 in Rn+1
+ , U(x, 0) = u(x).

Then 4s/2u can be expressed in a local way, i.e. if u ∈ C∞0 (Rn) then

4s/2u(x) = cn,s lim
z→0

z1−sUz(x, z),

with cn,s depending only on n and s.

The Hs/2 energy of u can be expresses in terms of the H1 energy of U :

(3.1) [u]Hs/2 = cn,s

ˆ
|∇U |2z1−sdX.

Indeed, for u ∈ C∞0 (Rn) we have

[u]Hs/2 = −
ˆ
u(x)4s/2u(x)dx

= −cn,s lim
z→0

ˆ
U(x, z) z1−sUz(x, z)dx

= cn,s

ˆ
|∇U |2z1−sdX,

and the general result follows by approximation.

The extension problem makes sense for more general functions u ∈ Hs/2
loc (Rn) as

in our setting that satisfy the growth condition
ˆ
Rn

|u(x)|
(1 + |x|)n+s

dx <∞.

Proposition 3.1 (Extension problem). Assume E be a nonlocal minimal set in Ω
and let U be the extension of u = χE − χEc . Then U minimizes locally the energy

ˆ
Rn+1

+

|∇U |2z1−sdX

among all compact perturbations V with trace v = χF − χF c and F∆E ⊂ Ω.

Here by a compact perturbation we understand that V = U outside a compact
set of Rn+1 (and not of Rn+1

+ .)

Proof. If E has compact support in Rn then the proposition follows directly from
(3.1), as χE ∈ Hs/2. The general case follows by approximation.

Indeed, let W be a function with support in BK ⊂ Rn+1 and with trace v−u on
z = 0. Also let UR, VR be the extensions of ϕRu, ϕRv where ϕR denotes a cutoff
function which is 1 in BR and 0 outside B2R.
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We use the minimality of VR for the extension energy J among functions with
the same trace and obtain

J(UR +W )− J(UR) ≥ J(VR)− J(UR)

= c([vR]Hs/2 − [uR]Hs/2)

= c([vR]Hs/2(Ω) − [uR]Hs/2(Ω)).

As we let R→∞, the right hand side converges to a nonnegative constant by the
minimality of E, and UR → U in H1

loc(z
1−sdX) and obtain that

J(U +W,BK)− J(U,BK) ≥ 0.

�

Theorem 3.2 (Monotonicity formula). Assume E be a nonlocal minimal set in Ω
and let U be the extension of u = χE − χEc . Then

ΦU (r) := rs−n
ˆ
B+
r

|∇U |2z1−sdX,

is monotone increasing in r as long as Br ⊂ Ω.
Moreover, Φ is constant if and only if U is homogenous of degree 0.

Proof. We let Ũ be the 0 homogenous extension of U from ∂B+
1 to the interior of

B+
1 . We compute

d

dr
ΦU (r)|r=1 =

ˆ
∂B+

1

|∇U |2z1−sdσ − (n− s)
ˆ
B+

1

|∇U |2z1−sdX

≥
ˆ
∂B+

1

|∇Ũ |2z1−sdσ − (n− s)
ˆ
B+

1

|∇Ũ |2z1−sdX

=
d

dr
ΦŨ (r)|r=1

= 0.

In the second line we used Proposition 3.1 and that on ∂B+
1

|∇Ũ | = |∇τU | ≤ |∇U |.

Notice that in case of equality Ur = 0 at all points on ∂B+
1 .

�

Corollary 3.3. Let E be a nonlocal minimal set in a neighborhood of 0 ∈ ∂E, and
let U be its extension. There exists a sequence λk → 0 such that

λ−1
k E → E0, U(λkx)→ U0(x) in L1

loc,

with U0 the extension of E0. Moreover, U0, E0 are homogenous of degree 0 and E0

is a global nonlocal minimal set E0 with 0 ∈ ∂E0.

The set E0 is a blow-up cone for E at the origin.

Proof. We sketch the proof. First we remark that if E is minimal in B2 and 0 ∈ ∂E
then, by density estimates,

(3.2) crn−s ≤ J(U,B+
r ) ≤ Crn−s, J(U,B+

r ) :=

ˆ
B+
r

|∇U |2z1−sdX,
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for all r ≤ 1. Also, the L2 convergence of U(x, z) to its trace u(x) is locally uniform
as z → 0 since

(g(z)− g(0))2 ≤ Czs
ˆ z

0

t1−s(g′)2dt,

which gives
‖U(x, z)− u(x)‖2

L2(B+
1/2

)
≤ CzsJ(U,B1) ≤ Czs.

Let Uk = U(λkx) be the extensions of the minimal sets Ek = λ−1
k E. Using that

|Uk| ≤ 1, and that they are uniformly Lipschitz in any compact set of Rn+1
+ , after

passing to a subsequence, we may assume that Uk → U0 uniformly on compact sets,
(and therefore Uk → U in L1

loc). Then the traces of Uk converge to the trace of U in
L2
loc(Rn), i.e. U is the extension of a set E0, which is minimal by Proposition 2.5.

Notice that the convergence of ∂Ek to ∂E0 is uniform in B2 by density estimates.
We obtain the conclusion by taking the limit in the monotonicity formula for the

Uk, and obtain that ΦU0
(r) is the constant ΦU (0+). For this it remains to establish

the convergence of the energies i.e.

J(Uk, B
+
1 )→ J(U,B+

1 ).

Indeed, we cover ∂E0 ∩B1 with a collection of balls B+
r ((xi, 0)) with finite overlap

and let O denote their union. We choose r sufficiently small such that J(U,O) is
also small. Then, by (3.2), it follows that J(Uk,O) is comparable to J(U,O), thus
it is also small. Notice that outside the set O the traces of Uk and U are constant
and equal in balls of size ∼ r. The convergence of the energies in B1 \ O follows
from the interior and boundary estimates for the extension problem, and the claim
is proved.

�

4. Improvement of flatness

Next we study the case when E is sufficiently close to a half plane in B1. We
end up in this situation after a dilation, whenever the blow-up cone at x0 ∈ ∂E is
a half-space.

Theorem 4.1. Assume that E is a nonlocal minimal set in B1 and

{xn ≤ −ε0} ⊂ E ⊂ {xn ≤ ε0} in B1,

with ε0 small, depending on n and s. Then ∂E is a C1,α graph in B1/2.

We prove the following result.

Lemma 4.2. Fix α ∈ (0, s), and assume ∂E is a viscosity solution of the Euler-
Lagrange equation in B1, and 0 ∈ ∂E. If

{x · ν ≤ −r1+α} ⊂ E ⊂ {x · ν ≤ r1+α} in Br,

holds for a finite number of radii r = rk = 2−k, and unit directions ν = νk, with
k = 0, 1, .., k0, then it continues to hold for all other integers k ≥ k0, provided that
k0 is chosen large depending on α, s, n.

Lemma 4.2 is stronger than Theorem 4.1 since it does not require minimality of
E. It does not hold in the setting of classical minimal surfaces, i.e. take ∂E to
consist of a collection of parallel planes.

The idea is to show that sufficiently flat solutions to the Euler-Lagrange equation
are well approximated by the graphs of a (1+s)/2-harmonic functions, which satisfy
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the improvement of flatness statement of the lemma. We prove the lemma by
compactness. and show that in the flat situation the Euler-Lagrange equation for
∂E linearizes to the graph of a (1 + s)/2-harmonic function.

Proof. We prove the lemma by compactness. Assume by contradiction that the
statement does not hold, i.e. there exist minimal sets Ek such that after an initial
dilation of factor r−1

k and a rotation, satisfy

{xn ≤ −εk} ⊂ Ek ⊂ {xn ≤ εk} in B1, εk := 2−αk,

and outside B1, Ek has the growth condition

{xn ≤ −Cεkr1+α} ⊂ Ek ⊂ {xn ≤ Cεkr1+α} in Br, for all r ≥ 1,

but ∂Ek ∩ B1/2 cannot be trapped between two hyperplanes at distance εk2−1−α.
The second inclusion follows from the fact that ∂Ek ∩ Br is trapped between two
hyperplanes at distance εkr

1+α if r = 2m, m ≥ 0, and C is a large constant
depending on n, α. This inclusion is meaningful only for the values of r for which
Cεkr

α ≤ 1. In particular it shows that

(4.1)

∣∣∣∣∣
ˆ
Bcr(x0)

χEk − χEkc
|x− x0|n+s

dx

∣∣∣∣∣ ≤ Crα−sεk ∀x0 ∈ Br ∩ ∂Ek, r ≥ 1.

For simplicity of notation we drop the subindex k.

Step 1 (Harnack inequality): There exists δ > 0 depending on n,α,s, such that
in the cylinder

Cδ = B′δ × [−ε, ε]
either

(4.2) {xn ≥ (−1 + δ2)ε} ⊂ E, or E ⊂ {xn ≤ (1− δ2)ε}.

Suppose E covers more than half of the measure of the cylinder Cδ. We slide the
parabolas

xn = ε(t− 1− |x′|2)

by below, and increase t from 0 till t = t0, the first time it touches ∂E at a point
x0. We claim that t0 ≥ 2δ2 which implies the first inclusion in the dichotomy (4.2).

Indeed, if t0 ≤ 2δ2, then we contradict the Euler-Lagrange inequality at x0 from
Proposition 2.8. For this we let F denote the subgraph of the parabola in B1,
extended with E outside B1. Then (4.1) implies that

Hs,F (x0) ≥ −Cε,
hence

Hs,E(x0) ≥ Hs,F (x0) + 2

ˆ
B2δ

χE\F

|x− x0|n+s
dx

≥ −Cε+ Cεδ−(1+s)

> 0,

where in the second inequality we have used that |Cδ| ≥ cεδn−1 and that ε ≤ δ.

Step 2 (Compactness): Up to a subsequence, the vertically rescaled sets

Gk := {(x′, xn)| (x′, εkxn) ∈ ∂Ek}
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converge uniformly on compact sets to the graph of a Hölder continuous function

xn = w(x′), w ∈ Cβ , w(0) = 0, |w(x′)| ≤ C(1 + |x′|1+α).

This follows by iterating Step 1 several times. We only sketch the argument.
After one iteration ∂E is included in the cylinder

B′δ × [a1ε, b1ε] with b1 − a1 = 2− δ2.

We rescale by a factor of δ−1, and verify that Step 1 can be applied again. We can
continue the iteration to deduce that ∂E is included in the cylinders

B′δm × [amε, bmε] with bm − am = 2(1− δ2/2)m.

(Check that the tails remain well behaved in the iteration !)
Step 1 applies as long as the flatness of these cylinders, ε(bm − am)δ−m are less

than δ (which corresponds to ε ∼ 1 in Step 1). This means that

m ∼ | log ε|, so m→∞ as ε→ 0.

In the limit this gives a Hölder modulus of continuity for the vertical rescaled set
G at the origin. We apply this argument to the other points on ∂E, and a version
of Arzela-Ascoli theorem implies the conclusion.

Step 3 (Linearized equation): The limiting function w solves

4
1+s
2 w = 0 in Rn−1,

in the viscosity sense.

Assume by contradiction that ϕ is a smooth function that touches w strictly by
below at x′0 and

4
1+s
2 ϕ(x′0) ≥ δ.

Let M be a sufficiently large constant, to be made precise later. By Step 2, in
the cylinder |x′ − x′0| ≤ M , small vertical translations graphs of εkw(x′) become
tangent to ∂Ek by below at a point xk with x′k → x′0. Let Fk denote the subgraph
of this translation of εkw(x′).

By (4.1)

Hs,Ek(xk) ≥
ˆ
B′M (x′k)×R

χFk − χFkc
|x− xk|n+s

dx+O(εkM
α−s).

Since ∂Fk up to its second derivatives is of order ∼ εk near xk we obtain that the
integral above in the cylinder B′µ(x′k)×R is equal to O(εkµ

1−s). In the remaining
annulus we use that

|x− xk| = |x′ − x′k|+O(ε2
k)

in the cylinder centered at xk of height εk, and obtain

Hs,Ek(xk) ≥ 2εk

ˆ
(B′M\B′µ)(x′k)

ϕ(x′)− ϕ(x′k)

|x′ − x′k|n+s
dx′ +O(ε3

k) +O(εkµ
1−s + εkM

α−s).

We choose µ small and M large depending on δ and ϕ and obtain that

Hs,Ek(xk) ≥ εkδ > 0,

for all large k, a contradiction.
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Step 4: Step 3 and the growth of w at infinity impy that w is a linear function
by Liouville theorem. The uniform convergence of Gk to the graph of w gives that
Ek can be trapped between two hyperplanes at distance εk2−1−α in B1/2, and we
reached a contradiction.

�

Remark 4.3. Higher C∞ regularity of ∂E can be obtained by considering the Euler-
Lagrange equation for C1,α graphs, see Barrios, Figalli and Valdinoci [BFV]. The
method above can be adapted to give C1,α regularity for all α < 1.

Remark 4.4. The constant ε0 in Theorem 4.1 can be taken independent of s as
s → 1. However, in this case we need uniform estimates in s in the proof of the
Harnack inequality, and minimality of E has to be used. See the paper of Caffarelli
and Valdinoci [CV] for further details.

The linearized operator.
Assume that E is a C2 set, and denote by ν the outer normal to ∂E. Consider

the deformation
x→ x+ t η(x)ν,

with ν a smooth function, and denote by Et the image of E. Then, the change in
the non-local curvature at a point x0 ∈ ∂E is given by

d

dt
Hs,Et(x0)|t=0 =

ˆ
∂E

η(x)− η(x0)ν(x0) · ν(x)

|x− x0|n+s
dx

=

ˆ
∂E

η(x)− η(x0)

|x− x0|n+s
dx+ η(x0)

ˆ
∂E

1− ν(x0) · ν(x)

|x− x0|n+s
dx.

In particular, if E is a non-local minimal and e is a fixed direction, then η = ν · e
solves the linearized equation above with 0 right hand side.

We state a few consequences of Theorem 4.1:

a) The half-space is the cone of least energy.

b) There is a first dimension n0 ∈ [2,∞] for which a non-planar minimal cone C
exists, and ∂C is smooth outside the origin.

c) If E is a minimal set in Ω, then ∂E is locally a smooth hypersurface in Ω
except on a closed singular set of Hausdorff dimension n− n0.

5. Rigidity of cones

Classification of cones plays an important role in the regularity theory of minimal
surfaces. We present such a result in 2D and all s ∈ (0, 1).

Theorem 5.1. Let E be a non-local minimal cone in 2D. Then E is a half-space.

Proof. Let U be the extension of E in R2+1. Let ϕ denote a cutoff function which
is 1 in B+

1/2 and 0 outside B+
1 and let e be a unit direction. Let

Uε(X) := U(X + εeϕ(X)), U−ε(X) = U(X − εeϕ(X)),

U+ = max{Uε, U−ε}, U− = min{Uε, U−ε}
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and then

J(U+, B1) + J(U−, B1) = J(Uε, B1) + J(U−ε, B1) = 2J(U,B1) +O(ε2),

where O(ε2) depends on the energy of U in B+
1 . Using the minimality of E

J(U±, B1) ≥ J(U,B1),

we find

J(U±, B1) ≤ J(U,B1) +O(ε2).

If U+ does not coincide with either Uε or U−ε in B+
2ε then, by unique continuation,

U+ it is not a minimizer in this ball. The minimizer with the same boundary data
on B+

2ε lowers the energy by an amount σε2−s for some constant σ > 0, where the
ε2−s factor comes from the scaling, and we contradict the minimality of U .

In conclusion Uε and U−ε are ordered which means that E is monotone in any
unit direction e, i.e. E is a half-space.

�

Theorem 5.2. Let E be a minimal cone in dimension n ≤ 7 and s sufficiently
close to 1. Then E is a half-space.

This result follows by compactness from the theory of minimal surfaces and the
uniform in s estimates mentioned before. See Caffarelli and Valdinoci [CV] for
further details.

Davila, Del Pino and Wei investigated in [DDW] the stability of Lawson’s cones
for nonlocal minimal surfaces and showed that they are all unstable up to dimension
n ≤ 6.

The argument of Theorem 5.1 can be used to provide a bound for the standard
perimeter of E.

Theorem 5.3. Assume that E is minimal in B1. Then

PB1/2
(E) ≤ C(n, s).

Proof. We sketch the proof. Let Eε denote the image of E under the transformation

x→ x+ εϕ(x)e.

Then, as above we find

Ps,B1(Eε) ≤ Ps,B1(E) + Cε2,

with C universal. Denote by

E+ = E ∪ (Eε \ E), E− = E \ Eε.

Then, the identity (see Problem 1 below)

Ps,B1
(E+) + Ps,B1

(E−) = Ps,B1
(Eε) + Ps,B1

(E)− 2L(Eε \ E,E \ Eε),

and the minimality of E implies

L(Eε \ E,E \ Eε) ≤ Cε2,

or

(5.1)
1

ε
|Eε \ E| ·

1

ε
|E \ Eε| ≤ C.
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In B1/2, Eε is the translation of E in the direction εe. We restrict to B1/2, and we
have

||Eε \ E| − |E \ Eε|| =

∣∣∣∣∣
ˆ
B1/2

χEε − χE

∣∣∣∣∣ ≤ Cnε.
From (5.1) we find

1

ε
|(Eε∆E) ∩B1/2| ≤ C,

and the conclusion follows from the next lemma.
�

Lemma 5.4.

lim sup
e∈∂B1,ε→0

1

ε
|(Eε∆E) ∩B1/2| ≥ cnPB1/2

(E).

Proof. It follows from the definition of the perimeter that there exists a coordinate
direction, say e = e1, such thatˆ

χE gx1
dx ≥ 1

2n
PB1/2

(E),

with g ∈ C∞0 (B1/2), |g| ≤ 1. The left side is the limit as ε→ 0 of

1

ε

ˆ
χE(g(x+ εe1)− g(x))dx =

1

ε

ˆ
(χEε − χE)g(x)dx

≤ 1

ε

ˆ
B1/2

|χE − χEε |.

�

Remark 5.5. In the proof of Theorem 5.3 we used the minimality of E only with
respect to infinitesimal perturbations. It turns out that the same result holds for
stable nonlocal minimal sets E, see Problem 2 below and the paper of Cinti, Serra
and Valdinoci [CSV] for more details.

Non-local minimal graphs. If Ω = Ω′ ×R is a cylinder and the boundary data is
graphical with respect to the en direction, then E is graphical in Ω. It turns out
that ∂E is smooth in Ω, however it has discontinuities on ∂Ω with respect to the
outside datum. See [DSV] and [CC] for more details on this topic.

Open problems. We conclude with some open problems/directions:
a) the classification of minimal cones in dimension n = 3 for all s ∈ (0, 1).
b) the notion of s-nonlocal perimeter and minimal surface in codimension ≥ 2.
c) the study of singularities for the s-nonlocal mean curvature flow (monotonicity

formula).
d) existence of self-smilar solutions for the s-nonlocal mean curvature flow, for

example the translating shape in vertical direction in 2D - Hs,E(x) = ν(x) · e2.

Problems

1. a) Assume that E ∩ Ωc ⊂ F ∩ Ωc. Show that

Ps,Ω(E ∩ F ) + Ps,Ω(E ∪ F ) = Ps,Ω(E) + Ps,Ω(F )− 2L(E \ F, F \ E).
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b) Deduce that minimizers are well ordered with respect to inclusions induced
by the data outside Ω.

2. a) Prove the opposite inequality of Lemma 5.4:

1

ε
|(Eε∆E) ∩B1/2| ≤ PB 1

2
+ε

(E).

b) Show that
Ps,B1/2

(E) ≤ C(n, s)PB1
(E).

c) Deduce the following version of Theorem 5.3:
if E is a stable nonlocal set in B1 then

PB1/2
(E) ≤ C(1 + (Ps,B1(E))1/2).

d) Use parts b) and c) and scaling to show that Theorem 5.3 holds for stable
nonlocal sets.
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