On Calderon-Zygmund type estimates for nonlocal PDE

Armin Schikorra (University of Pittsburgh)

NSFE 2022

based on joint works with M.M. Fall, W. Lewkeeratiyutkul, S. Khomrutai, T. Mengesha, S. Yeepo

Funding: Simons Foundation, NSF Career DMS-2044898

Classical (=local) version

Let $u \in W^{1,2}(\Omega,\mathbb{R})$ be a solution to

$$\operatorname{div}(\mathsf{K} D u) \equiv \sum_{\ell=1}^n \partial_\ell(\mathsf{K} \partial_\ell u) = f \quad \text{in } \Omega \subset \mathbb{R}^n$$

where $K(x): \Omega \to [0,\infty)$ is bounded & measurable

$$\inf_{x \in \Omega} K(x) > 0$$
 (elliptic)

Calderon-Zygmund theory:

$$f \in W^{s,p} \stackrel{?}{\Rightarrow} u \in W^{s+2,p}$$
 (CZ)

► Here s < 0 is ok: $f \in W^{-1,p} \equiv (W^{1,p'})^* \stackrel{?}{\Rightarrow} u \in W^{1,p}$

Answer: Depends on regularity of K.

Let $u \in W^{1,2}(\mathbb{R}^n,\mathbb{R})$ be a solution to

$$\sum_{\ell=1}^n \partial_\ell(\mathsf{K}\partial_\ell \mathsf{u}) = \mathsf{f} \quad \text{in } \mathbb{R}^n$$

Apply $(-\Delta)^{-\frac{1}{2}}$, set $w := (-\Delta)^{\frac{1}{2}}u$, $g := (-\Delta)^{-\frac{1}{2}}f$.

$$\sum_{\ell=1}^n \mathcal{R}_\ell(\mathsf{K}\mathcal{R}_\ell \mathsf{w}) = \mathsf{g} \quad \text{in } \mathbb{R}^n$$

Where $\mathcal{R}_{\ell} = (-\Delta)^{-\frac{1}{2}} \partial_{\ell}$ is the ℓ -th Riesz transform.

$$(-\Delta)^{-\frac{1}{2}}h(x) = c \int_{\mathbb{D}_n} |x-z|^{1-n}h(z) dz$$

$$\mathcal{R}_{\ell}h(x) = c \int_{\mathbb{R}^n} \frac{(x-z)_{\ell}}{|x-z|^{n+1}} h(z) dz$$

Let $\mathbf{w} \in L^2(\mathbb{R}^n, \mathbb{R})$ be a solution to

$$\sum_{\ell=1}^n \mathcal{R}_\ell({}^{\ell}\mathcal{R}_\ell w) = g \quad \text{in } \mathbb{R}^n$$

We have $\sum_{\ell=1}^{n} \mathcal{R}_{\ell} \mathcal{R}_{\ell} = -I$, so

$$-K w + \sum_{\ell=1}^{n} [\mathcal{R}_{\ell}, K](\mathcal{R}_{\ell} w) = g$$

where [T, a](b) is the commutator T(ab) - aT(b). So

$$\mathbf{w} = -\frac{1}{K}\mathbf{g} + \frac{1}{K}\sum_{\ell=1}^{n}[\mathcal{R}_{\ell}, K](\mathcal{R}_{\ell}\mathbf{w})$$

Let $w \in L^2(\mathbb{R}^n, \mathbb{R})$ be a solution to

$$w = -\frac{1}{K}g + \frac{1}{K}\sum_{\ell=1}^{n}[\mathcal{R}_{\ell}, K](\mathcal{R}_{\ell}w)$$

Main observation: If K is C^{γ} -Hölder continuous then

$$|[\mathcal{R}_{\ell}, \kappa][\tilde{w}](x)| = \left| \int_{\mathbb{R}^{n}} \frac{(x - y)_{\ell} (\kappa(x) - \kappa(z))}{|x - z|^{n+1}} w(z) dz \right|$$

$$\leq [\kappa]_{C^{\gamma}} \left| \int_{\mathbb{R}^{n}} |x - z|^{\gamma - n} |w(z)| dz \right|$$

$$\approx [\kappa]_{C^{\gamma}} (-\Delta)^{-\frac{\gamma}{2}} |w|(x)$$

So

$$w = -\frac{1}{\kappa}g + \text{compact distortion}$$

and even for any $0 \le \beta < \gamma$

$$|D|^{\beta} w = -|D|^{\beta} \left(\frac{1}{K}g\right) + \text{compact distortion}$$

Let $w \in L^2(\mathbb{R}^n, \mathbb{R})$ be a solution to

$$|D|^{\beta} w = -|D|^{\beta} \left(\frac{1}{\kappa} g\right) + \text{compact distortion}$$

Thus we get (CZ):

- ▶ If $f \in W^{s,p}$ then $g = (-\Delta)^{-\frac{1}{2}} f \in W^{1+s,p}$ then
- if $\beta < 1 + s$: $|D|^{\beta} w \in L^p$, thus
- $(-\Delta)^{\frac{1}{2}} u = w \in W^{\beta,p}$
- ▶ $u \in W^{t,p}$ whenever t < 2 + s.

Fun fact: also works with $\beta = 0$ if $K \in VMO$, i.e. if

$$\limsup_{r\to 0} r^{-2n} \int_{B(x,r)} \int_{B(x,r)} | {\color{red} K}(z_1) - {\color{red} K}(z_2) | dz_1 dz_2 = 0 \quad \forall x\in \mathbb{R}^n.$$

Nonlocal version

$$\operatorname{div}(KDu) = f$$
 becomes $\operatorname{div}_{\alpha}(Kd_{\alpha}u) = f$

where $\operatorname{div}_{\alpha}$ and d_{α} are type of nonlocal divergence Gunzburger-Du et al., Mazowiecka-S. (div-curl).

$$\int_{\mathbb{R}^n} \frac{K(x,y)(u(x)-u(y))}{|x-y|^{n+2\alpha}} dy = f(x).$$

Many previous results for some cases of CZ: e.g.

Dong-Kim (K(x - y)), Brasco-Lindgren, Cozzi, and very recently: Nowak (for VMO!!)

Approach? Same!

$$\int_{\mathbb{R}^n} \frac{K(x,y)(u(x)-u(y))}{|x-y|^{n+2\alpha}} dy = f(x).$$

For
$$\alpha_1 + \alpha_2 = 2s$$
 apply $(-\Delta)^{-\frac{\alpha_1}{2}}$, set $w := (-\Delta)^{\frac{\alpha_2}{2}} u$, $g := (-\Delta)^{-\frac{\alpha_1}{2}} f$.

Then

$$\int_{\mathbb{R}^n} A_{\mathsf{K}}(z_1,z_2) w(z_2) dz_2 = g(z_1)$$

where

$$A_{K}(z_{1}, z_{2}) = \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \frac{K(x, y) (|x - z_{1}|^{\alpha_{1} - n} - |y - z_{1}|^{\alpha_{1} - n}) (|x - z_{2}|^{\alpha_{2} - n} - |y - z_{2}|^{\alpha_{2} - n}}{|x - y|^{n + 2\alpha}}$$

Commutator? Similar!

$$\int_{\mathbb{R}^n} A_{\mathsf{K}}(z_1, z_2) w(z_2) dz_2 = \mathbf{g}(z_1)$$

is written as

$$K(z_1,z_1)w(z_1)+\int_{\mathbb{R}^n}\left(A_K(z_1,z_2)-K(z_1,z_2)\delta_{z_1,z_2}\right)w(z_2)dz_2=g(z_1)$$

Main observation:

$$(A_{K}(z_{1}, z_{2}) - K(z_{1}, z_{2})\delta_{z_{1}, z_{2}}) = \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \frac{(K(x, y) - K(z_{1}, z_{2})) (|x - z_{1}|^{\alpha_{1} - n} - |y - z_{1}|^{\alpha_{1} - n}) (|x - z_{2}|^{\alpha_{2} - n} - |x - y|^{n + 2\alpha})}{|x - y|^{n + 2\alpha}}$$

Similar as before this is a compact operator!

Commutator estimate

Theorem (Mengesha-S-Yeepo)

If $K \in L^{\infty} \cap C^{\sigma}$, for all $\varepsilon \ll 1$

$$\left| \int_{\mathbb{R}^n \times \mathbb{R}^n} \left(A_{\mathsf{K}}(z_1, z_2) - {\mathsf{K}}(z_1, z_2) \delta_{z_1, z_2} \right) f(z_1) g(z_2) dz_1 dz_2 \right|$$

$$\lesssim \int_{\mathbb{R}^n} (-\Delta)^{-\frac{\sigma - \varepsilon}{2}} |f|(x) (-\Delta)^{-\frac{\varepsilon}{2}} |g|(x) dx$$

$$(A_{K}(z_{1}, z_{2}) - K(z_{1}, z_{2})\delta_{z_{1}, z_{2}}) = \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \frac{(K(x, y) - K(z_{1}, z_{2})) (|x - z_{1}|^{\alpha_{1} - n} - |y - z_{1}|^{\alpha_{1} - n}) (|x - z_{2}|^{\alpha_{2} - n} - |x - y|^{n + 2\alpha})}{|x - y|^{n + 2\alpha}}$$

Conclusion - Mengesha-S-Yeepo

 $s \leq 0$, K Hölder continuous and bounded: equation becomes

$$w(z_1) = \frac{1}{K(z_1, z_1)} g(z_1) + \text{compact perturbation}$$

- ▶ If $f \in W^{s,p}$ then $g(z_1) = (-\Delta)^{-\frac{\alpha_2}{2}} f \in W^{\alpha_2 + s,p}$
- ► Then $\mathbf{w} \in W^{\alpha_2+s,p}$
- ▶ Then $\mathbf{u} = (-\Delta)^{-\frac{\alpha_1}{2}} \mathbf{w} \in W^{\alpha_1 + \alpha_2 + s, p}$
- ► Then $\mathbf{u} \in W^{2\alpha+s,p}$

decoupling of regularity of K and $2\alpha + s$ because α_1 and α_2 can be chosen freely.

works as long as $2\alpha + s < 2$ (if > 2 needs more reg for K)

Calderon-Zygmund kernel theorem

$$A_{K,\alpha_{1},\alpha_{2}}(z_{1},z_{2}) = \int_{\mathbb{R}^{n}\times\mathbb{R}^{n}} \frac{K(x,y) (|x-z_{1}|^{\alpha_{1}-n} - |y-z_{1}|^{\alpha_{1}-n}) (|x-z_{2}|^{\alpha_{2}-n} - |y-z_{2}|^{\alpha_{2}-n}}{|x-y|^{n+(\alpha_{1}+\alpha_{2})}}$$

Theorem (Lewkeeratiyutkul- Khomrutai -S-Yeepo)

Let
$$K \in L^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$$
, $(\alpha_1 + \alpha_2) \in (0,2)$

$$T := f(\cdot) \mapsto \int_{\mathbb{R}^N} A_{K,\alpha_1,\alpha_2}(\cdot,z_2) f(z_2) dz_2$$

is a Calderon-Zygmund operator, and

Vigmund operator, and
$$\|Tf\|_{L^p}\lesssim \|K\|_{L^\infty}\|f\|_{L^p(\mathbb{R}^n)}$$

$$\|Tf\|_{BMO}\lesssim \|K\|_{L^\infty}\|f\|_{L^\infty(\mathbb{R}^n)}$$

$$\|Tf\|_{L(1,\infty)}\lesssim \|K\|_{L^\infty}\|f\|_{L^1(\mathbb{R}^n)}$$

Simon Nowak's result

- ▶ So should we hope that if $K \in VMO$ then T is compact, where

$$\langle Tf, g \rangle = \int_{\mathbb{R}^n \times \mathbb{R}^n} \left(A_{\mathcal{K}}(z_1, z_2) - \mathcal{K}(z_1, z_2) \delta_{z_1, z_2} \right) f(z_1) g(z_2) dz_1 dz_2$$

Is there a Coifman-Rochberg-Weiss-type off-diagonal-commutator theorem??

Different Kernel: Fall, Mengesha, S., Yeepo

Think about

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{\left(u(x) - u(y) \right) \left(\varphi(x) - \varphi(y) \right)}{|\Phi(x) - \Phi(y)|^{n+2\alpha}} |\det(D\Phi(x)|| \det(D\Phi(y)| = f[\varphi])$$

Equation for $u \circ \Phi^{-1}$, e.g. where $\Phi : \mathbb{R}^n \to \mathcal{M}$ is diffeo. Leads to the kernel

$$\frac{|\Phi(x) - \Phi(y)|}{|x - y|} \approx \left| D\phi(x) \frac{x - y}{|x - y|} \right|.$$

So we should maybe consider instead kernels (cf. Fall: Schauder theory) of the form

$$K\left(x, \frac{x-y}{|x-y|}, |x-y|\right)$$

Different Kernel: Fall, Mengesha, S., Yeepo

CZ-theory for:

$$\int_{\mathbb{R}^n} \frac{K}{K} \left(x, \frac{x-y}{|x-y|}, |x-y| \right) \frac{\left(u(x) - u(y) \right)}{|x-y|^{n+2\alpha}} dy = f(x)$$

▶ Dong-Kim: If K = K(x - y) then full CZ-theory

$$f \in W^{s,p} \Rightarrow u \in W^{s+2\alpha,p}$$

(Dong-Kim prove s=0 case $f\in L^p$ – since convolution operator commutes with differentiation: follows for any s by interpolation.)

If K(x, h, r) uniformly continuous in x for small r, freezing argument

$$\int_{\mathbb{R}^{n}} \frac{K\left(x_{0}, \frac{x-y}{|x-y|}, 0\right) \frac{\left(u(x) - u(y)\right)}{|x-y|^{n+2\alpha}} dy}{|x-y|^{n+2\alpha}} dy$$

$$= f(x) + \int_{\mathbb{R}^{n}} \left(K\left(x_{0}, \frac{x-y}{|x-y|}, 0\right) - K\left(x, \frac{x-y}{|x-y|}, |x-y|\right)\right) \frac{\left(u(x) - u(x)\right)}{|x-y|^{n+2\alpha}} dy$$

Then we can compare our solution to Dong-Kim-problem plus small variation.

Use Banach Fixed-point theorem to show there is a unique solution of the right regularity

Provides a generalization of Dong-Kim-type kernels (previous result was not)

Fractional *p*-Laplacian:

$$\operatorname{div}(|\nabla u|^{p-2}\nabla u)=f.$$

If $u \in C^1$ around some x_0 and $|\nabla u(x_0)| > 0$ then any regularity theory around x_0 .

$$\int_{\mathbb{R}^n} \frac{|u(x) - u(y)|^{p-2} (u(x) - u(y))}{|x - y|^{n+\alpha p}} dy$$

$$\approx \int_{\mathbb{R}^n} \frac{|Du(x) \frac{x - y}{|x - y|}|^{p-2} (u(x) - u(y))}{|x - y|^{n+\alpha p - (p-2)}} dy$$

$$\approx \int_{\mathbb{R}^n} \frac{K(x, x - y) (u(x) - u(y))}{|x - y|^{n+2\beta}} dy$$

for $\beta:=\frac{\alpha p-(p-2)}{2}$. If $\beta\in(0,1)$ we can apply our theory? yes: but K(x,h)=0 for some h, just not so many!

Degenerate Kernel

Theorem (Fall, Mengesha, S., Yeepo)

Dong-Kim-result holds if K is nonnegative and bounded, and degenerate only in the following sense:

For some $v \in \mathbb{S}^{n-1}$,

$$\forall \sigma \in [0,1): \ \exists \lambda = \lambda(\sigma) > 0: \quad \lambda < \inf_{h \in S(\sigma,v)} {\color{red} \underline{\mathsf{K}}}(h).$$

Here $S(\sigma, v)$ denotes the the part of the sphere \mathbb{S}^{n-1} which is bounded away from the v^{\perp} ,

$$S(\sigma, v) := \{h \in \mathbb{R}^n : |h| = 1, |\langle h, v \rangle| \ge \sigma\}$$

Applies in particular if for some $v \neq 0$.

$$K(h) = |\langle v, h \rangle|$$

Proof Same as Dong-Kim: a priori estimate by Fourier transform.

Consequence

Corollary

Our theorem applies also if

$$\forall \sigma \in [0,1): \ \exists \lambda = \lambda(\sigma) > 0: \quad \lambda < \inf_{\mathsf{x}} \inf_{h \in \mathcal{S}(\sigma,\mathsf{v})} \frac{\mathsf{K}(\mathsf{x},h).$$

Corollary

Regularity for (some regime of) the fractional p-Laplace around x_0 if $|\nabla u(x_0)| > 0$.

Further Problems

- Boundary regularity
- ► *VMO*-result via commutator?
- ▶ unbounded and degenerate K (for frac p-Laplacian)
- parabolic version?

Thank you for your attention

- Mengesha, Schikorra, Yeepo: Calderon-Zygmund type estimates for nonlocal PDE with Hölder continuous kernel. Adv. Math. 383 (2021),
- Yeepo, Lewkeeratiyutkul, Khomrutai, Schikorra: On the Calderon-Zygmund property of Riesz-transform type operators arising in nonlocal equations. Commun. Pure Appl. Anal. 20 (2021), no. 9, 2915
- ► Fall, Mengesha, Schikorra, Yeepo, Calderon-Zygmund theory for non-convolution type nonlocal equations with continuous coefficient, arXiv:2109.04879