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This dissertation is divided into two main topics. First, we study trans-
mission problems for elliptic equations, both linear and nonlinear, and prove
existence, uniqueness, and optimal regularity of solutions. In our first work,
we consider a problem for harmonic functions and use geometric techniques.
Our second work considers viscosity solutions to fully nonlinear transmission
problems. Given the nonlinear nature of these equations, our arguments are

based on perturbation methods and comparison principles.

The second topic is related to nonlocal Monge-Ampére equations. We
define a new family of integro-differential equations arising from geometric
considerations and study some of their properties. Furthermore, we consider
a Poisson problem in the full space and prove existence, uniqueness, and C'*!
regularity of solutions. For this problem, we use tools from convex analysis

and symmetrization.
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Chapter 1

Introduction

This thesis is divided into two main parts. The first part is about
elliptic transmission problems and includes Chapters 2-4, where each chapter
considers a different problem. The second part, in Chapter 5, deals with the
construction and analysis of a new family of integro-differential operators that

are motivated by a nonlocal Monge-Ampére equation.

Next, we briefly introduce transmission problems and explain the main
features. Then we present the Monge-Ampére equation and discuss two dif-
ferent nonlocal versions. Finally, we provide an outline describing the several

problems we studied.

1.1 Transmission problems

Transmission problems describe phenomena in which a physical quan-
tity changes behavior across some surface, known as the interface. Historically,
the study of these types of problems started in the 1950s, with the pioneering
work of M. Picone in elasticity theory [49]. Further significant contributions
to Picone’s problem were made by J. L. Lions [39], G. Stampacchia [61] and

S. Campanato [18]. In 1960, M. Schechter generalized the problem of transmis-



sion for elliptic equations with smooth coefficients and interfaces [54]. Other
variations, such as the so-called diffraction problems in the theory of discontin-
uous coefficients, were given by O. A. Ladyzhenskaya and N. N. Ural’tseva [33],
O. A. Oleinik [47], and M. V. Borsuk [6], among others. See [5] for a detailed
exposition on classical transmission problems. Since then, many mathemati-
cians have been interested in studying these problems due to their wide range of
applications in different areas of science. For instance, they appear in electro-
magnetic processes, composite materials in solid mechanics, vibrating folded
membranes, etc. For more recent developments, see [20,31,35,36,43| and the

references therein.

Mathematically, a simple model may be described as follows: let €2 be
a bounded domain in R" divided into two subdomains, 2; and {25, by some
surface I' (the interface). On each subdomain, we prescribe some PDE and
call uy and us the solutions, respectively. For the problem to be well-posed, we
need to determine some compatibility conditions on I'. These are known as the
transmaission conditions, and they describe how both u; and us interact with
each other from each side of the interface. For example, typical transmission
conditions include, (u1), — (ug2), = 1 or (u1), = 2(us),, where (u;), denotes the
normal derivative of u;. Both equations prescribe a jump between the normal
derivatives of u; and us, so we expect solutions to be singular on I'. Therefore,

the primary interest is to study the regularity of solutions near the interface.

Transmission problems can be understood as two (or more) boundary

value problems that have been attached via the transmission conditions. In



general, it is not possible to decouple the problems, and thus, their study
becomes more challenging. In contrast to free boundary problems, classical
transmission problems deal with a fized interface (i.e., I' is known a priori). It
is worth mentioning that several works in the literature consider the so-called
free transmission problems, where I' is a free boundary, in the sense that it

depends on the solution itself. For instance, see [1,25,29,50,51].

In this dissertation, we consider three transmission problems with dif-
ferent flavors, including linear and nonlinear equations, and flat and nonflat
interfaces. One of our principal features is the minimal regularity of the inter-

face. We will explain them in more detail in Section 1.3.

1.2 Nonlocal Monge-Ampére equations

The Monge-Ampére equation arises in several problems in analysis,
such as the Monge-Kantorovich optimal mass transportation problem, and in
geometry, such as the prescribed Gaussian curvature problem. The classical
equation prescribes the determinant of the Hessian of some convex function u

in a given domain 2. Namely,
det(D?*u) = f in Q.

This is a nonlinear second order elliptic equation that degenerates whenever
the Hessian of u equals 0. There are many works that study the theory of this
equation and its variations. The books by Gutiérrez [28] and Figalli [24] give

a detailed description of the main results and techniques.



On the other hand, in the recent years, there has been significant inter-
est in studying nonlocal diffusion equations. These equations arise in the study
of diffusion processes with long-range interactions such as Lévy processes, in
probability, or particles jumping through random media, in fluid dynamics. A

classical nonlocal operator is the fractional Laplacian, given by

u(z +vy) — u(z)
Ml

Afu(x) = cps PV/ dy.

The term nonlocal is motivated by the fact that the value of A*u at the point
x depends on all the values of v in R"™, and the term fractional has to do with
the order of the operator, 2s, with 0 < s < 1. For instance, this can be seen
using the Fourier transform or a scaling argument. Furthermore, ¢, ~1—s
and A* — A, as s — 1. Hence, A® is a fractional analog of A. The integral is
understood in the principal value sense to be able to cancel out the singularity
from the kernel, |y|7"72¢. Note that this requires some differentiability for the
function u. Hence, the fractional Laplacian is a particular case of an integro-

differential operator, where the latter considers more general kernels.

In the literature, there are different nonlocal versions of the Monge-
Ampére operator that N. Guillen and R. W. Schwab [27], L. Caffarelli and
F. Charro [8], and L. Caffarelli and L. Silvestre [13] have considered. See also
[42] for a nonlocal linearized Monge-Ampére equation given by D. Maldonado
and P. R. Stinga. These definitions are motivated by the following linear

algebra extremal property: if B is a positive definite symmetric matrix, then

ndet(B)Y" = infqtr(ATBA),
€



where A = {A € M, : A > 0, det(A) = 1} and M, is the set of n x n
matrices. If a convex function v is C? at a point x, then by the previous
identity with B = D?u(xg), we may write the Monge-Ampére operator as a

concave envelope of linear operators. It follows that

n det(D?u(zo))V/" = inf Afuo Al (A~ ).

L. Caffarelli and F. Charro study a fractional version of det(D?u)/™, replacing
the Laplacian by the fractional Laplacian in the previous identity (see also

[27]). More precisely,
Diu(xy) = }lrelg AP[uo AJ(A™ ),

or equivalently, using the integral representation,

. B . u(xo + x) — u(zo)
Du(wo) = cn,s inf PV /n | A= Ly|v2s

dz.

A different approach based on geometric considerations was given by L. Caf-
farelli and L. Silvestre. In fact, the authors consider kernels whose level sets are

volume preserving transformations of the fractional Laplacian kernel. Namely,
MA® u(xo) = cns Klgﬂi;; /n(u(.:lzo + ) —u(xg) — x - Vu(zg))K(x) de,
where the infimum is taken over the family
K = {K R SR, [{zeR: K@) >r ™2} =|B]|, Vr> o}.

Notice that |A~tz|™ % € K3, for any A € A. Therefore,

MA® u(zg) < Diu(xg) < A’u(xy).



We point out that, at the nonlocal level, the operators D® and MA?® are not
equivalent. However, when we pass to the limit as s — 1, both MA®u and

D3y, converge to det(D?u)'/™ up to some constant.

In the last chapter of this dissertation, we will discuss a nonlocal prob-
lem related to the Monge-Ampére equation. The problem is motivated by the
previous construction and the fact that there is a gap between the nonlocal
Monge-Ampére operator and the fractional Laplacian. Our goal is to find a

reasonable family of intermediate operators that will somehow link them.

1.3 Outline

This manuscript is organized as follows. In Chapter 2, we study a trans-
mission problem for harmonic functions, which is motivated by the pioneering
work of Schechter for smooth domains [54]. One of our main novelties is that
the transmission interface has only O regularity. This minimal regularity
assumption makes the problem nontrivial and challenging. For instance, to
prove regularity of solutions up to the interface, the classical Schauder ap-
proach of flattening the boundary is not available. Integrating by parts, we
reduce the transmission problem to a distributional Poisson equation, where
the right-hand side is a measure supported on the interface. We prove exis-
tence and uniqueness of continuous solutions using techniques from potential
theory. Then we prove optimal regularity up to the interface via a pertur-
bation method. For this, we build up a new fine geometric argument based

on the mean value property and the maximum principle. This is joint work



with L. Caffarelli and P. R. Stinga, published in Arch. Ration. Mech. Anal.
(2021), see [17].

Chapters 3 and 4 consider transmission problems for second order fully
nonlinear equations with flat and nonflat interfaces, respectively. The theory
of fully nonlinear equations started around the 1980s, and nowadays it is a
hot research topic with many open problems. The notion of solution for these
equations is understood in the wiscosity sense. This concept was introduced
by M. G. Crandall and P. L. Lions for Hamilton-Jacobi equations [22], and
was generalized later on to second order fully nonlinear operators [21]. In
this work, in contrast to the problems introduced in Chapter 2, we allow the
operators from each side of the interface to be different, as well as having
nontrivial right-hand sides. These features, especially the nonlinear character
of the equations, give rise to new difficulties. For example, we cannot use
variational techniques or tools such as Green’s functions and representation
formulas. This is joint work with P. R. Stinga that will soon be submitted for

publication [60].

First, we study the flat interface case, that is, the case where the in-
terface is a hyperplane. These problems are in the same spirit as the ones
introduced by D. De Silva, F. Ferrari, and S. Salsa in [58]. Problems with
flat boundaries are relatively easier to understand, and one can extend many
ideas to more general domains. Furthermore, they play a fundamental role
in the regularity theory of nonflat problems that we will consider in Chap-

ter 4. One of our main results is the existence and uniqueness of viscosity



solutions to flat interface transmission problems with prescribed boundary
values. We point out that this problem was left open in [58]|. To prove it, we
follow the usual greatest subsolution approach, also known as Perron’s method.
The most challenging step is to show the comparison principle. This is pos-
sible thanks to a new maximum principle for these problems, also called the
Alexandroff-Bakelman-Pucci estimate (ABP estimate). Our ideas are inspired

by the remarkable book of L. Caffarelli and X. Cabré [15].

Second, we consider C1“ interfaces. Our strategy builds on similar
ideas as the ones given in Chapter 2 for the Laplace equation. In the linear
case, one important ingredient is the Holder continuity of solutions across the
interface, which we obtain thanks to classical estimates for the Green’s func-
tion for the Laplacian. For the fully nonlinear problem, we can also get a
similar result using nonlinear techniques such as the construction of appropri-
ate barriers and comparison principles. To obtain optimal regularity results
at the interface, we require an additional closeness assumption between the
operators since they may be different on each side of the interface. This con-
dition is analogous to asking that the coefficients are sufficiently close, in the
case of linear operators. Then following a perturbation argument and using
flat interface problems, we are able to prove that viscosity solutions are C'**

up to the interface.

In Chapter 5, we introduce a new family of intermediate operators
between the fractional Laplacian and the nonlocal Monge-Ampére operator,

studied by L. Caffarelli and L. Silvestre in [13|. Our operators are also given



by infimums of integro-differential operators over a family of kernels satisfy-
ing specific geometric properties. One of the main challenges in their study is
that they are not rotationally invariant, due to our construction of the kernels.
This is in contrast to the nonlocal Monge-Ampére operator, where the level
sets of the kernels are volume preserving transformations of balls in R™ (see
Section 1.2). Using symmetrization techniques, we obtain representation for-
mulas and give a connection to optimal transport. Furthermore, we consider
a global Poisson problem, prescribing data at infinity, and prove existence,
uniqueness, and C1! regularity of solutions in the full space. This is joint

work with L. Caffarelli that has been submitted for publication [16].



Chapter 2

Transmission problems for harmonic functions

2.1 Introduction and main results

Let © be a smooth, bounded domain of R™, n > 2. Let ; be a
subdomain of €2 such that ; CC Q and set Qy = Q\ Q. Suppose that the
interface I between ; and €y, namely, I' = 9, is a C** manifold, for some

0<a<1 Then Q =0, UQ, UT. For a function u : Q@ — R we denote

U = u’m and Uy = Ul .

We consider the problem of finding a continuous function u :  — R such that

(Auy =0 in
Auy =0 in Q9
uy =0 on 0f2 (2.1.1)
U] = Ua onI

\<u1)u —(u2)y =g onl.

Here g € C%*(T") and v is the unit normal vector on I' that is interior to
1, see Figure 2.1. This is a transmission problem in the spirit of Schechter
in [54], where T" is the transmission interface. In contrast to our problem, [54]
only deals with I' € C*°. The last two equations on (2.1.1) are called the

transmission conditions.

10



s
Figure 2.1: Geometry for the transmission problem (2.1.1).

If in (2.1.1) we set g = 0 then u is a harmonic function in Q. Therefore,

in order to have a meaningful elliptic transmission condition, we assume that
g(x) >0 for all z € T.

Hence, u will not be differentiable at those points on I" where g > 0. In turn,
we prove that v is C1® from each side up to I'. In (2.1.1) we have also imposed
homogeneous Dirichlet boundary condition on 0€2. This is not a restriction
since we can always add to v a harmonic function v in €2 such that v = ¢ on
0L), to make uy = ¢ on 9€2. The one dimensional case is excluded because one

can easily find explicit solutions.

Our main result is the following.

Theorem 2.1.1. There exists a unique classical solution u to the transmaission
problem (2.1.1). Moreover, u; € CY*()), uy € CH*(Qy), and there emists
C=C(n,a,I') >0 such that

||U1Hcm(§1) + HUZHC’LQ(QQ) < CHQHCO@‘(F)-

11



The appropriate notion of solution to (2.1.1) comes from computing Au
in the sense of distributions. Indeed, if v and I" were sufficiently smooth and
p € C(R), then by Green’s identities, recalling that v is the interior normal
to €y, and using that u; = uy on I', we get

Au(yp) :/uAgodx:/ ulAgoda:Jr/ us A dx
Q ol

Qo

= / @Aul dr — / (ulgpu — Qp(ul)y) dHn—l
{l o0
+ / SOAUQ dx —f-/ (Ug(py — SO(UQ)V) dHn—l
{l2 095
- / (UMDV B SD(Ul)V) dH" ™ + / (UQSOV — SO(UQ)V) dH" !
. r
= [ (= )par = [ goar
r

r
Hence, Au is a singular measure concentrated on I' with density ¢g. In Section
2.2 we show that there exists a unique distributional solution u € Cy(Q) to
(2.1.1), where Cy(Q) denotes the space of continuous functions on Q that
vanish on 0. Moreover, we prove that u is Log-Lipschitz on €2, see Theorem

2.2.2. The main issue is the optimal regularity of u up to I'. Theorem 2.1.1

will be a consequence of our next result.

Theorem 2.1.2 (Pointwise C* boundary regularity). Let T' = {(v/,¥(v')) :
y' € By}, where v is a CY* function, for some 0 < a < 1. Assume that 0 € T.

Let u € C(By) be a distributional solution to the transmission problem
Au = gdH"_1|F,
where g € L>=(T), g > 0, and g € C**(0). Then there are linear polynomials

12



P(x)=A-xz+ B, and Q(z) = C - + B such that

lui () — P(z)| < D]zt for all x € Q0 N By s,

lua(z) — Q(z)| < Dlz|™™™  for all x € Q2N By s,

with
|Al 4+ |B| + |C| + D < Col|[¢[|crery ([9)cwo) + |9l o),

and Cy = Cy(n, o) > 0.

The key tool to prove Theorem 2.1.2 is a stability result, obtained via
the novel geometric approach we develop, which is based on the mean value
property and the maximum principle, see Theorem 2.4.2. In fact, our idea
is to explicitly construct classical solutions to problems with flat interfaces
that are close to u. With this, we can transfer the regularity from classical
solutions to u. Indeed, as shown in Section 2.3, solutions to flat problems have
the expected optimal regularity up to the interface. More precisely, we show
that if the flatness and oscillation of the interface I' are controlled, then we
can construct a solution for a flat interface problem, where the flat interface
does not intersect I'. We also quantify how close solutions must be, depending
only on the geometric properties of I' and the basic regularity of u. These
ingredients are crucial for the first step in the proof of Theorem 2.1.2, see
Lemma 2.5.1. To close the argument, one needs to use these approximations
at each scale. Through this techniques, and similar to the case of elliptic
equations [14], we are able to find that solutions to flat interface problems are

asymptotically close to solutions to nonflat interface problems.

13



Our geometric techniques developed in Section 2.4 are constructive and
quantitative, and provide a precise understanding of the underlying geome-
try of the transmission problem. Furthermore, this work is essentially self-
contained. We believe that the tools presented here could be used in free
boundary problems, an idea we will explore in the future. Finally, notice that
our results are also useful in terms of numerical analysis, as our constructions

give explicit rates of approximation.

The chapter is organized as follows. In Section 2.2, we prove existence,
uniqueness, and global Log-Lipschitz regularity of the solution u to (2.1.1).
Section 2.3 deals with the case when the transmission interface is flat. Our
geometric stability result based on the mean value property is proved in Sec-
tion 4. The proof of Theorems 2.1.2 and 2.1.1 are given in Sections 2.5 and
2.6, respectively. The appendix contains some basic geometric considerations

about integration on Lipschitz domains.

Notation. For a point z € R" we write * = (2/,z,), where 2/ € R"™1
r, € R. The gradient in the variables 2’ is denoted by V’, dH" ! is the
(n — 1)-dimensional Hausdorff measure in R™ and B/ (z’) denotes the ball in
R™! of radius » > 0 centered at 2’. When the ball is centered at the origin

=0 orx=0=(0,0), we will just write B or B,.

14



2.2 [Existence, uniqueness and global Log-Lipschitz reg-
ularity

As we mentioned in the Introduction, the notion of solution to (2.1.1)

comes from computing Au in the sense of distributions.

Definition 2.2.1 (Distributional solution). We say that u € Cy(€2) is a dis-

tributional solution to (2.1.1) if for any ¢ € C'°(Q2) we have
/uAgpdx = /g(de”_l.
Q r

Au = gdH"_1|F.

In this case, we write

Even though the definition of distributional solution makes sense for u €
L .(9), we ask u to be continuous up to the boundary so that the boundary

condition v = 0 is well-defined.

Recall that a bounded function u : Q — R is in the space LogLip(Q) if

lu(z) — u(y)|
[U]Oi*:Sup < 0.
LogLip(h) e |z — y||log [z — y]
xFy

Theorem 2.2.2 (Existence, uniqueness, and Log-Lipschitz global regularity).
Let T be a Lipschitz interface, and g € L*>(I'). Then the unique distributional

solution u € Cy(Q) to (2.1.1) is given by

u(z) = /FG(:v,y)g(y) dH" for z € Q, (2.2.1)

where G(z,y) is the Green’s function for the Laplacian in ). Furthermore,

u € LogLip(Q) and there exists C' = C(n,T,Q) > 0 such that

[ull o) + [U]LogLip(ﬁ) < Clgll Lo (ry-

15



Proof. Let u be as in (2.2.1). By using a partition of unity on I', it is enough
to assume that T' = ¢»(R"1) where ¢ : R"! — R is a Lipschitz function and
that g(y/, v (y’)) has compact support in B (see Appendix 2.7). Then, for any

x € ), we have that

u(a)] < / Gz, y)lg(y) dH

|G, (', (NN, v NV + V(YY) 2 dy

1
< O n,F oo d '
< O Mallz (1) /Bi (2 — o, 2 — V() |*2 Yy

1
< C(n,D)|g] L= / dy’
Dl [y

By

/|n—2
< C(n, D)llgll Loy
Thus the integral defining u in (2.2.1) is absolutely convergent and u is bounded.

Next, for any ¢ € C(Q2), by Fubini’s Theorem and the symmetry

G(z,y) = G(y, x), we get

[uwacwa= [ | [ Gt ar]apte) do

:/Fg(y)/gG(y,x)Axgp(a:) de dH™ 1
= [swetyar.

Moreover, since G(Z,y) = 0 for £ € 992 and y € €2, by dominated convergence

we see that u(z) converges to 0 as x € ) converges to Z.

Now we show that u € LogLip(Q2). Since u is harmonic in Q \ T, we

only need to prove the regularity of u near I'. Suppose that x1, 2, € K, where

16



K C  is a compact set containing I'. Let 0 < d << 1. If |z1 — x5 > d then

2 oo
u(r) — (e < AE=@)

Assume next that |x; — 29| = § < d. If n > 3 then, since Bas(x1) C Bys(z2),

by classical estimates for the Green’s function,

u(e1) — u(ws)| S/FIG(Il,y)—G(xz,y)lluq(y)ldH”_1

1 _
< Cn,KHgHLOO(F) {/ —n_gdHn !
ng(wl)ﬁr |'I‘1 - y|

1 —
- / S dH" / B
Bys(z2)NT |z2 — y| I\ (Bgs(z1)NT) lz1 — |

1 1
< Crrllgllzem [/ s Ay’ +/ [EAT= dy’'
Bl () |z} — ¥/ Bls(b) 2y —y
1
+ |I‘1 — I'2| | I /|n—1 dy/:|
B\Bjs(z) 1T1 — Y

< Crrrllgllem (|21 — o] + |21 — 22]] log |1 — 22]).

The estimate in dimension n = 2 follows the same lines.

For uniqueness, if u,v € Cy(Q) are distributional solutions then
/(u —v)Apdr =0 for every p € C°(Q).
Q
Hence, u — v € Cy(Q) is harmonic in © and, as a consequence, u = v. O]

Remark 2.2.3. Note that if u € LogLip(Q2) then u € C%7(Q) for every

0 < v < 1 and there exists C' = C(Q2,7) > 0 such that
[u] cor(@) = C[U]LogLip(ﬁ)'
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2.3 Flat interface problems

For the next results, we fix the following notation. For a € R we denote

B, = B.(0,a)

Bf, = B.(0',a) N {z, > a}

B, , = B.(0,a) N {z, < a}

Tro={2x € B.(0,a): 2, =a}
T, =B N{x, =a}

T = {zn = a}

T, ={z, <a}.
When a = 0, we use the simplified notation T' = T, and B = Bfo.

Theorem 2.3.1 (Flat problem). Let r > 0 and a € R. Given 0 < o,y < 1,
let g € C%(T,,) and f € C*(JB,,). Then there exists a unique solution

v € C°(Byy \ Tra) N C®(B,,) to the flat transmission problem

{Av =gdH" ! Tne

n B,

v=f on 0B, ,

that satisfies the global estimate

0]l o By < Cllgllcowza) + 1 fllcoros,.));

where C = C(n,a,~,r) > 0. Moreover, if we let v= = UXBE then vt €

CY(BE, ) and

r/2,a

[0z < Cllgllonecr, o + 1fllumom,),

18



where C = C(n,a,r) > 0. If g € C*1(T,,), k > 1, then v € Ck(BE, r/2a)
and
gl

I cra(BE, ) S C(lgller—rac, ) + [1fllz=@5..));

where C' = C(n,a,r k) > 0.

Proof. By subtracting from v the harmonic function i in B, , that coincides
with f on 0B, ,, it is enough to assume that f = 0 on 0B, ,. We consider only
the case k = 1, that is, g € C%*(T,,). When k > 1 the proof is completely
analogous. Moreover, it is sufficient to prove the result for a = 0 and r = 1.
Indeed suppose that ¢ is as in the statement, and let § be defined on T, so
that

g2’ x,) = r_lg(r_lm', r Yz, — a)),

whenever x € T, ,. If 0 is the corresponding solution in By, then

o(@ x,) = 0(r 2, r Nz, — a)) for v € B,,

is the unique solution to Av = gdH" ! such that v = 0 on 0B, ,. More-

T’r,a

over, we have the following control of the norms:

-
|

||lv + =[5

+ —1 +
= 17 ez + 7T e

a(BE a(gEt
cre(BE, ) coa(BY )

< maX{l,T T (Ha)}H@iHCla )
/2

< Cmax{1,r~", 7=} gl o)

< Cmax{L,r~ 1, 7~ (r| gl p(n0) + 7T glc00(10))

S C||g||CO’Q(Tr,a)’

19



and, similarly,
[0llcon By < Cllgllcoe ),

where C' > 0 is as in the statement.

Let v™ be the solution to the mixed boundary value problem

Avt =0 in Bf
vt =0 on OB \T
vi =g/2 onT.

By classical elliptic regularity, v € C>(B;) N C’l’a(Bfr/Q) and

HUJFHCM B+ < Gollgllcoacry,

for some Cy = Cy(n) > 0. Furthermore, v* € C*7(B;). Indeed, consider the

solution w to
Aw=0 in By

Wy, = §/2 on Ty,
where g = g on T with [|g||coe(r, ) < é’||g||co,a(T), for some constant C' > 0.

Then w € C*(B5) N CY(B;) with

] < Cillglleoa(rso) < CrCllgllcoae)

Clcx B+ —
where C; = C}(n). Define u(z) = v*(z) — w(z), for x € By, and consider the
even reflection extension of u to By given by @(x', z,) = u(z’, |z,]). It follows
that @ is harmonic in B; and @ = —w on 0B, where @ is the even reflection
of w to By. Since w € Lip(B)), by using the Poisson kernel in B; (see [26]), it

can be checked that

@)l con@ry < Cllollcon@ny < Cllgllcoer
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where C' = C'(n, a,7y) > 0. Therefore, v € C’O’W(B_f), with the corresponding
estimate for Hv+||0077(?) as in the statement. Next, the function v~ (2/, x,) =
1
v (2!, —x,) solves
Av =0 in By
v™ =0 on 0By \T
vy, =—g/2 onT,

and v~ € C’OO(BI_)HCLO‘(Bl_/Q)ﬂC’O’V(Bl_). It follows that v = U+X§+U*XE

is the unique distributional solution to Av = gdH ”_1|T such that v = 0 on
OB,. Furthermore, v € C*(B; \ T) N C%(B;) and v* € C’l’o‘(Bf/Q) with
[0l o (zry < Clny ) llgllconr)

and

||vi||cl,a(?i/2> < C(n, a)l|gllco.« -

]

Corollary 2.3.2. Given |a] < 1/4, ¢o > 0, and f € C®7(0B;), with 0 < vy <

1, there exists a unique solution v € C*®°(B; \ T,) N C*(By) to

Av = cydH" |1, in By
v=f on 0B

such that
||U||coﬂw(3i) < C(Co + ||f||00w(aBl))a

where C'= C(n,v) > 0 and, for any k > 1,

[0 | ora@r5mm) < Clco + I fllz=om))

where C' = C(n,a, k) > 0.
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Proof. The global C%7 estimate follows immediately from Theorem 2.3.1 with

g = co. Hence, we only need to show the C*® estimate. Fix k > 1. By Theo-

rem 2.3.1 with = 4, there is a unique solution w € C*(By,\Ty.)NC*7(By,)

to Aw = ¢ alH"_1|T4 such that w = 0 on B, ,. Moreover, ||w¥|| <

Ck,oc(BQi’a)

Ccg, for some C' = C(n,a, k) > 0. Let h be the harmonic function in B; such

that h = w — f on dB;. Then h € C*®(B;) N C*(B;), and

Bllero@rm) < C(lwll=@s) + [ fllz=@5)) < Clco+ [ fllz=@51)):
where C' = C(n,a, k) > 0. Define v = w — h on B;. Then v is the unique
solution to Av = gdH" |7, with v = f on dB;. Moreover,

ol

HUiHckva(mnTai) < w Cko(BE ) + Hthkya(m) < C(CO + HfHLW(BBl))v

since By N T C By, O

2.4 The stability result

In this section we prove our stability result, Theorem 2.4.2. As we
mentioned at the beginning, our argument is based on the mean value property

and, therefore, it is self-contained.

Fix € > 0, and define the sets
Qe={reQ:d(z,00) >c} and T.={reQ:dx7T)<e}.

Consider the average function:

1
us(x) = / u(y)dy  for x € Q..
|Be| JB.(2)
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Proposition 2.4.1 (Properties of averages). Let u be the distributional solu-

tion given in Theorem 2.2.2. The following properties hold:

(1) If B.(x)NT' = @, then u.(z) = u(x).
(17) ue — u uniformly in compact subsets of Q, as e — 0.

(1ii) If g € L>=(T"), then g. € C.(T'), where

1

= — g(y)dH™ ! for x eTl..
|Be| Jrob. ()

9g=()

Moreover, Au.(x) = g-(z) for any x € Q..

Proof. Since w is harmonic outside of I', (i) is immediate by the mean value
property.
For (ii), recall by Remark 2.2.3 that u € C%7(2). Therefore,

1

1< 157 . 1) = 0@y <l =0

Jue(2) — u(z)

as ¢ — 0.

We now show (iii). If g € L*>(T"), then by dominated convergence,

g- € C.(T'.). Moreover, for any ¢ € C°(f2), we have

23



(x)dx

P
<
N
€
I
»—tD\
&
&
>
S

— e~ T

u(z + y)Ap(x) de dy

)

-

u(z)Ap(z —y) dzdy

o)

&

- &

9(2)p(z —y)dH! ' dy

&

o(z—y) dy} g(z)dH}™

-5

S~

X5.(z = y)e(y) dy} g(z)dH!™!

-

XB.(2 —y) g(z) dH] " o(y) dy

—

&

I
2
— —

B

/mBE(mg(Z) ngl} p(y) dy = /Q 9:(W)(y) dy.
O

Theorem 2.4.2 (Stability). Let 0 <e,0 < 1/2 and 0 < §,y < 1 be given, and
let T'=A{(y,v(y)) : y € By}, where v is a Lipschitz function. Assume that T

is Oe-flat in By, in the sense that
I'C{x € By :|z,| < b},
and that I' is also e-horizontal in By, that s,

—-1/2

1—e<w(z)-(0,1) = (1+ |[V'y¥()]?) <1,

for every x € T', where v(x) denotes the upward pointing normal on I'. Then

there exists C = C(n,7) > 0 such that for any u € C(B;) and g € L=(T')
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satisfying
Au:gdH”“’F in By
lu| <1 in By
lg—11 <6 onT,

the classical solution v € C*°(Bssy \ T_p.) N C%7(Bs,4) to the flat problem

{AU =dH"'|,  in By,

v=u on 0B3/4

satisfies

lu—v| < CO+0+¢) in Byjs.

Remark 2.4.3. The interface for the flat problem in Theorem 2.4.2 is T' 4. =
Bsjy N {x, = —0e}, which lies below I' in the z,-direction. To approximate
u with the solution to a flat problem where the interface lies above I' in the

xrp-direction, it is enough to consider the classical solution v to

{Av =dH"|,  in By

v="u on 0Bs3)4.

In this case, the same conclusion as in Theorem 2.4.2 holds.

Before we give the proof, we need the following geometric result.

Lemma 2.4.4. Let I' be as in Theorem 2.4.2. Define M =1+ 26 and let

x € Bsjy_ne be such that dist(x,I') < e. Then

{v': (v, ¥(y)) € B-(2)} C BE(M5)2—(xn+05)2)1/2 (z')

={y' : (y, —0¢) € Bu(2)} (2.4.1)
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and

{v - (0, v(¥) € Bue(®)} D Bla_(y, 19e)2)1/2(7)
={y': (y',—0¢) € B.(x)}. (2.4.2)
We illustrate this result in Figure 2.2.

s e

Figure 2.2: The red set is {y : (v/, —0¢) € By(2)}\{¥' : (v, ¥(¢)) € B-(x)}.

Proof. 1f x is as in the statement then, by the flatness condition on I'; we have

|z,| < (1+60)e. Let us prove (2.4.1). Suppose first that —fs < z,, < fe. Then
{v': (v, () € Bo(x)} C{y' : (v, 2n) € Be(x)} = BU(2).

Since

(Me)* — (z, + 0)* = (1 +20)%c* — (2, + 0¢)?

> (1440 +40%)e? — (20e)* = & + 40* > &2
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we see that Bl(x') C B/ and the conclusion follows. As-

(V)2 (002172 ()

sume now that e < z,, < (14 0)e. Notice that

W W) € B@)} C 1Y+ (4,02) € Bal@)} = Blas e _puyira(@):
Since

(Me)?—(z, + 02)* — (2 — (, — 02)?)
= (1+20)%c* — (22 4 20ex, + (0)?) — % + (22 — 20ex,, + (0)?)

= 40e? 4 460%? — 40cx,, > 40 > 0,

we find that B£a2—(xn—05)2)1/2 (z') C BE(M5)2—(mn+ae)2)1/2(x/>’ as desired. The last

case is when —(1 + 0)e < x,, < —0e. Here it is clear that, since M > 1,
{v': (v, 0(y)) € Be(2)} C{y': (v, —b2) € Be(x)}
= BE52—(xn+ee)2)1/2 ()

C B{(rte—(zp400y1/2 (7):

This concludes the proof of (2.4.1).

For (2.4.2), notice that if z,, > (1 — 6)e, then the inclusion follows as
{v/ : (¢, —0¢c) € B.(x)} = @. We therefore assume that —(1 4+ )e < z,, <
(1 —0)e. If z, > —0¢, then

{v': (v, 0(¥)) € Bue(2))} D {y': (¢, —0¢) € Bue(w)}
- Bf(Ma>2—<xn+ee>2>1/2 (')

D Blo_(y160y2y1/2(7)
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because M > 1. If —(1+ 6)e < x,, < —0e, then

{v': (v, ¥(y) € Bue(2))} D4y« (v, 02) € Buse()}

= Bl - (za-sey2y1/2(7)

and

(Me)* — (z, — 0e)* — (2 — (x,, + 0e)?)
= (1+20)%e* — (22 — 20em,, + (02)*) — &° + (22 + 20ez,, + (02)?)

= 402 + 460%? + 40ex,, > 0.

Therefore,
BE(M€)2—($n—0€)2)1/2('x/> D) BEEQ—(In-f—@&‘)Q)l/Q (.TI),

and we conclude that (2.4.2) holds. O

Proof of Theorem 2.4.2. Let M = 1+ 26 > 1. By Corollary 2.3.2 with a =
—0c, co = M"(1+8)(1—e)~! and By4 in place of By, there is a unique classical

solution w to the flat transmission problem

—vUe

{Aw = M"(1+6)(1—e)"dH" |, in By

w=1u on 8B3/4.
Moreover, by subtracting the harmonic function A in By such that h = u on

0B; and applying similar arguments as in the proof of Theorem 2.2.2, it can

be seen that u € C*7(Bs,y) with

[ull oz < €y, D) (ull ey + llgllzem) < C,
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where C' = C(n,vy) > 0 because I' is e-horizontal, ||u|[=(p,) < 1, and ||g —
|| oo (ry < 6. Hence, by Corollary 2.3.2 with Bs/4 in place of By, w € C*(Bs4\
T_ge) N 0077(33/4> with

lewln gy < Cn,7)(eo + lullgus i) < C,

where C' = C(n,7) > 0.

Define the averages

B 1
|Be| JB.(2)

ue () u(y) dy for v € B3ja—. C Bsya

and
1

a ‘BME, BMe(x)

Wy () w(y) dy for v € B3y C Bs)a.

By Proposition 2.4.1(ii7), Au.(x) = g.(x) for every x € Bg/s_., and
1

N |BM5| BME(I)HT,QS

AwM5<x) Mn(].‘i‘(;)(l—é)_l dHn_l for x € 33/4_]\/[8.
In addition, notice that

supp(Au.) C {x € By : dist(z,T") < e}

and

supp(Aw,,.) C {x € Bsja_pe @ |xn| < Me}.

Since I' is fe-flat in B; and M = 1 + 26 it follows that

supp(Au.) C supp(Aw,,.).

Let us first show that

Awy. > Au, in B34 pe-
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If + ¢ supp(g:) there is nothing to prove because Aw,,;. > 0 in Bs/s_pr.. Let
us then take x € By pz. such that dist(x,I') < e. Using that 0 < g <146,

I' is e-horizontal and (2.4.1) in Lemma 2.4.4, we get

1
B MTL|B€| Bjug(x)l"lT,QE

1

2 15 g YW ))VI+ V()2 dy
| 6| {y":(y',—0)€Bpe ()}
= gy, VYNV + V()2 dy
| Bel Jy (v ot )eBaany
1

= gdH”_1 = Au,(z).
|BE| Be(z)NI'

Awyy. () M™(1+6)(1 —6)_1dH”_1

—_

V

We also have

Wy < ue + Ce’ on 0B854z,

for some C' = C(n,v) > 0. Indeed, fix any x € 0B5/4_ne, and let z € 0B3)4
be such that dist(z,0Bss) = |v — z| = Me. By using that w,u € C*V(Bs)s)

and w = u on 0Bs)4,
Wy (7) = ue(@) = (wye(7) — w(z)) + (w(z) — w(2))

+ (u(?2) — u(x)) + (u(z) — ue(x))
1
~ Byl JBu@)
+ ([Q]Co,y(@) + [U]Co,q(m))‘x — zl’Y
1
|Be| J B ()

lw(y) — w(z)| dy (2.4.3)

+

u(y) — u(z)|dy < Ce7,

where C' = C(n,~y) > 0. Hence, by the maximum principle, w,,. — u. < Ce”

in Bjjs_n.. Consequently, by arguing similarly as in (2.4.3), it follows that,
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for some C' = C(n,v) > 0,
w—u S Cce in 33/4,]\/[5. (244)

Secondly, consider the classical solution w to the flat transmission problem

{Aw = M~"(1—8)dH""|, ~ in By,

wW=1u on 8B3/4,
and the corresponding averages w. and uj;. of w and u, respectively. Since

g>1-4, by (2.4.2) in Lemma 2.4.4 we find that

A () = —— M (1 = §)dH™
|BE‘ B ($)mT—95
1
< g YNV VYY) 2 dy
| Bute| Sy —00)eBe(a))
1
< 9 v W)V + V(Y2 dy

| Butel J y-( o)) e Bare ()}

1
= gdH" ' = Aup ().

a |BM€’ B ()N

By using parallel arguments to those in (2.4.3) we also get that
u—w < Cev in 83/4_]\/[5. (245)

for some C' = C(n,v) > 0. Define w = 222, By (2.4.4) and (2.4.5),

u—w§w+067—w;w:w;w+057

and

Hence,



where C' = C(n,v) > 0. Since

A —w) = [M(1 = §) = M"(1+8)(1 =) ||, in By,
0 on 833/4,

by Theorem 2.3.1,
@ — wll (B, ) < CIMM(14+6)(1—e) ' =M "(1-6)] <C(O+6+e),
for some C' = C'(n) > 0. Therefore,
|u —wllLe(B, ) < CO+0+¢€7) (2.4.6)

for some C' = C(n,7v) > 0. Also, Aw = (1+n) dH"_l‘Tie , where

M (1+8)(1 =)~ + M"(1=0)

l+n= 5

Observe that, since 0 < 0, < 1/2, 0 < 0 < 1, it follows that

M1+ 6) + (1 = 6)(1 —¢) — 2(1 — £) M™|
2(1 —eg)Mn (2.4.7)
<O(1+20)"+1-2(14+20)"+64+¢) <CO+5+e),

In| =

where C' = C'(n) > 0.
Let v € C*(Bsys \ T_g.) N C%7(Bs,4) be the solution to

{AU = dHn_l‘T,g in 33/4

v=u on B3,

(see Corollary 2.3.2). Then v — w solves

Alv—w) = ndH"_l‘Tig in Bsy
v—w=>0 on 0Bs,.
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Therefore, by (2.4.7),
o = wllimay ) < Clal < C(O+6+2), (2.45)

where C' = C'(n) > 0. From (2.4.6) and (2.4.8) the estimate on the statement

is proved. O

Remark 2.4.5 (Divergence form equations). Recall that our proof of The-
orem 2.4.2 is self-contained, based on the mean value property for harmonic
functions and the maximum principle. In view of recently developed mean
value formulas for solutions to divergence form elliptic equations by Blank—
Hao [4], the natural question of extending our geometric techniques to trans-
mission problems for divergence form elliptic equations arise. For this case,
our maximum principle techniques must be replaced by energy methods. More
importantly, not much is known about the geometry of the mean value sets
from [4], so it is not clear at all how to mimic geometric arguments such as

those in Lemma 2.4.4.

Remark 2.4.6 (Nondivergence form equations). The second natural question
would be to extend our methods to transmission problems with nondivergence
form elliptic equations, where the maximum principle is a more adequate tool.
In this situation, not only there are no useful mean value formulas available,
but also the notion of distributional solution we consider in this work does
not apply anymore. We approach this problem in Chapters 3 and 4, including

more general equations.
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2.5 Pointwise C''® boundary estimates

Throughout this section, I' is an interface in By given by the graph of
a function z, = ¢ (2’) : T'— R. Thus, we can write By = Q; UT' U Qy, where

O ={x=(2,2,) € By : x, > ¥(2')}. We also assume that 0 € I.

2.5.1 Preliminary lemmas

Lemma 2.5.1. LetI' = {(v/,¥(v')) : ¢ € By}, where ) is a Lipschitz function.
Given 0 < a,y < 1, there exist constants Cop >0, 0 < X< 1/2,0 < 6,0, <\

depending only on n, o and vy, such that for any u € C(B,) satisfying

Au = gdH"*wF in By
lul <1 in By
’g_1| S(S on F?

if T is Oe-flat and e-horizontal in By, then there are linear polynomials Py (x) =
A-z+B and Q1(x) = C-z+B, with A,C € R", B € R, and |A|+|B|+|C| < Cy,

such that

|U1(£B> — P1($)| < )\1—&-04 fO?“ all z € Q1 N BA,

lug(x) — Q1 (z)| < A for all x € Q9 N B,.
Moreover, V'Py = V'Q1 and (Py),, — (Q1)., = 1.

Proof. Fix 0 < 0,9, < X\ < 1/2 to be chosen later. Consider the solutions

1S3
I
1S3

+ —
XBS/4ﬁTj'95 + y XB3/4QT7957

|

<

+ _
XBS/4QT9-; +U XB3/4QT9€7
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to the flat transmission problems given in Theorem 2.4.2, and Remark 2.4.3,

respectively. By Corollary 2.3.2 with k = 2,
le* ez, ) + 10 losag@anrsy < C(1+ lull =) < Co.
for some Cy = Cy(n, ) > 0. In particular,
[2(0) + [Vo(0)] + [(0)| + [Vo(0)] < Co.
Let h be the harmonic function in Bs/, such that h = u on dB3/4. Define

Py(z) = v(0) + Vu(0) - 2 + [5 — v, (0) + ha,, (0)] 20,

—Tn

Q1(z) =9(0) + Vo(0) -z 4+ [ — 5 — 05, (0) + hy, (0)] 2.

Then P; and (Q; are small perturbations of the linear parts of v and v at the
origin, respectively. To see this, first note that the functions v(2’, z,,)—h(2’, z,,)
and v(2', —x, ) —h(2’, —x,) satisfy the same transmission problem on 7"y, with

zero data on 0Bs/4. By uniqueness,
v, x,) — h(2, z,) = 0(2', —x,) — h(z', —x,) for all € Bys.

In particular, v(z’,0) = v(2’,0), V'u(2’,0) = V'o(2’,0), and thus, P;(0) =
Q1(0), and V'P; = V'v(0) = V'0(0) = V'Q;. Clearly, (P1),, — (Q1)s, = 1.
Moreover,

v, (2',0) = h,, (2/,0) = =0, (2, 0) + h,, (', 0),

—Tn

and thus, |3 — v, (0) + he, (0)| = | = 2 — 4,,(0) + hy, (0)|. Let us show that

2

|5 = 0,,(0) + e, (0)] < D(6e)", (2.5.1)

2
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for some D = D(n) > 0. Recall that by the construction of v in Corollary 2.3.2,
we can write v = w — H, where w € C°°(By _g. \ T_p:) N C* (B, _g.) is the
harmonic function in By _y. such that w = 0 on 0B, _g., and H is the harmonic

function in By, with H = w — u on 0Bs/,. Then
|5 = 20, (0) + D, (0)| < [, (0) = 5 + [(H + h)e, (0)]-

In particular, w,,(0) = w (0), where w* is the harmonic function in B _,,
such that w = 0 on 831796 \ Ty, and w = % on T_g.. By the mean value

theorem,

wa, (0) — 5 = w (0/,0) —w (0, =) = w , (0, €)be,

2 TnTn

< DO7

for some —fs < ¢ < 0. Moreover, by Theorem 2.3.1, ||w+||02’a(3+7) <
2,—60e

for some constant Dy = Dy(n) > 0. Hence,
W, (0) — 3| < Dybe.

Next, note that H + h is harmonic in By, and H +h = w on 0Bs;,. Consider
the harmonic function ¢ in Bs4_g. _g. such that ¢ = w on Bs/4_g. .. Observe
that Bs/4_ge, 9 C B3y Since w is symmetric with respect to the plane T .,
it follows that ¢, (2, —0c) = 0 for any (2',—0c) € Bsjs_gc,—¢-. Therefore,
|2, (0)] < Dybe. By interior estimates, the maximum principle, and the facts
that w € C’O’V(m) and dist(0Bs/4, 0B3/a—ge,—0c) < 20e,

|(H + h)a, (0) = ¢4, (0)] < Di[|(H + ) = wl|z(08y)4—.,0.) < D1(0€)7,

for some Dy = Dy(n) > 0, and thus,

|(H + h),,(0)] < Di(6e)” + |¢,,(0)| < D1(8e)” + Dobe < D(be)”,

36



for some D = D(n) > 0. Therefore, (2.5.1) holds.
If 2 € Q1 N Byja, by Theorem 2.4.2 and (2.5.1), there are constants
C, D > 0, depending only on n, such that
ua(2) = Po(2)] < Ju(w) — ()] + o)  P(2)
< Ju(z) — v(@)] + [v(z) — v(0) — Vu(0)]
15— 2, (0) + i O)]

< C(0+6+€") + | D0l poe(uns, o)zl + D(0e) |2,
<CO+0+")+ Colz]* + D(0e) ||

Similarly, if x € Q N By s,

Jus () — Qi(x)] < C(0+ 0+ ) + Colz|* + D(0e)|z].

First, choose 0 < A < 1/2 such that

)\1+a
O()|ZL”2 S

for all x € B,.

Then, choose 0 < 6,0, < X such that

14+«

Cll+6+e")+ D)\ < 5

]

Lemma 2.5.2. LetI' = {(v/, v (V') : ¥ € By}, where is a Lipschitz function.
Given 0 < o < 1, there exist Cy > 0, 0 < A < 1/2, and 0 < § < 1, depending

only on n and «, such that for a distributional solution u € C(By) to

Au = gdH”_1|F in By
lu| <1 in By
lg| <6 on I'N By,
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there is a linear polynomial P(x) = A-x + B, with A € R", B € R and
|A| + |B| < Cy, such that

lu(z) — P(x)] < At for all x € B,.

Proof. Fix A\,0 > 0 to be determined. Let v be the harmonic function in By,
such that v = u on 0B3/4. Then, the difference w = u — v is the distributional

solution to
Aw = gdH" |, in By
w=~0 on 8B3/4.

Moreover, |[w||z=B,,,) < CllgllLerns,,) < €0, where C = C(n,T') > 0.
Define P(x) = v(0) + Vv(0) - z. By interior estimates and the maximum

principle, we have

I1D70|| 1B, ,5) < Collv]l Loy, ) < Co forall j >0,

where Cy = Cy(n, j) > 0. Hence, for z € By, with 0 < A\ < 1/2, we get
u(z) — P(2)] < |u(z) —v(@)| + [v(z) — P(z)|
< Co+ ||D2’U||Loo(Bl/2)|l'|2
< O+ Co)2.

First, choose 0 < A < 1/2, such that CoA\? < A'7%/2. Then choose 0 < § < 1
such that C'§ < \He/2. O

2.5.2 Proof of Theorem 2.1.2

Fix 0 < o,y < 1. Let Cy, A\, 0,¢,6 > 0 be the minimum of the constants

given in Lemma 2.5.1 and Lemma 2.5.2. Let 0 < §y < min {(5, Oe, ’\1%} First,
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we normalize the problem. Recall that we are assuming that 0 € I', that is,

$(0) = 0.

(1) By rotation, we can assume that v(0) = e,. In particular, V'4(0') = 0.

(27) If g(0) # 0, we can suppose that g(0) = 1. Indeed, we consider v =
u/g(0). The case g(0) = 0 will be addressed at the end.

(ii7) Assume that ||ul[z=(p,) < 1, and that

o) — (0)] _

[9]coe@ =  sup < 4.

2€TNBy, 240 ||«
Indeed, one can consider

u

vV = 50 .
[ullzoe(m1) + [g]coo)

(iv) Also, we let [{]cra(o) < [Y]cra(s) < do. Recall that

o~ sy [T =@ 9]
x'€B], x!#0' |x/’a z'eBY, x' #0 |I,‘a

Then, for this normalization one can take

i

=0y ——m.
=1 [V]cre(my)

We make an abuse of notation and call the solution, the interface, the
parametrization and the right hand side as in the statement, namely, u, I', ¥,

and g, respectively.

It is enough to prove the following.
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Claim. For all k > 1, there exist linear polynomials P, = Ay - x + By and

Qr = Cy -« + By, such that
N As1 = Al + X¥|Chy1 — Cil + | Bisr — Bi| < CoA* ),
where Cy = Cy(n, ) > 0, and such that

up () — Pp(x)] < AFUF) for all v € Q4 N By,

lug () — Qp(z)] < A1+ for all x € Q9 N Byk.
Moreover, V' P, = V'Qy and (Py)z, — (Qk)z, = 1.

We prove the claim by induction. Let us start with the case & = 1.
By the normalization, u, I' and ¢ satisfy the assumptions on Lemma 2.5.1.

Indeed, by (i) and (iv), for any (2, z,) € T,
2] = [P(2")| = (") = P(0") = VY(0') - 2’| < [Plerao) < o < e
Also, 1 < (1 + |[V'%(2"))Y2 < (14 62)Y2 < (1 — &)~L. Moreover, by (i),
l9(x) = 1] = [g(x) = g(0)] < [gloowlz|* <do <0 forany z €T

Hence, by Lemma 2.5.1, there are linear polynomials P;(x) = A; - x + By, and
Ql([E) = Ol - T+ Bl, with Al,Cl S ]Rn, B1 € R, and ’A1| + ’Bl| + |01’ S Co,

such that

luy () — Py(x)] < A for all x € ; N By,

lug () — Q1(z)| < A for all x € Q9 N B,.
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Moreover, V'P, = V'Qq, and (Py),, — (Q1)z, = 1.

For the induction step, assume that the claim holds for some £ > 1,

and let P, and @)y be such polynomials. Denote by

Qe ={z € By Nz e Q) for i=1,2,

Ty ={z € By : \x €T}

Note that if ¢y« is a parametrization of I'yx in By, then 1y (z) = A "*p(N\ka’).
In particular, V'iyx(2') = V9(\Fz), and thus, for z € Ty, if vye(x) is the
normal vector on z pointing at Qy, then vy (z) = v(Az). Define P, =

Pixq, + QrXxa,. Consider the rescaled function

_u(Nx) — Pp(Ma)

w(z) = TS for v € By. (2.5.2)

By the induction hypothesis, ||w| r~s,) < 1. Notice that w is a piecewise

continuous function with a jump discontinuity on I'yx. In fact, if

then for x € T'yx, by the normalization (iv), and the induction hypothesis, we

have

_ |Qx(\x) — Pi(Aa))|

|(wy — we)(z)| ) = A7z, (2.5.3)
< A sup ||
ZEGFAk
x/
< sup M < [¢]Cl,a(0) < ¥p.

x'€B] Nk -
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Let v = v1xg . tuxg s where v; and v9 are the solutions to
1,2 2,1

Av; =0 in €, \x
v; = w; on 08 yr \ T

v; =2 on [y,

for i = 1,2. Then v € C(B;) and, by the maximum principle, ||[v|z=5,) <

|w||£ee(Byy < 1. Moreover,

Av; —w;) =0 in €2; \»
v; —w; =0 on 08\ \ I'xx (2.5.4)
Vi — W; = (—1)1% on F)\k.

By the maximum principle and (2.5.3) it follows that

v = wl|zeB)) < llvr — willzeqo, ) + lv2 = wallL=(o, 1)

(2.5.5)

= ||lwy — w2||L°°(I‘Ak) < dp.

We compute the distributional Laplacian of v and estimate its size. For

any ¢ € C*(By),

Av(p) = / o(2)Ap(x) di

/Q km(x)AsO(x) dx+/ vs(2)Ap() dar

1,2 Q2,>\k'

— [ e @ae@de+ [ (- wa)@)Ap(a) da
QK

Q2,)\k

+/Blw(x)Ago(:v) dx

E[1—|—IQ—|—13.
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For i = 1,2, by Green’s formula,

1

li=35 /w (w1 — wa)(2)py,, (v) dH" ™

—H—WHA (0 — w),,, () () dH",

where we recall that vy« is the unit normal vector on I'yx pointing at €2 y».

Note that

u(\fz) Pr(Nez)
Iy = Aw(p) = A (W) (p) —A ( i ) (@)
Since u is a distributional solution, by doing a change of variables, we get

Amwmwzéuwmwmm

:ﬁ“m/'u@Awu*w@
B,k

A

= \k@=n) / g(y)e(A\*y) dH)
TNB,

:)\k/r g(\Fx)p(z) dH™ .

A

Also, by Green’s formula, the induction hypothesis and (2.5.3),

A(PrL( M 2)) () = N / [VP.(\z) — VQr(N2)] - var (@) p(z) dH™

Tyk

+ /F [Qk()\kx) — Pk()\kx)}goykk (r)dH™*

A

:)\k/ Vn(Ne2) () dH™
Lk

A

+ )\k(HQ)/ (w1 — wa) (), (T) dH" .
Lk

A
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Then

I3 = /1" §(a:)g0(x) dH™ ! — / (w1 — wz)(;p)gpy/\k (x) dHn—l’

A Lk

where

Therefore, for any p € C°(By),

Do) = [ [0 = w0 0) = (00 = w0y o) + o)l

A

;/ GodH™ L,
Lk

A

By C'® boundary estimates for harmonic functions applied to (2.5.4) and, by

taking into account (2.5.5) and the first line of (2.5.3), we get

[vi = willera@ im0 < Cllwe —willover,,) = CN [ aell or.o 7y

Using the normalization of v, we find that

[p(A*a)|

ANl By = SUD i) < [Y]era) < do,
z'eB]

ko V' (Nea!
A k ”Vlw)\kHLOO(Bi) = sup w

S W]Olva 0 S 507
z'€B] Nke ©

and

[V'p(Aa') — Vip(Aty)|

)\ka‘xl _ y/’a

—ka /
ATV wAk]co,a(BT) = sup
z'y'eBy
x'#y’

S [w]cl,a(B*i) S 50'

In particular, it follows that
[ (vi —wi),,, HLOO(F/\kmBg,M) < Cdyp.
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Moreover, for x € T'y«,

. g(\x) —1 1 —v,( Nz
|9(~T>|5|()\k)a ] )\ki )|

< [g]cﬂ,a([)) + [Vn]CO»a(O) < 50 + (50 = 250.

Hence, choosing ¢ sufficiently small, we see that

||§J||L°°(FAmBg/4) < |[(v1 — wl)uw ||L°°(F>\kﬂB3/4) + ||(v2 — w2)ukk ||L°°(FAmBg/4)

+ 19l oo (r, ) < Cdo + Cdg + 200 = 2(C +1)dp < 6.

We have proved that v € C(B;) satisfies

— n—1 ;
Av =gdH ‘FAk in By
|U’ < 1 n B1
|g| S ) on F>\k: N B3/4.

Therefore, we can apply Lemma 2.5.2 to v to find a linear polynomial P(z) =
A-x+ B, with A € R", Be€ R and |A| + |B| < Cy, such that

o(2) — Pla)] < 2

< — for all x € By.

Hence, for any x € By, by the estimate above and (2.5.5),

jw(z) — P(z)| < |w(z) —v(@)| + |v(r) — Pz)] < do + - < A
since dy < A\T9/2. According to (2.5.2),
“(Akxik(_li’;wx) — P(z)| < Ao for all z € By,
or equivalently, for y = Az,
lu(y) — Pe(y) — NI P(y/AF)| < AEHDE+) for all y € Bykt1.
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Define the polynomials Py, and Q.1 as
Peia(y) = Pe(y) + NOFIP/AY), Qrialy) = Quly) + XTI P(y/ ).
From the previous estimate, it follows that

|ur (y) — Pesa(y)] < AFFDUT) for all y € O N Byk+,

ua(y) — Qrr1(y)| < Al ) for all y € Qo N Byk+1.

Moreover, since Py(0) = Qx(0), and V'P, = V'Qy, it is clear that Py,1(0) =

Qkﬂ(o), and V/Pkﬂ = V,QkJrl- Also, (PkJrl)xn_(QkJrl)mn = (Pk)xn_(Qk)xn =
L If Peya(y) = Agga -y + Bryr and Qpy1(y) = Chpa -y + Biyy then

App1 = A + )\kaA, By = By, + )\k(lm)B, Cit1=Cp + AFe A
By the estimate |A| 4+ |B| < Cj, we conclude

N Apr — Ag| + M| Cryr — Okl + | Brgr — Bi| < CoAF(Fe),

The proof of the claim is completed.

Finally, we consider the case g(0) = 0. As before, it is enough to prove

the following.

Claim. For all k > 1, there exists a linear polynomial P, = Ay - x + By such

that

M| Agiq — Ag| + | By — Bi| < CoAFOIT)
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where Cy = Cy(n, ) > 0, and such that

lu(z) — Pyp(z)] < A1+ for all x € QN By.
The proof is by induction. For k = 1, since ||u| g~ (p,) < 1, and

gl zoory = Sup l9(z) — g(0)] < o,
HAS
we can apply Lemma 2.5.2 to u. Then we find a linear polynomial Pj(x) =
A -z + By, with A; € R", B; € R, and |A;| + |B1| < Cy, such that
lu(z) — Pi(z)| < AT for all z € B,.

Assume the claim holds for £ > 1. Define

_u(Nx) — Py(Nex)

w(z) = S for v € By.

Then, for any ¢ € C*(B),

Aue) - BN _ [ 90D ) g

A\E(T+a) ko

A

Also, for any = € 'y,
lg(N*z)|  |g(\) — g(0)]

N

P PR = [g]CO’Q(O) < (50.

Then the claim follows for k& + 1 by applying again Lemma 2.5.2. [

2.6 Proof of main result: Theorem 2.1.1

To prove Theorem 2.1.1 we need Campanato’s characterization of C1®
spaces [19] and a technical result that patches the interior and boundary es-
timates together. We believe that the latter belongs to the folklore (see, for

example, [45]) but, for the sake of completeness, we will give a proof.
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Theorem 2.6.1 (Campanato). Let u be a measurable function defined on a
bounded CY* domain Q. Then u € C**(Q) if and only if there exists Cy > 0

such that for any x € §, there exists a linear polynomial Q,(z) such that
[u(2) = Qu(2)| < Colz — 2,

for all z € By(x) N Q. In this case, if C, denotes the least constant Cy > 0 for

which the property above holds, then

||u||01,a@) ~ C, +sup |Qal,
T

where |Q,| denotes the sum of the coefficients of the polynomial Q. (2).

Proposition 2.6.2. Let S be a collection of measurable functions defined on
a bounded CY* domain Q. For x € Q, we let d, = dist(z,09). Fizu € S, and

suppose the following hold.

(1) (Interior estimates). There exist A,C,D > 0 such that for any x € )

there exists a linear polynomial P,(z) such that
1Pell o8y + dal|V Pel[ o) < Cllulloe(s)

and

[u(z) = Pu(2)] < (A”“C'i'—“’” +D)\z — e

for all z € B = By, js(x).
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(17) (Boundary estimates). There exists E > 0 such that for any y € 052,

there is a linear polynomial P,(z) such that
1Byl @) + VB[l o) < B

and

[u(z) = Py(2)] < Elz —y|'™*,

for all z € Q.

(1ii) (Invariance property). For anyu € S, and any y € 0S), with correspond-
ing linear polynomial P, as in (ii), the function v = u — P, also satisfies

the estimates of (i).

Then S C CY*(Q) and there exists M > 0, depending only on A, C, D, E such

that
[ullore@ < Mlullp=()-

Proof. We need to show that any u € S satisfies the Campanato characteri-
zation from Theorem 2.6.1. Let us pick any point z € Q. If € 9Q then the
polynomial @Q,(z) = P,(z), where P,(z) is as in assumption (i), satisfies the
Campanato condition with Cy = E.

Suppose next that x € 2. Let y € 0€) be a boundary point that realizes
the distance from = to the boundary, namely, d, = | — y|. Let P,(z) be the

linear polynomial that satisfies (ii). Consider the function v(z) = u(z) — P, (2).

By (7i7), there is a linear polynomial P,(z) such that the conditions in (i) are
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met for v in place of u. We claim that the polynomial @), for the Campanato

condition is
Qu(2) = Py(2z) + Py(2).

To show this, we split the argument into two cases.

Case 1. Suppose that |z — x| < d,/2. This is the case when we can apply (7)
for v — P,:

[u(2) = Qu(2)] = [u(2) = Py(2) = Po(2)] = [v(2) = Pa(2)]

V|| = x
(AH "Ldifg/z( ) +D)|Z _$|1+o¢

_ (AHu — Pyl By, o)

dito +D)|Z—5L‘|1+O‘,

Now, we notice that, by (i¢), by the choice of y, and the fact that |z—z| < d, /2,
u(z) = Py(2)| < Elz —y|""* < B(3/2d,)"* < 27 Ed, ™.

Hence,

[u(z) = Qu(2)] < (2""AE + D)|z — af*®
and Cy = 2'T*AF + D.
Case 2. Suppose that |z — x| > d, /2. By the estimate in (i) for P.(z), we get

1P (2)] = [Po(2) + V() - (2 — )]

< Cllu = Pyllre(m) + Cdy lu = Pyl (m|2 — .
Also, by the boundary estimate in (i),

lu = Pylle=s) < (3/2) 7 Ed, ™.
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Hence,

|u(z) = Qu(2)| < |ulz) = Py(2)| + [ Pa(2)]
< Elz —y|""* + Cllu — P, z=5)
+Od, Ju = Pyl =52 — ]
< 3'eB|z — |t + 3 CEdl T
+Cd; Y (3/2)" T Bd Y|z —

< 3B +20)|z — x|t

Thus, in this case, the Campanato constant is Cy = 3'7*E(1 + 2C). O

Proof of Theorem 2.1.1. Let u € LogLip(£2) be the solution given by Theo-
rem 2.2.2. We will show the statement for the function us : Qs — R, and we

can argue similarly for u; : Q; — R. The following holds.

(1) (Interior estimates). For any x € €y, there exists a linear polynomial

P,(z) such that
1Pell oo 3y + dal|V Prl e 3y < (1 + 2n)[[u| L~ (5)

and

a1 ull=(s o
)~ ()] < 2l B, e

for all z € B = By, j2(x).

Indeed, fix x € €25. Since us is harmonic, it is smooth in 2, so we can
define
Py(2) = us(x) + Vus(z) - (2 — 2).
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Then, by classical interior estimates for harmonic functions,

HP:CHLOO(B) + dzHVPxHLOO(B) < ||U2||Lo<>(B) + d:cHVUzHLoo(B)
+dm||vu2||Loo(B)
< lua||zeo(my + 2nf[uz = (5)

Moreover,

[ua(2) = Pa(2)| < [|D%uall o) — P

||U2||L°<>(B) 2
<n——"[z — 7]
dz
u 0o
§2a71 || 2d||1i_a(B)’ _x|1+a.
X

(i1) (Boundary estimates). Consider 02y = I" U 0SQ.

If y € I', by Theorem 2.1.2, there exists a linear polynomial P,(z) such
that

[Pyl ) + IVEy|[ro@,) < F

and

lua(2) = Py(2)] < Elz =y,
for all z € 52, with £ < C(]Hl/}HClﬂa(Bi)||g||CO’a(I‘)7 and CO = C(](n,Oé) > 0.

If y € 092 € C°, since us = 0, then, by classical boundary regularity for
harmonic functions, uy € C**(BN ), with B = B,(y), for some 7 > 0

sufficiently small. By Theorem 2.6.1, there exists a linear polynomial
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P,(z) such that
ua(2) = Py(2)] < Colz =y,

for all z € Q,, for some Cy(n, a) > 0.
(i13) (Invariance property). Fix y € 0Q,, and let P, be the corresponding

linear polynomial given in (i¢). Clearly, the function v = uy — P, is

harmonic in €y, so it satisfies the interior estimates in (7).

Therefore, by Theorem 2.6.2, we have uy € C5%(Qy), and there exists

a constant C' > 0, depending only on n, o and I' such that

[uz]l e,y < Cllglloosm).

2.7 Appendix
A special Lipschitz domain €2 in R™ is a set of the form
Q={(",2,) €eR": 2’ e R" z, > ()}
where ¢ € Lip(R"!), that is, there exists M > 0 such that
(') =) < Mla' —y|  foralla’,y’ € R".

In other words, €2 is the set of points lying above the graph of a Lipschitz func-
tion . Then, by Rademacher’s Theorem, 1 is Fréchet differentiable almost

everywhere with ||[V4)||peo@n-1y < M. On 02 we thus have

n— / (V¢<x/)7 _1)
dH" |, = 1+ |VY(a)2da’ and  v(2',¢(2')) = e
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where = (2/,¢(2')) € 0. For a measurable function f on 0f2, we have

90 f<$> dH™ ! = f(&?l,i/J(SL’I)) T |V1p(q;/)|2 "

Rn—1
For more details see [23,41].
A bounded Lipschitz domain in R" is a bounded domain €2 such that the
boundary 0f2 can be covered by finitely many open balls B; in R", j =1,...,J,

centered at 02, such that

where (); are rotations of suitable special Lipschitz domains given by Lipschitz
functions ;. One may then assume that J2 N B; can be represented in
local coordinates by z, = 1;(2'), where 1; is a Lipschitz function on R"*
with ,;(0") = 0. Recall also that if ¢ is a Lipschitz function defined on an
set A C R" ! with Lipschitz constant M, then there exists an extension
1 R* 1 — R of 4 such that ¢ = ¢ on A and the Lipschitz constant of 1) does

not exceed M, see |23].

Let Qg = QN (U}]:1 Bj)c‘ A partition of unity {¢; 37:0 subordinated
to {Qo, By, ..., By} is a family of nonnegative smooth functions &; on R™ such

that & € C°(), & € CX(B;) for all j =1,...,J, and
J
ij(:r;) =1 forallz € Q.
=0

It follows that 0 < & < 1, j = 0,1,...,J. Obviously the family {¢;}7_; is
a partition of unity subordinated to the open cover {By,..., B;} of 002 and
Z}]:1 () =1 for every z € 9.
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Let f : ' — R be a measurable function, where I' = 0f2 is the boundary
of a bounded Lipschitz domain 2. Consider the balls B;, j = 1,...,J, that
cover I' as above, and the corresponding Lipschitz functions ¢; : R"! — R.
Let {¢; 3-]:1 be a smooth partition of unity subordinated to the open cover

{B;}/_, of I'. Then

[ rar - 2:: [t - i / G

Let us consider each one of the terms in the sum above separately. We study
the following situation: let B be a ball and let f : BNT — R of compact
support in BNT. Let ¢ : R®! — R be a Lipschitz function such that
Y(B}) = BNT. Then, by extending trivially f to the rest of the graph of ¢

and using the coarea formula [23,41],

fAdH" " = fAH"™ = fdH"
/Bml“ f /qp(B’) f /;[,(Rnl) f
= [ R s@IEIVIP

- / F o))V T VoW dy
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Chapter 3

Transmission problems for fully nonlinear
equations and flat interfaces

3.1 Introduction

We study the following fully nonlinear transmission problem in Bj:

FT(D?>u%) = f* in Bf = Byn{z, >0}
F~(D*v")=f~ in By = BinN{z, <0} (3.1.1)
uf —uy =g on T = By N{x, =0},

where D?u* denotes the Hessian of u* and v denotes the normal derivative

of u*.

We assume that F'* : 8® — R are fully nonlinear uniformly elliptic
operators, with ellipticity constants 0 < A < A, and F*(0) = 0. That is, for

every M, N € 8", with N > 0, we have
M|N|| < FE(M + N) — FE(M) < AN

We denote by 8™ the set of square n X n symmetric matrices and by £(A, A)

this class of uniformly elliptic fully nonlinear operators.

Transmission problems of the form (3.1.1) may be understood as two
Neumann problems that have been attached at the flat interface T. Indeed,

if we know the function u, on T a priori, then the transmission condition in
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(3.1.1) becomes a Neumann condition for u* (and viceversa). In [45], E. Mi-
lakis and L. Silvestre consider the Neumann problem,
{F(D%) —f inB;
Uy, = ¢ on T,
where F' € &(A\,A), and prove that if f € L?, with p > n, and g € C%“, then

viscosity solutions are C'** up to the flat boundary in By ,.

A similar problem to (3.1.1) was considered by D. De Silva, F. Ferrari,
and S. Salsa in [58], where the transmission condition is replaced by u} —
pu, =0, for some p > 0. In fact, these transmission problems play a key role
in the regularity theory of solutions to two-phase free boundary problems with
distributed sources, studied by the same authors in [55-57]. In their paper,
they assume that the functions f* are Lipschitz continuous, and they show
that ut and u~ are C* up to the flat interface in By js. Their approach is to
consider incremental quotients in the z’-direction and prove that they belong
to a Pucci class of functions (see Definition 3.1.3), which are known to be
Holder continuous in the interior. In particular, tangential derivatives will be
Hoélder continuous, and thus, the C1® boundary regularity of solutions follows
by the well-known results for the Dirichlet problem. We point out that the
existence and uniqueness of viscosity solutions is left as an open problem. In

fact, the proof of this result is one of the main novelties of our work.

This chapter is organized as follows. First, we introduce the notion
of viscosity solution of (3.1.1) and present the main results. In Section 3.2,

we prove a new ABP estimate (Theorem 3.2.1) for viscosity supersolutions of
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(3.1.1) and obtain the maximum principle as an immediate consequence. Using
this tool, we show an oscillation decay lemma in Section 3.3, which implies the
C% regularity of viscosity solutions across the interface 7' (Theorem 3.1.8).
In Section 3.4, we define a family of regularizations in the z’-direction, also
known as e-envelopes, that play the same role as the Jensen’s approximations
in the classical theory, and derive some properties that will be useful in future
proofs. We prove existence and uniqueness of viscosity solutions to (3.1.1) with
prescribed boundary values in Section 3.5 (Theorem 3.1.7). For this, we show
that the comparison principle for viscosity subsolutions and supersolutions
holds (Theorem 3.5.6), and we carry out the usual procedure for Perron’s
method. Finally, in Section 3.6, we derive C1® estimates for u* and u~ up to
the interface (Theorem 3.1.9). The latter follows by a standard perturbation

argument, using the results in [58|.

3.1.1 Preliminaries

Definition 3.1.1. We say that a continuous function ¢ touches u by above

at xo in By if there exists § > 0 such that the following holds:

¢(ro) = u(wo)

o(x) > u(z) for all x € Bs(xo) C By.

Similarly, we say that ¢ touches u from below at z( in By if the same conditions

hold with the inequality reversed.

We denote by USC(B;) the space of upper semicontinuous functions
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on Bj. Similarly, LSC(B) is the space of lower semicontinuous functions on
Bi. In the sequel, we write F=(D?u) = f* to denote both interior equations

in (3.1.1). Tt is clear that u* = u|§

Definition 3.1.2. For M € §", we define the Pucci’s extremal operators as
MEA(M) = Xtr(MT) = Atr(M™) and MY (M) = Atr(M™*) = Xtr(M™),
where M = M* — M~ and M*, M~ > 0.

Definition 3.1.3. We denote by S, 4( f*) the class of upper semicontinuous
functions on By such that MY, (D*u) > f* in Bf in the viscosity sense.
Analogously, we denote by Sy 4 (fF) the class of lower semicontinuous functions

u on By such that My ,(D?u) < f* in Bf in the viscosity sense. We define

Sia(fF) = Saalf*) ﬂﬁA,A(fi) and Si,A(fi) = §A,A(—|fi|) NSia(lf)).

Definition 3.1.4. We say that a function u € USC(By) is a viscosity subsolu-

tion of (3.1.1) in By if for any ¢ touching u by above at zq in By, the following
holds:

(i) If xy € Bif and p € C*(Bs(xy)), then
F=(D?p(w0)) = f* (o).
(ii) If 2o € T and @ € C2(B; (x0)) N C2(B; (1)), then
a, (T0) — g, (20) = g(w0),

where gO:t = @‘m
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Similarly, a function v € LSC(B;) is a viscosity supersolution of (3.1.1) in By
if whenever a test function ¢ touches u from below at xq in By, then it satisfies
conditions (7) and (ii), where all inequalities are reversed. Finally, a function
u € C°(By) is a viscosity solution of (3.1.1) in By if it is a viscosity subsolution

and a viscosity supersolution.

Remark 3.1.5. The following condition given in [58] is equivalent to (i7):

(17") Let zo € T and let
p(r) = Pa) +pTay —pa,

where P is a quadratic polynomial, p* € R, z7 = max{0,z,}, and
z, = —min{0, z, }. If p touches u by above at xg, then

n

pt—p~ > g(wo).

Indeed, we may suppose that xy = 0. If ¢ € C? (B_gr) N 02(3_5_) touches u from

above at 0, then by the Taylor’s expansion, we have that
p(0) + A"~ 2" + ¢} (0)2) — ¢z, (0)a;, + Bl2'|* + Ba,

touches u from above at 0, possibly in a smaller neighborhood By, where
IVl (5,) < A" and supyep ngy, 0 1D*0(W)ll < 2B. Let p* = ¢ (0).

Then for £ > 0 small, we get

e(0)+ A o'+ (p" +e)zt — (o — o)z,
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also touches v from above at 0 in By, provided we choose ¢’ > 0 small enough

so that ¢|z,| — Bx2 > 0, for any = € Bs. By (it), it follows that
(p"+e)—(p” —¢) = 9(0).
Letting ¢ — 0, we conclude the desired inequality.

Lemma 3.1.6. Definition 3.1.4 is equivalent to replacing (it) by the following

statement: if xo € T and ¢ € C*(Bj (z9)) N C?*(Bj (x0)) touches u by above at

xg, then either
F=(D*p™(20)) 2 fF(w0) or ¢f (w0) = 5, (20) = glwo).

Proof. If u is a viscosity subsolution of (3.1.1), then it is clear that the state-
ment is true. To prove the converse, let zyp € T and assume that ¢ €
CQ(m) N C’Q(M) touches u by above at xy. Suppose by means of
contradiction that

#1, (o) = @5, (z0) < g(x0)- (3.1.2)

Define the function
() = p(x) + nlz,| — Clz,|* for z € B,

where n, 7,C' > 0 are constants to be determined.

For n small, and C' large fixed, we choose 7 < r such that

Nz, — Clz,* >0 in B,.
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In particular, ¢ € C*(B;(x4)) N C?*(B; (7)) and

P(z) > p(z) > u(r) for x € B, (x).
Then 1 is a test function touching u by above at g, and thus, either

FE(D*)(x0)) = f*(x0) or 47 (z0) — 5, (20) = (o). (3.1.3)

We will see that both of these conditions cannot happen, hence reaching a

contradiction. Indeed, by (3.1.2), and choosing 7 sufficiently small, we get

a (20) = U, (w0) = @5 (v0) — ¢y, (x0) + 21 < g(x0)-

Therefore, the first inequality in (3.1.3) must hold. Call E, = e,el € 8"
Then

M) a (D*(20)) = MY, \(D*¢(20) — 2CE,)
<M, 4 (D%p(20)) — 20N /n

< f+($0)7

choosing C sufficiently large. This is a contradiction since by uniform elliptic-

ity, we have

(o) < FH(D*(x0)) < AI[D*P(ao)] " || = M [D*3) (o)) |

< M;\r/n,A(DQw(xo))

We conclude that

o (20) = @n (v0) > g(w0).
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3.1.2 Main results
Our main theorems are the following.

Theorem 3.1.7 (Existence and uniqueness). Let f* € CO(BFf UT), g €
CT), and ¢ € C°(OBy). Then there exists a unique viscosity solution u €

C%(By) of (3.1.1) in By with u = ¢ on 0B;.

Theorem 3.1.8 (C%“ regularity). Let u satisfy

{uGSj"\,A(fi) in By

+ .-
Uy — U, = on T,

with f* € CO(BF) N L=(B) and g € L®(T). Then u € C%* (B 3) with

[ullcomr @) < C(lullroesy + Mgy + 1 Npaioy + 1 i)
where 0 < oy < 1 and C > 0 depend only on n, \, and A.

Theorem 3.1.9 (C'* regularity). Let 0 < a < &, where & < 1 is given in

Theorem 3.6.1. Assume that g € CO(T) and f* € C°(Bf UT) satisfies

1/n
(]é( - ) < O, (3.1.4)
r(Zo)N 1

for all zg € BFUT and r < 1. Let u be a bounded viscosity solution of (3.1.1)
m By. Then
u* € Cl’o‘(Bf/Q),

and the following estimate holds:

Il

[u < O(llullzezyy + llgllcoa) + Cp- 4 Cy+), (3.1.5)

CLQ(BfE/Q)

where C > 0 depends only onn, X\, A, and a.
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Remark 3.1.10. Note that the condition given in (3.1.4) is weaker than asking
Holder continuity. For instance, (3.1.4) holds if f € LP(B;) with p > n and
0 <a<1-—n/p Indeed, for any B,(xy) C Bi, by Holder’s inequality with

1/p=n/pand 1/¢ =1 —n/p, we get

n \U" 1 \n
(fBT(%) 11" de) :WUBM 11" de)
= g(H|f’nHLp/(Br(xo))‘Br|1/q/>l/n
¢ pl-n/p

= ?||f||Lp(BT(xo))

< C[l Fllzoepyre™
where C' > 0 depends only on n.

Remark 3.1.11. L. Caffarelli and X. Cabré prove in [15, Theorem 8.3| that
if u is a viscosity solution of F(D?*u) = f in By, where F € &(\,A) and f
satisfies (3.1.4), then u € C’llo’f(Bl), for some @ < 1 depending only on n,
A, and A. Hence, to prove Theorem 3.1.9, it is enough to derive pointwise

C1* estimates at the interface. Furthermore, (3.1.5) follows by a standard

argument of patching the interior and boundary estimates.

3.2 ABP estimate

A key tool in the regularity theory of viscosity solutions is the Alexan-
droff — Bakelman—Pucci estimate, also known as the ABP estimate. In par-
ticular, for any supersolution v in By, we give a bound for the infimum of u
in By, in terms of the infimum of u on 0By, the supremum of g on 7" and the

L™norm of f*. More precisely:
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Theorem 3.2.1 (ABP estimate). Let u satisfy

u < §A7A(fi) m Bit
0 <g onT

T

3.2.1
ul —u ( )

with [+ € C°(BF) N L®(Bf) and g € L=(T). Then

supu_ < supu— + C(max gy + 15 s nuernyy + 1 g agr.y)
B 0B;

where C' > 0 depends only on n, A\, and A. We denote by u_ = — min{0, u},
g+ = max{0, g}, fi = max{0, f*}, and [, is the convex envelope of —u_ on

By withu=0 on By \ By.

Remark 3.2.2. To prove Theorem 3.2.1, we will proceed similarly as in the
classical approach (see [15, Chapter 3]). A key step in that proof is to show
that the convex envelope is ' at the contact points. In general, this is
not the case for functions satisfying (3.2.1) since the transmission condition
uf —uy < g prescribes an angle on the graph of u on 7. Now, the convex
envelope may touch u at T', and thus, it will be singular at those points. To
overcome this difficulty, we consider an auxiliary function that makes the angle

concave, in some sense. Hence, the convex envelope will not touch this function

on T and, in particular, it will be C*!. We show this in the next proof.

First, we state a couple of lemmas from [15, Chapter 3|.

Lemma 3.2.3. Let u € Sy A(f) in Bs. Assume that f is bounded and ¢ is a

convex function such that 0 < ¢ < u in Bs and ¢(0) = u(0) = 0. Then

p(x) < C’(sup f+> |z|*  for all x € B.s,
Bs

where 0 < v <1 and C' > 0 are constants.
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Lemma 3.2.4. Let u € LSC(B,) such that u > 0 on OB, and let T, be defined
as in Theorem 3.2.1. Let K > 0 and 0 < r < 1 be constants. Assume that
for any 2o € By N {u = T}, there exists a convex paraboloid of opening K
that touches T, by above at xq in B.(x). Then T, € CYY(B,), and thus, there
exists a set E C By such that |By\ E| =0, and I, is second order differentiable

at any x € E. Moreover,

1/n
supu_ < C’(/ det D2Fu(1:) d;z:) ,
En{u=Iy}

By

where C' > 0 s a constant depending only on n.

Proof of Theorem 3.2.1. Fix € > 0 small and consider in B; the function
v=u— %(mf}Xng +€)|n).

By [15, Lemma 2.12|, we have that v € Sy A(f*) in Bf". Also,

vf — vy gg—(mTzixg++£) <gy—maxg —e<—c onT,

Tn

in the viscosity sense. Without loss of generality, we may assume that v > 0
on 0B;. Otherwise, we consider v — infsp, v. Assume that v_ # 0, and let
', be the convex envelope of —v_ on B,, where we have extended v by zero
outside of B;. Clearly, by definition of I',, we have that 0B; N {v =T} = @.
Also, we claim that TN {v =I',} = @. Indeed, if A -z + b touches v from

below at xq € T', for some A € R" and b € R, then

—e>A-e,—A-e,=0,
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which is a contradiction. Moreover, there exists ¢ > 0 such that for any xg € T,
we have Bs(xg) N{v =T} = @. If not, for any k > 1, there exist x; € T such
that there is some y, € Byi(zx) N {v =T,}. Then, up to a subsequence, it

follows that zy, yr. — yo for some yo € T'N {v =I',}, which is a contradiction.

Next, we show that I', € CY'(B;). By Lemma 3.2.4, it is enough
to see that there are constants K > 0 and 0 < r < 1 such that for any
xo € By N {v = T,}, there exists a convex paraboloid of opening K that

touches ', by above at xy in B,(xg). Namely,
Iy(z) < U(z) + 5|z —2o|* for all z € B, (xo), (3.2.2)

for some K,r > 0 (independent of xy) and some linear function [ such that
I(x9) = y(x0). Indeed, fix 29 € B; N {v = T,}. Since 2y ¢ OB, UT, we may
assume that zo € B N {v = T',}. Furthermore, Bs(xg) C By, for § small
enough. Let [ be a supporting plane of ', at zg. Then 0 <T', —1 < —v_ —1[in
Bs(xg) and T',(z9) — l(x9) = —v_(z0) — (x9) = 0. By [15, Proposition 2.8|, we
know that —v_ — 1 € SyA(f*). Applying Lemma 3.2.3 to —v_ — [ in Bs(z)
and o =1, — [, we get

Iy(z) <l(x)+ C+<B&(1p) fi) |z — xo|*> for all x € Bs,+ (o) (3.2.3)

5(@o

where v* < 1 and C* are universal constants. If o € By N {v = I',}, the
proof is analogous. Hence, choosing K = 2max{C"||f{]loc, C7||f{]loc} and

r=0min{y*, v}, we get (3.2.2).

By Lemma 3.2.4, there exists a set E C B; such that |B; \ E| = 0, and
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I', is second order differentiable at any = € E. Moreover, we have that

1/n
supv_ < C’</ det D°T,(z) dx) ,
En{v=Iy}

By
where C' > 0 is a constant depending only on n. Since f* € CY(Bj), then
letting & — 0 in (3.2.3), we see that det D?T,(zg) < C'f] (x0)™ for almost every

rg € B N{v =T,}. Therefore,

/ det D21, (z) dr < / fo(x)" da + / JH ()" da.
En{v=T,} By n{v=Ty} B n{v=Ty}

Combining the two previous estimates, it follows that

supv— < supv- + C(Hf-;HL"(Bfﬁ{v:Fv}) + HfiHLn(Bjm{v:rv}))-
B 0B,

From the definition of v, we have that

supu_ < supv_ and supv_ <supu_ + %(man+ + 5) |-
By B 8B By T

Hence, letting ¢ — 0, we get

sup u— < supu_ + C’(mTangr + ||f—:||L"(Bfﬁ{u:Fu}) + ||fj—r||Ln(Bl+m{u:Fu}))’
B1 0B

where C' > 0 depends only on n, A, and A. Note that {v =T',} C{u =14},
since I',, + %(maxT g+ 5) |z, | is convex, and T, is the largest convex function

that lies below w. O

An immediate consequence of the ABP estimate is the maximum prin-

ciple.
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Corollary 3.2.5 (Maximum principle). Let u satisfy

u e g)\’A(O) m Bit
uf —ug >0 onT.

Tn

If u>0 on OBy, then u > 0 in By.

Remark 3.2.6. Replacing u by —u, we get the maximum principle for sub-

solutions.

3.3 Holder regularity across interface

In this section, we prove Holder regularity of viscosity solutions across
T. In particular, Theorem 3.1.8 follows by a standard argument (e.g., see |26,
Lemma 8.23]) from the next oscillation lemma, which gives a geometric decay

of the oscillation.

Lemma 3.3.1 (Oscillation lemma). Let u satisfy

+ - _
Uy — U, = on T,

{uES}i’A(fi) in By

with [+ € CYBE) N L®(Bf) and g € L=(T). Then

oscu < proscu + C(HQHLW(T) + 1
1

wip + [ fT
gl oy TS

L (Bh):

where 0 < u < 1 and C' depend only on n, \, and A.

The oscillation lemma will be a consequence of the next result. The

ideas are inspired by [58].
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Lemma 3.3.2. Let u, f*, and g be as in Lemma 3.3.1. Assume further that
[ull ooy < 1 and u(z) > 0 with & = te,. There exist 0 < g,c < 1 depending

onn, A, and A such that if ||g|[ () + Hf_”Ln(B;) + ”f+”Ln(B;r) < &, then

inf u>—1+c.
B3

Proof. Since u + 1 > 0, by the Harnack inequality in Bj/20(Z) (see [15, Theo-

rem 4.3]), we get

sup (u+1)§C( inf (u+1)+|]f+HLn(B;L)),

By /20() Bi/20(®

where C > 1 is a universal constant. Then
1<u(z)+1< Bsulz_)(u +1) < C(u(x) + 1+ &)
1/20(%
for any @ € By/20(%), and thus,
u>—1+¢ in By(T), (3.3.1)
with ¢ =1/C —¢p and g9 < 1/C. For x € D = Bs34(T) \ Bi)20(T), we define
o(e) = nglr) + culanl. o) =1~ = (2/3)7, = —al,

where v > max {0, 2(n — 1) — 1} and 1 > 0 to be chosen later. We have

Biyd(x) = (v +2)r M — ) (; — 7)) ifi#)

() = yr 72 ((y + 2)r 2 (w — 7)) — 1).
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If 1/20 < r < 3/4, then at the point = = re; + 7,

Did(x) =0 ifi#j
() =y(y+1)r 2

Dud(x) = —yr 772 if i > 1.
By rotational symmetry, for any x € D* we get
M A (D*0™ () = nM5 4 (D?¢(x)) = myr 2 (AMy +1) = A(n — 1)) >0

by the choice of 7. For x € T'N D, it follows that

Vi, () = v, (2) = 260 2 |lgllLo(r) = g(2).

We will choose 1 and € so that v < ¢ on 0B1/20(%) and v < 0 on 0Bs/4(7).
Note that ¢(r) > 0if 0 < r < 2/3, and ¢(r) < 0 if r > 2/3. First, choose 1

such that 1) < 55775 . Then choose g such that ¢¢ < min {¢/2,—no(3/4)}.

1720)
By (3.3.1) we obtain that

v<wu-+1 ondD.

Since u + 1 € SyA(|f%]) in D, v*¥ € C*(D*), and M5 A (D*v*) > 0 in D,
by [15, Lemma 2.12|, we have that u + 1 — v € Sy A(|f*%]) in D. Also,

(ut+l-v)i —(u+l-v), <g— (v —v;)<g—9g=0 onTND,

n

in the viscosity sense. Hence, applying the ABP estimate (Theorem 3.2.1) to

u+1—wvin D, with g = 0, we see that

sup(u-+ 1= v)- < sup(u+ 1= )+ C(I Nunqoy) + 17 lingapy) < oo
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where C' > 0 depends only on n, A, and A. Therefore, u > —1 4+ v — Cgg in

D. Moreover, for any x € By/3(0) \ B1/20(Z), we have that

v(x) > ne(23/60) = ¢

and ¢; > 0 depends only on n, A, and A. Choosing &y such that gy < 75, we
get u > =1+ in By3(0) \ By20(7). Therefore,

inf u>—1+c¢,

Byy3
with ¢ = min{¢, ¢}. O

Proof of Lemma 3.5.1. Let M = |\gl[zoecry + |/ [ pnpr) + 1/l o5y and let

go be as in Lemma 3.3.2. Consider the rescaled function:

2u — (infp, u + supp, u)

S* r+
osc g, u+2M /g € SHalf™),

U=

with f* = 2f*(osc g, u 4+ 2M /)" Also, (i), — (@7 )e, < § on T in the
viscosity sense, with § = 2g(osc g, u + 2M /) ™! Note that ||@]|=(p,) < 1,
and

13l o=y + 117 W znisyy + 1 zn sy < o
If a(z) > 0, then by Lemma 3.3.2, it follows that infp, , > —1+c. Otherwise,
u(z) < 0, and applying the lemma to —u, we see that supp, , u<1l-—c In
both cases, we get

2 osc Byjs U

osctt = supu — inf @ = <2-—c
By/3 B3 Biys oscp, U+ 2M/€0
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Therefore,

< 0 B n - + n
oo < pogew+ C(llglloeer + 1S niary + 11 lnsp))

Withu:%’<1andC':ﬁ. [

€0

When f* = 0 and g has compact support on T, we obtain the following

global Holder estimate.

Proposition 3.3.3. Assume u € C°(B,) satisfies

u € Sxa(0) in B

uf —uy =g onT

U= on 0By,
where g € L®(T), suppg C T N By_g,, for some 0 < p < 1/4, and ¢ €
Co(0By), with 0 < a < 1. Then u € C%*(By), with 0 < B < min{ay, a/2},

and

| Q

||U||ooﬁﬂ(3i) < 7(HQOHCO»a(aBl) + ||9||L°°(T))a

s

where 0 < oy < 1 is given in Theorem 3.1.8, v = max{ay, o}, and C depends

only onn, A\, and A.

This result follows from the interior Hélder regularity (Theorem 3.1.8)

and the following boundary pointwise Holder estimate.

Lemma 3.3.4. Assume we are under the same conditions of Proposition 3.3.3.
Then u € C%2(xy) for any xo € OBy, with

_ 204/2
p o) =z 2
x€B,(x0)NB1 |3j - SL’()| P

L>(0By1) 0070‘(.%0) L>=(T) )
(llell + ¢ +Cllgllze(n))

where C' > 0 depends only onn, X\, A, and a.
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Proof. After a translation and rotation, we can assume that By = Bj(e,),
o = 0, and p(z0) = 0. Let M = 2°p~*([[ol L=(08,) F ¢l coa (o) +C gl Lo (1)) -

Note that if z € By, then |z|? = 2x,,. Therefore, for any x € 0By, we have
u(@) = 9(r) < [Ploelel® = 22 [elovaatl < Mol (332)
From the ABP estimate (Theorem 3.2.1), for any « € 0B,(0) N By, we get
u(@) < ullpes) < I@llie@s) + Cllglloe@ < M27?p* < Ma3/?, (3.3.3)

where C' depends only on n, A\, and A.

Define h(z) = M3 for x € B,(0) N B;y. By (3.3.2) and (3.3.3), we
have that u —h < 0 on 9(B,(0) N By). Moreover, for any x € B,(0) N By,

M*(D*h(z)) = \MS

5 (g — 1>x§/2_2 < 0.

2

Also, since h is smooth, hf —h; =0 on TN B,(0). It follows that

U—h€§A7A<O) in BP(O)m31
(w—"h)t —(u—="h), =0 onTnB,0)
u—h <0 on 0(B,(0) N By).

From the maximum principle (Corollary 3.2.5), we get
u(z) < h(z) = M2%? < M|z|*/?  for any x € B,(0) N B.

Applying this result to —u, and taking the supremum over all € B,(0) N By,
we get
u(z)| _ 277

sup <
2€B,(0)NB; ||/ p*

(llellzo=@By) + [©lcoao) + Cligllrer))-
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The following proof is in the same spirit as [15, Proposition 4.13].

Proof of Proposition 3.3.5. We need to estimate [|ulcoszyy = [[ulloes,) +

[u]co.smy)- From the ABP estimate (Theorem 3.2.1), we have that

[ull ooy < C(llell=m,) + lgll=)),

where C' depends only on n, A\, and A. Hence, it remains to control [u] C08(BT)-
Fix any z,y € B;. Let d, = dist(z,0B,), d, = dist(y,0B,), and assume
without loss of generality that d, < d,. Take x¢,yo € 0B such that |z —zo| =

d; and |y — yo| = d,,.

We study three cases. First, assume that d, > d, > p/2. Then since

0 < 8 < ay, by Theorem 3.1.8 (rescaled), it follows that

|u(z) — u(y)] ¢

iz —gl? < [u]eoer @, ;) < F(”SO“LOO(E)BI) + 19l z=(r))-

Second, assume that d, < d, < p/2. If |z —y| < d,/2, then
Yy < B@/g(I) C de(ZL’) C Bp<l’0) M Bl.

Applying Theorem 3.1.8 (rescaled) to u — u(zg) in By, (z), we get

@) —u@)l o lel@) — ) _

. < dj sup |u(z) — u(zo)|.
|z —y|?

‘I - y‘al 2€Bg, (x)
By Lemma 3.3.4, we get
a/2

sup |u(z) — u(zg)| < dﬁ
z€Bgq,, ()

L (0B,) 02 (0) L(T))-
(el + [¢] +Cligll )

Q
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Combining both inequalities, we see that

u(@) —uly)| _ C
< —([l¢llcoa@nyy + 19l r))-
|z — y|? o ( (0B1) ( ))

If |x —y| > d,/2, in particular, d, < d, < 2|z —y|, and thus, by Lemma 3.3.4,

[u(z) = uly)] < fu(z) = u(zo)| + |ulzo) — ulyo)| + [ulyo) — u(y)|

< (lelleoaq@sy) + Cligllzeeiry) (da” + o — ol + dy'?)
¢ 5
< p—a(||90||coya(aBl) + llgllzee () 2 = yl?,

since |zg — yo| < dyp + |z —y| +d, < 5|z —yl.

Third, assume that d, < p/2 < d,. Let z be on the intersection between
0B _,/> and the segment that joins the points « and y. Then |z —z| < |z —y|,
|z —y| < |z —y|, and d, = p/2. Hence, we can use the first case for = and z,

and the second case for y and z. We see that

u(z) = u(y)] < [ulz) = u(z)] +[u(z) = u(y)]

C
< ﬁ(H@Ile(aBn Hlgllzecr) (Jo = 217 + |y — 2|%)
C
< —(llellze@ny) + gl =)z —y1°,
where v = max{ay, a}, and the last inequality follows by concavity. O

3.4 Lower and upper s-envelopes

This section is devoted to the study of a family of regularizations in the
a'-direction, which play the same role as the Jensen’s approximations (see [15,

Chapter 5|). The following definition was introduced in [58].
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Definition 3.4.1. Given u € USC(B;), for any € > 0, we define the upper

e-envelope of u in the z/-direction as

u (Y yn) = sup {U(x’,yn)—élx'—y’P}
z€ByN{Tn=yn}

for y = (v, yn) € B, C By. Similarly, given u € LSC(By), we define the lower

e-envelope of u in the z/-direction as

ulyog) = _inf ful@l )+ L'~y
2€B,N{xn=yn} €

for y = (v',y.) € B, C By.

Remark 3.4.2. Note that since v € USC(By), then the supremum in the
definition of u® is attained. Namely, for every y € Fp, there exists y. €

B, N {z, = y,} such that
u(y) = ulye) — Hye — /. (3.4.1)
Moreover, if u is bounded in By, from the previous identity, it follows that
v~ /] < (2ellull) "
Similarly for the lower e-envelope wu..
Lemma 3.4.3. The following properties hold:
(1) v* >wuin B, and limsup,_,,u® = u.

(i1) u® € CS}I(E), with [UE]CS;I(BT) < 6p/e.
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(1ii) u® € C;,’l by below in B,. Hence, u® is punctually second order differen-

tiable in the x'-direction almost everywhere in B,,.

Proof. (i) Clearly, u* > u in B,.For any y € B,, using (3.4.1) we have

0 < u(y) —uly) = wlye) — tyl — ¥/'* — uly) < uly:) —uly) (3.4.2)

with y. — y as € — 0. Since u € USC(By),

limsup u(y.) < u(y).
e—0
Therefore, taking the limsup as ¢ — 0 in (3.4.2), we obtain the result.
(7i) Let yo,y1 € Fp C Bj such that (yo)n = (y1)n. Take any y €
Fp N {xn = (yO)n} Then

u(yo) > uly) — Ly — yol?
> uly) = 21y =l = 2y = vol® = 2yt — v llvi — ol
> u(y) =ty —y' 1P = Llyi — wol.
Taking the supremum over all y € B, N {z,, = (y1)n} we get
[uf(y1) — u(yo)| < Gs—p|y/1 — Yol-
(#i) Let yo € B,. Then u®(yo) = u(ye) — |y, — y4|*. In particular,
P(y) =uly:) = tly. = y'P <wu(y)  forally € BN {w, = (yo)u}

and equality holds at y5. Hence, P touches u® by below at yg in the 3-direction.

Note that

u (Y yn) + LY P = sup {u(x’,yn) — a2/ + 22 y’}.
z€B,N{xn=yn}
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Hence, u(y', y) + |y/|? is convex, since it is the supremum of affine functions.
By Alexandrov theorem (see |15, Proposition 1.5]), we see that u¢ is punctually

second order differentiable in the a’-direction almost everywhere in B,. ]

Given a uniformly continuous function h, we define its modulus of con-
tinuity, wy, as
wy(r) = sup |h(z)— h(y)] for r > 0.
le—y|<r
Proposition 3.4.4. Let f* € C%BY) and g € C°(T). If u is a bounded
viscosity subsolution of (3.1.1), then for any € > 0 small, it holds that u® is a
viscosity subsolution of

Fi<D2us) — fi in Bri
(U,E)—l- _ (uE)— =g. onT,=B,N {ffn — 0}’

Tn Tn

withr < p— 1, 7o = (2e||ul|oe)¥?, fX=f— wr=(re), and g. = g — wy(re).

Remark 3.4.5. If u is a bounded viscosity supersolution of (3.1.1), then u,

is a viscosity supersolution of the previous problem.

Proof. First, we show that
FE(D*w®) > f* in B

in the viscosity sense. Let yy € B and let 6 > 0 be small enough such that
Bs(yo) C Bf. Assume that ¢ € C?(Bs(yo)) touches u® from above at yo. By
(3.4.1), we have

u(yo) = u(y:) — Lyl — yyl?,
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with |y. — yo| = v, — y5| < r.. Consider the function
o(y) = oy +yo—ye) + 2yl —wol>  for y € B N Bs(ye).
Then ¢(y.) = u(y:). Note that y +yo — y. € B since
[y +yo — vl <yl + o —wel <v+r<p,
and thus, by definition of u®, we get
u(y) < u(y +yo — ye) + £ly — vol*

Moreover, using that ¢(y) > u®(y) for all y € Bs(yo), and that y + yo — y. €

Bs(1yo), the previous estimate yields

u(y) < oy +yo — ye) + Lyl — yh|* = o(y).

Therefore, ¢ touches u from above at y.. Since u is a subsolution of (3.1.1),

we see that
FH(D*p(yo)) = FH(D*¢(ye)) > fT(ye) = [ (o) — wp+ (1) = f (o).
It remains to show the transmission condition,

(ug);‘-n - (UE);TL > e on 7T,

in the viscosity sense. Let yo = (y;,0) € T, and assume that

oy)=PW)+pryt —p 7y,
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with P a quadratic polynomial, touches u® by above at yo. Arguing as before,

it follows that
oy) =P +uo— o)+ Lyl —wol* + Tyl — 7y,
touches u at y. from above. Therefore,

pr—p = (o7 — b)) = 9(ye) = 9(yo) — wy(re) = g=(m0)-

3.5 Existence and uniqueness

To prove existence and uniqueness of viscosity solutions (Theorem 3.1.7),
we will follow the usual greatest subsolution approach, also known as Perron’s
method. One of the main ingredients of this method is the comparison princi-
ple (Theorem 3.5.6). This theorem will be a consequence of a Jensen’s unique-

ness type result (Theorem 3.5.4) and the ABP estimate (Theorem 3.2.1).

3.5.1 Half-relaxed limits

We introduce the notion of half-relaxed limits and some of its properties

that will be useful for the proof. For more details, see [21].

Definition 3.5.1. Let {u;}$2, be a sequence of functions. For x € By, we

define

lim sup® ug(x) = lim sup {uk(y) k>34, y€ By, and |y — x| < jl}
j—00
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Similarly, for « € By, we define

liminf, ug(z) = lim inf {uk(y) k>3, y€ By, and |y — 7| < %}

Jj—00
Remark 3.5.2. Observe that limsup* u; € USC(B;). Indeed, it is enough to
show that O = {x € B : limsup®ug(z) < r} is open, for any » € R. For

simplicity, given = € By, call
Aj(z) = {uk(y) k>, y€ B, and |y —z| < %}‘

Notice that A;1(x) C Aj(x), and thus, sup A, (x) < sup A;(z). Fix 2o € O.
Then lim sup” ug(zo) < r and, by monotonicity, there exists jo > 1 such that

sup A;(zg) < r, for all j > jo. Furthermore, there exists ¢ > 0 small such that
sup A;(zg) <r—e forall j > jo.

In particular ug(y) < r —e, for all k > jo and |y — xo| < 1/jo. Let p < 2%0 and

J1 > 2jo. Then for any x € B,(x(), we have that
ur(y) <r—e forall k> j; and |y — x| < jll,
since |y — zo| < 1/7o. Therefore,

sup Aj(z) <r—e<r forall j>j.

We conclude that B,(xy) C O, and thus, O is open.

Similarly, lim inf, u, € LSC(B).
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Lemma 3.5.3. Let {u;}?°, C USC(B;) and u = limsup uy,. Fiz zo € By. If
¢ € C touches u from above at xq, then there exist indexes k; — oo, points

z; € By, and functions p; € C° such that @, touches uy; from above at x;,
r; —xo and ug (1) — u(xg), as j — oo.
Moreover, p;(x) = @(x) — o(x;) + g, (2;) + 0(|x — xo|* — |x; — x0]?), for an

arbitrary 6 > 0.

Proof. Fix xy € By. Assume that ¢ € C° touches u from above at x,. Then

u(zg) = p(rg) and wu(x) < ¢(x) for all z € B,.(zy).

Since u;, € USC(By), by the definition of u, there exist indexes k; — oo and

points y; € B, such that
y; = xo and g, (y;) — u(xo), as j — o0.
Fix 6 > 0 small. For j > 1, let z; € B, be a maximum point of
up, () — p(x) = 8l — wo*  on By ().

Then for all = € B,.(z), we have that
ur, (2) < ugy (27) + (@) — (@) + (|l — @0l — |2 — @of*).

By compactness, up to a subsequence, x; — y € B,(zo). Using the previous

estimate, with = y;, and passing to the limit, we get that

u(wo) = hjlgioglf ug, (y;) < 1ijfﬁ>££1f ur, () + (0) — ©(y) — dly — wo|?

< u(y) + @(zo) — ¢(y) — 8|y — ol

< p(x0) — bly — o,
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since u(y) < ¢(y). Therefore, y = x¢, since u(xy) = ¢(x¢), and thus, z; — xg

as j — o0o. Moreover, we see that

lim sup ug, (z;) < u(zo) < liminf uy, (25).
j—o0 J—00

Hence, u,(7;) — u(x), as j — oo. Define
i () = ur, (25) + (z) — p(a;) +6(|lx — 2of* — |2 — @o|*).

Then ; touches uy; from above at z; since

wj(x;) = u,(z;) and ;(x) > ug;(v) for all x € B,(x0).

3.5.2 Comparison principle and uniqueness

The next theorem will be key to prove the comparison principle. As a
consequence, we show uniqueness of viscosity solutions (Corollary 3.5.5). Our

proof is inspired by [58, Lemma 4.2].

Theorem 3.5.4 (Jensen’s uniqueness type result). Let fi, fif € C%(BT) and
g1,92 € CUT). Assume that u € USC(B;) and v € LSC(B;) are bounded
functions satisfying
{Fi(DQU) > ff inBf {Fi(D%) <ff inBf
uf —uy >gq onT
in the viscosity sense. Then the function w = u — v satisfies

w € Sy,alfi” — f2) in BY
wi —w, >g1—g2 onT,

in the viscosity sense.
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Proof. Let u and v be as in the statement. Consider w = u — v. By [34,
Theorem 3.1|, we know that w € §,\/n7A(f1jE — fF) in Bf. Hence, we only need
to show the transmission condition. Let zg = (zf,0) € T and assume that
P(a) +pTe, —p a,
touches w by above at zy, where P is a quadratic polynomial and p* € R.
We need to show that

P —p" > g1(z0) — ga(wo). (3.5.1)

Fix 7 > 0 and C' > 0 large to be chosen. Then

p(z) = P(x') + (p* + )z — (07 — 7)a, — Ca,
touches w strictly by above at xg, possibly in a smaller neighborhood where
7|z, — Cx2 > 0.

For € > 0, consider w. = u® — v., where u® and v. are the upper and
lower e-envelopes of u and v, respectively, given in Definition 3.4.1. By (7)
in Lemma 3.4.3, we have that limsup,_,,w. = w. By Lemma 3.5.3, up to a
subsequence, there exist points x. € By, with x. — z¢, and functions ¢, given
by
pe(1) = p(x) — p(ze) +we(2e) + o — 20| — |2 — 20|
such that ¢. touches w. strictly by above at z.. In particular, given § > 0

small, there exists n > 0 such that
Ye —we >n>0 on 8B5(:c€)
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By Proposition 3.4.4, Remark 3.4.5, and [34, Theorem 3.1], we have

M, (D?we) > (f5)e = (f3)e in By, (3.5.2)

in the viscosity sense, for some 0 < p < 1 such that Bs(z.) C B,,.

Choose C' large enough so that
M, A (D*0.) < A| D2 P| + 24 — 2X(C — 1) (3.5.3)
<inf{(5). - ().} i B}
P

Since . touches w. by above at z., it immediately follows that x. € T.

Otherwise,
MY a(D?0e(2)) < (fi0)e(@e) = (f3)e(xe),

which contradicts (3.5.2). Define

Y= —we — 77/2 (354)

Then ¢ > n/2 > 0 on 0Bs(x.) and ¢ (z.) = —n/2 < 0. Let Iy, be the convex
envelope of —t_ in Big(x.) = Bas(z:) N {x, = 0}, where we have extended
—4p_ = 0 outside of Bj(x.). By (i) in Lemma 3.4.3, we know that ¢» € C;' by
above in B,. Hence, for any zj, € Bj(x.), there exists a convex paraboloid P(z')
with uniform opening that touches v (z’,0) by above at xj. Using [15, Lemma

3.5, we see that T'y, € C5;'(Bj(x.)), and for 4 > 0 sufficiently small,
|D,| = |{x' € Bj(ze) : Ty(a") = ¢(2',0) and [V'Ty(2")] < 7}’ > 0,

since I'y(2.) = 1 (2,,0) and 0" € V'T'y (). Hence, choosing v < L, there ex-

ists y. € D, such that both u* and v, are punctually second order differentiable
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at y. = (y.,0) in the 2’-direction, and such that
@) = VT () - (&' — y2) + 1 (ye)
touches ¢ from below at y. on Bs(z.). Indeed, I(z') < v(2/,0), for all 2’ €
Bj§(x.), and
(o) < [VTy(yo)ll2" — yil < §5(20) = n/2 < <p(x) for all z € OB ().
Therefore, [ < 1 on dB; (z.). In particular, by (3.5.4), we see that
w, < @, —1—n/2 on IB;(z.).
Moreover, in view of (3.5.2) and (3.5.3), we get

M (D*we) > M5, (D (e — 1= 1/2))  in B ().

Hence, by the comparison principle, it follows that w. < ¢.—1—n/2 on Bs(x.).
Define

o=p.—1l—n/2

Consider the viscosity solutions %* and v. to the Dirichlet problems,

FH(D*&) = (fi"): in By ()
ut =us on 0B; (z.)

and

Fi(DQT)S) = (f2i>s in Bgt(xg)
Ve = g on 83(?:(375).

By the comparison principle, @, > u. and v. < v, in Bs(z.), and thus,
(@), — (@), = (91): and  (0:);, — (0:),, < (g2): (3.5.5)
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on Bs(z:) N {z, = 0}, in the viscosity sense, where (g1). and (go). are given

in Proposition 3.4.4. More precisely,

(91)e = g1 — wyu ((2el|ullc)?) and  (g2)e = g2 — wy, ((2¢]v]|c)"?).-

Recall that u®,v. € C5%(y.), and thus, by pointwise C-*-estimates (see [38,

Theorem 1.6]), there exists ry > 0 and linear polynomials /£ and I+ such that
|ar — lf“Lw(B;t(yE)) < Crtte for all 0 < r < 7.

For simplicity, call p& = Vi£-e, and pE = VIiF-e,. Then by similar arguments

as in [58, Lemma 4.3|, we see that (3.5.5) holds pointwise at y.. Namely,
Py =Py = (91):(ye) and pl—p, < (g2)-(ye). (3.5.6)
Let w. = u* — v.. Then by previous computations, w. satisfies
M3 jpa (D) > M5, ((D?@)  in Bi(z.) and ¢ >w. on dB;(z.).

It follows that @ > w. in Bs(z.) and @(y.) = w.(y.). Since w. € C1(y.), we

have that

P+ =00 (y) > (w)F (ve) = pii — P,

P —T =@, (y:) < (wa);n (Y-) =D, — D, -
Therefore, combining the previous estimates with (3.5.6), we get

pT =0 427 > (91)=(ye) — (92)=(ye)

= (g1 = 92) () + wu ((2elullc)?) = wia ((20]10)'72).

Recall that y. € Bs(z.) and z. — o, as ¢ — 0. Hence, letting 7 — 0, then

d — 0, so that y. — x., and finally, £ — 0, we obtain (3.5.1). ]
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Corollary 3.5.5 (Uniqueness). The transmission problem

F*(D*u*) = f* in Bf
uf —uy =g onT (3.5.7)
u=¢ on 0B,

has at most one viscosity solution.

Proof. Assume by contradiction that there are two distinct solutions v and v.
Then, by Theorem 3.5.4, w = u — v satisfies
w € Syma(0) in Bf

w = on 0B,
in the viscosity sense. By the maximum principle (Corollary 3.2.5), it follows
that w = 0 in B;. This is a contradiction with u # v. Therefore, there exists

at most one viscosity solution to the transmission problem (3.5.7). O

Theorem 3.5.6 (Comparison principle). Let u,v : B — R be a bounded vis-
cosity subsolution and a bounded viscosity supersolution of (3.1.1), respectively.
If u <wv on 0By, then

u<ov in Bj.

Proof. Let w = u — v. By Theorem 3.5.4, w satisfies

w e ﬁ/\/n,/\(o) in Bit
wy —w, >0 onT.

Tn

From the ABP estimate (Theorem 3.2.1), it follows that
0 <supw_ <supw_ = 0.
B1 0B,

Therefore, w > 0 in By, which implies the result. ]
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Lemma 3.5.7 (Barriers). There exist functions u,u € C*(B; \ T) N C°(B,)
such that u is a wviscosity subsolution and W is a viscosity supersolution of

(3.1.1), respectively, with
u<uinB; and u=u= ¢ on JdB;.

Proof. Let f = fTx B+ T fx B Consider the Dirichlet problems

{ A(D) = [|fll in By

=6~ Llgllcleal on 0B,

and
ML (DY) = = flle in By
U =0¢+ 3lgllo|z]  on OB.

By [15, Proposition 9.8], there exist unique solutions ¢,v € C?(B;) N C°(B).

Define the functions u,w € C?(B; \ T) N C°(B,) as

=¥+ 5llglllnl and =1 — §glloclzal-

Then u = u = ¢ on dB;. By construction, we have that

FE(D%u) > M3, (D*Y) = |flle > f* in Bf
(u)zp — (U )an = l9loc > g on T.

Hence, u is a subsolution of (3.1.1). Arguing similarly, we see that u is a
supersolution of (3.1.1). By the comparison principle (Theorem 3.5.6), we

conclude that v < in Bj. O
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3.5.3 Existence via Perron’s method
Define the set of admissible subsolutions as
A= {v € USC(B;) : u < v < u and v viscosity subsolution of (3.1.1)}.
Note that u € A, so A # . Set

u(z) = supv(x).
veA

For x € By, we define the lower and upper semicontinuous envelopes of u as

u,(z) = liminf {u(y) : y € By and |y — 2| < r}
r—0
* _T . . _ <
u*(x) ll_r%sup {u(y):y € By and [y — x| <r}.
Remark 3.5.8. Observe that u, € LSC(B;) and u* € USC(B;). Clearly,

Ue < u < uk.

Lemma 3.5.9. If {0}, C A, then v =limsup v, € A.

Proof. Let {v;}32, € A and v = limsup wvy. It is clear that u < v < 7.
Hence, we only need to show that v is a subsolution of (3.1.1). Fix zq € By
and assume that ¢ € C? touches v by above at xy. Then by Lemma 3.5.3,
there exist indexes k; — oo, points x; € By, and functions ¢; € C? such that

D?*p; = D*p + 201, ¢; touches vy; from above at z;, and

r; —xo and v (z;) = v(T0), asj— oo.

If xy € Bf, then for j sufficiently large we may assume that xj € BE.

Since vy; € A, and ¢ touches vi, by above at x;, it follows that

F*(D*p(x;) + 261) = FF(D*pj(x;)) > f*(x;).
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Letting 5 — oo and § — 0, by continuity of F, D?p, and f*, we obtain the

result.

If zg € T, then either there exists jo > 1 such that for all 7 > jg, we
have x; € B, or for all jo > 1, there exists j > jo such that x; € T. In the

first case, by the previous argument, we get
FE(D*p(x0)) > f*(x0).
In the second case, we have that
(7 )an (25) = (05 )an (5) = gla;)-

Passing to the limit, we obtain the desired estimate.

Therefore, by Lemma 3.1.6, we conclude that v is a viscosity subsolution

of (3.1.1).

We divide the proof of Theorem 3.1.7 into two steps.

Lemma 3.5.10 (Step 1). The function u* is a subsolution of (3.1.1). In

particular, u* € A.

Proof. Let xy € B;. By the construction of u*, there exist points {zx}72, and

functions {vx}32, C A such that x; — 2, and

u* (o) = kll_g)lo v ().
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Hence, limsup” vi(zo) > u*(20). On the other hand, for all z € By, we have
u*(x) > limsup v;(x)

for any {v;}32, C A. Therefore, lim sup v(z0) = u*(xo). In particular, if
¢ € C? touches u* by above at x(, then the same holds for lim sup>k V. Using

Lemma 3.5.9, we know that lim sup* v € A, which implies that u* € A. O

Remark 3.5.11. By the previous lemma, it follows that u* < w, but by

definition, uw* > u. Therefore, u* = u on By, and thus, u € A.

Lemma 3.5.12 (Step 2). The function u, is a supersolution of (3.1.1).

Proof. Assume by means of contradiction that there exists xy € B; and some

test function ¢ that touches u, from below at zy such that the following holds:

(i) If 2o € BY, then
FE(D*p(x0)) > f*(x0).

(i1) If zg € T', then

o (x0) = @5, (0) > glxo).

Without loss of generality, we may assume that ¢ touches wu, strictly from
below. Otherwise, take ¢ — e|lx — xo|?, for some &€ > 0 small. By continuity,
the strict inequalities in (¢) and (éi) hold in a neighborhood of (. Indeed, let

xg € Bf. For § > 0 sufficiently small, it holds that
F*(D*p(x0)) — 6 > f* (o).
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Since fT € C°%(B{ UT), there exists r > 0, depending on §, such that
[T (zo) > fH(x) =25  for all z € B,(xy).
We choose r sufficiently small so that B,(x¢) C By, and
| D*p(x) — D*p(0)|| < 5/(2A) for all x € B,.(x).

This is possible since ¢ € C? in a neighborhood of zy. By the uniform ellipticity
of F'T,
FH(D*p(x0)) < FH(D*p(x)) + A D*p(x) — D*p(wo)||.

Therefore, combining the previous estimates, we get
FH(D*p(x)) > fT(x) for all = € B,(x).

The proof is analogous for x € By . If xq € T, then possibly taking ¢ smaller,

we see that
or (x0) — @, (o) — 30 > g(xo).

Since g € C°(T) and ¢ € C*(B; (z0)) N C*(B;}(xy)), we get

r,(w0) =0 <@g (2), ¢, (x0) +0 >, (), and g(xo) > g(z) — 0

for all z € T'N B,.(zo). Hence, ¢ is a classical strict subsolution in B, ().

Consider @5 = ¢ — §|x — z0|* + 0r?/2. Then

ws(x0) > us(xo) and @5 < u, < wuon 0B, (x9).
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Hence, there exists some 1 € B,.(zg) such that u(x;) < @s(z1). Define

_— {max{u,go(;} in B_T(xo)
u on By \ By ().

Then u € A, since u € A and ;s is a subsolution. This is a contradiction with

u(zy) =supv(z1) > ulz1) = p(21) > ul@r).
veEA

Therefore, u, is a supersolution of (3.1.1). O

Remark 3.5.13. By definition, u, < u. Since u, is a supersolution and w is
a subsolution of (3.1.1), and u, = u on 0By, then by the comparison principle
(Theorem 3.5.6), we get u, = u on B;. Furthermore, by Remark 3.5.11, we
conclude that

Uy =u=u" on Bj.

In particular, by Corollary 3.5.5, u € C°(B;) is the unique viscosity solution
of (3.1.1) with u = ¢ on dB;. This concludes the proof of Theorem 3.1.7.

3.6 Pointwise C1* estimates up to the interface

In this section, we derive C1* estimates for viscosity solutions of
{Fi(D%) = f* in Bf

+ - —
u, —u, =g onlT.

(3.6.1)

Our main goal is to show Theorem 3.1.9.

3.6.1 Homogeneous problem

For the homogeneous problem, we can use the results in [58|. In par-

ticular, solutions will be differentiable across T
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Theorem 3.6.1. Suppose that v is a bounded viscosity solution of (3.6.1) with
*=g9=0. Then v € C*¥(By,), with

[ollera@rg) < Cllvllce )

where 0 < @ < 1 and C > 0 are constants depending only on n, A, and A.

Proof. We apply [58, Theorem 1.2] with a = b = 1. Then v* € Cl’@(Bf/Q),

and the following estimate holds:

Il < Cllvllzes).

a(pt
ch (31/2)
In particular, v satisfies the transmission condition in the classical sense, and

thus, v is differentiable in B/, and the estimate holds for v in all of By /. [

Corollary 3.6.2. Let 0 < r < 1. Suppose that v is a bounded viscosity solution
of

F*(D?*v) =0 in B
vy —w, =0 on B.N{zx, =0}

Then for any 0 < p < r/2, we have that v € CY*(B,), with
1+a
osc (v — Vu(0) - z) < C'(B) 0SC v,
By r B,

1
[Vu(0)] < C-osco,
T B,

where & is given by Theorem 3.6.1 and C' > 0 is a constant depending only on

n, A, and A.
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Proof. Fix p < r/2. Applying Theorem 3.6.1 to v(rz), for x € By, it follows
that v € C1%(B,). Moreover, since v — Vo(0) - z is a continuous function on

B,, it follows that it attains its maximum and minimum values at some points

1 and x5 on Fp, respectively. By the mean value theorem, we have that

osc (v — Vo(0) - z) = (v(z1) — Vo(0) - z1) — (v(z2) — Vo(0) - z2)
< |Vo(xz) = Vo(0)|Jz1 — 22| < [VVlcoaglon — o
< (2p)"" Vol poa s
for some x3 that belongs to the segment joining x; and z,. To estimate
[Vv]coa(s), we consider w(x) = v(rz) —v(0), for x € By. By Theorem 3.6.1,
we get

[wllora@ ) < Cllwllzes,)-

Since p/r < 1/2, using the previous estimate, we see that
r VYl cossy) = [Vwleos @ < Cllwllzs,)
= C|v — v(0)]|zo(,) < Coscu.
B,

Therefore, the first estimate follows. Moreover,

V0(0)] = [V(O)] < [Vullez,m < Cllwl,) < Coscv.

3.6.2 Nonhomogeneous problem

The proof of Theorem 3.1.9 is based on a perturbation of the homoge-

neous case. The ideas are motivated by [45].
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Proof of Theorem 3.1.9. By interior estimates, it is enough to prove (3.1.5) for
the points on TN m In fact, it is enough to get a universal estimate at the
origin, and then apply it to rescalings and translations of u. Without loss of
generality we assume that u(0) = 0 and ¢g(0) = 0. Otherwise, we may consider

u—u(0) — Lz, |. Let M = |[ul|poo(my) + ||gllooairy + Cp- + Cpe.

We will show that there exist 0 < v < 1 and Cy,C; > 0, depending

only on n, A\, A, and «, and a sequence of vectors {4}, such that

osc (u— Ay - ) < CoM~F1te), (3.6.2)
,yk

|Ap — Aj_q| < Oy MAEDe (3.6.3)
for any k > 0, where A_; = 0. If this holds, then A, — A, as k — oo, and

osc (u — Ay - ) < osc (u(z) — Ay - x) + 295 A — A
B’Yk B,yk

OM,Yk(lJra) + 2CIM’)/k Z ,yja
j=k
ka
< CoM’yk(1+a) + 201M7k17—a < CM’}/k(1+a).

IA
)

By a standard argument, we see that u € C1%(0), and the following estimate
holds:
lu(r) — A - | < OM |z,

Therefore, it remains to show (3.6.2) and (3.6.3). We prove it by induction.

For k =0, we set Ag = 0, and choose Cy > 2 universal such that

osc u < 2||u|| poomyy < CoM.
1
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Assume that the estimates hold for some k£ > 0. We will prove that they also
hold for k + 1. Let r = ¥ and B = A;. Let v € C°B,) be the viscosity

solution to the following problem:
F%(D*y) =0 in BF
vl —v, =0 onTNDB,
v=u—B-x onJdB,.
The existence is guaranteed by Theorem 3.1.7. From the ABP estimate (The-

orem 3.2.1),

oscv < osc (u— B - x). (3.6.4)
B, B,

Fix p < /2 to be determined. By Corollary 3.6.2, we have v € C*%(B,) with

p 1+a
osc(v—A-x) < C(—) osc v, (3.6.5)
By r B,
1
|A| < C—-oscw, (3.6.6)
T B,

where A = Vv(0). Let p = vyr and ¢ = @ — a > 0. Choose v < 1/2 small
enough so that C~v* < 1/2. Combining (3.6.4), (3.6.5), and the induction

hypothesis, we see that

p 1+&
osc(v—A-x)SC(—) osc(u— B -x)
B, r B,
< C,Yl+a+ECOM,yk(l+a)
< 10, MAFFHD0F), (3.6.7)

Let w =u— B-x —wv. By Theorem 3.5.4 and the fact that B-z 4+ v is

differentiable, we have

w e S)\/n’A(fi) n Bf:
S —w, =g onTNB,

w=20 on 0B,.

w
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Using the rescaled ABP estimate, and the assumptions on ¢ and f*, we get

lwllzoe(s,) < Collgllzeas,y + 1 sz + 1 )

S Cp1+a(|’g||co,a(Tme) + Cff + Of+) S CMp1+a.
Choose Cy > 4C'. In view of (3.6.7) and the previous estimate, we have

os¢c (u—(A+B)-z)=osc(u—(A+B)-x)<oscw+osc(v—A-x)
B ki1 B, B, B,

< 20Mptte + %COM’Y(’“H)(”“) < COMW(kJrl)(lJra).

Hence, the estimate in (3.6.2) holds for k£ + 1 with A1 = A+ B. To prove

(3.6.3), we use (3.6.6), (3.6.4), and the induction hypothesis to get
A1 — Axl = |A] < CLMA*,

where C'y = C'Cy. This concludes the proof. O
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Chapter 4

Transmission problems for fully nonlinear
equations and C!“ interfaces

4.1 Introduction and main results

We study the following fully nonlinear transmission problem in Bj:

FH(D*u*) = f* in Q" = Byn{z, > (')}
F~(D*u™)=f" inQ =B N{z, <)} (4.1.1)
uy —u,; =g onI'= By N {z, = ¢(a')},

where ¢ : R"! — R is a given function, D?u® denotes the Hessian of u*, v is
the normal vector pointing at O, and u} denotes the normal derivative of u™*.
Furthermore, F'* : 8" — R are fully nonlinear uniformly elliptic operators,
with ellipticity constants 0 < A < A, and F*(0) = 0. That is, for every
M,N € 8", with N > 0, we have

AN < F5(M + N) = F*(M) < A|N].

Our main assumption is that ¥ is a C'® function, for some 0 < a < 1.
Under this assumption, we say that I' is a C1* interface. As we will see, this
regularity condition presents several difficulties, given that the operators are
of second order. For instance, the closedness lemma given in Section 4.4.1 is

not available and it is not clear how to use compactness methods.

101



For the classical Dirichlet and Neumann problems with C® boundaries,
pointwise Holder estimates at the boundary have been developed by Y. Lian
and K. Zhang [38] and D. Li and K. Zhang [34], respectively. See also [59]. We
point out that in our work, I" is known a priori (¢ is given). This is in contrast
to the so-called free transmission problems, where I' is a free boundary, in the
sense that it depends on the solution itself. For instance, E. Pimentel and

M. Santos consider in [50] the model,
F+(D2u)X{u>U} + F_(DQU)X{u<0} = f

In this case, the interface is the 0-level set of u, and the transmission condition
arises naturally from the equation. For related works see [1,25,29,51] and the

references therein.

The theory of viscosity solutions of (4.1.1) when ¢ = 0 (flat interface)
has been established in Chapter 3. The main purpose of this chapter is to
generalize the regularity results to the case where I' is a C1“ interface. Recall
that in Chapter 2, we studied a similar problem for F* = A and f* = 0. Our
approach for the fully nonlinear case builds on similar ideas. In particular, we
prove a stability result that will be a key tool in the study of optimal regularity
of solutions of (4.1.1). The existence and regularity results from Chapter 3

will be fundamental to develop the theory for the nonflat interface problem.

Throughout this chapter, we will use the same notation as in Chapter 3.
In particular, we denote by USC(B;) the space of upper semicontinuous func-

tions in By, and LSC(B;) the space of lower semicontinuous functions in Bj.
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The notion of viscosity solution is the following.

Definition 4.1.1. Assume that T' € C'. We say that a function u € USC(B)
is a viscosity subsolution of (4.1.1) in Bj if for any ¢ touching u by above at

xo in By, the following holds:
(i) If 29 € QF and ¢ € C?(Bs(xo) N OQF), then
F=(D*p(x0)) = f*(0).
(i1) If zo € T and p € C'(Bs(z) N Q~) N CY(Bs(zo) N QF), then

oy (x0) — @, (x0) > g(x0),

where p* = 90‘35(%)097'

Similarly, a function v € LSC(B;) is a viscosity supersolution of (4.1.1) in B,
if whenever a test function ¢ touches u from below at xq in By, then it satisfies
conditions (7) and (ii), where all inequalities are reversed. Finally, a function
u € C°(By) is a viscosity solution of (4.1.1) in By if it is a viscosity subsolution

and a viscosity supersolution.

Next we state our main results of this chapter.

Theorem 4.1.2 (C% regularity). Let I' = By N {z, = ¥(z')}. Let u satisfy

{u € S;7A(fi) in By

ut —u, =g onT
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with f* € CO(OF) N L¥(BE), g € L), and ¢ € CY*(B}). Then u €
00,041 (Bl/g) with

lullgo.cs @75y < Clullzesy + gl + 1 en@) + 1f lenr))
where 0 < oy < 1 and C' > 0 depend only on n, A\, A, a, and ||¢||Cl,a(?g)'

Theorem 4.1.3 (C1* regularity). Fiz 0 < a < &, with @ < 1 depending only
onn, X\, and A. Let T' = By N {z, = ¢(z')}, where ¢ € CH*(B}). Assume
that g € C**(T") and f* satisfy

1/n
(7[ ]fi\”dx) < Cpar®!
By (x0)NOQE

for all ¥ > 0 and xy € B UT. We assume further that

FY(M)—-F (M
wp 10D - FoQD)] _, 12)
Me8n\{0} HM”

for some 0 < 0 << 1 depending only on n, \, A and «. Suppose that u is
a bounded wiscosity solution of (4.1.1) in By. Let Qf/Q = 0N Bij;. Then

ut € C’l’a(Qfﬁ) and the following estimate holds:

I ooy < Clllcna gy (Nl + lgllooay + Cp- +Cr)

where C' > 0 depends only on n, X\, A, and o. In particular, the transmission

condition s satisfied in the classical sense.

Remark 4.1.4. The condition given in (4.1.2) may be understood as a close-

ness condition between the operators F'™ and F'~. For example, the linear op-

erators given by F(M) = tr(ATM) for some A* € 8", with A\ < AT < Al
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and ||AT — A7|| < 6, satisfy (4.1.2). This assumption is motivated by the
following observation: if g ~ 0, then u} =~ u; on I'. Hence, as we will see
in Subsection 4.5.1, if the operators are close enough in the sense of (4.1.2),

then we can approximate u by functions that are differentiable across I' (see

Lemma 4.5.1).

This chapter is organized as follows. In Section 4.2, we prove the ABP
estimate (Theorem 4.2.1) for viscosity supersolutions of (4.1.1). For this, we
construct an auxiliary function using Hopf’s lemma (Lemma 4.2.6). This bar-
rier will also be a key tool in the proof of C%“ regularity across the interface
I’ (Theorem 4.1.2) that we develop in Section 4.3. Our arguments are similar
to those in Chapter 3. Section 4.4 shows that a family of viscosity solutions
to transmission problems with C? interfaces is closed under uniform limits
(Lemma 4.4.1). This result will be useful in the next section. In Section 4.5,
we consider flat interface problems and discuss several approximating lemmas,
including the stability result (Lemma 4.5.6). We derive the C** estimates
(Theorem 4.6.1) for u™ and u~ at the intraface in Section 4.6. Our main the-
orem (Theorem 4.1.3) follows by a standard argument of patching the interior

and boundary estimates.

4.2 ABP estimate

As we have seen in Chapter 3, the ABP estimate is a fundamental tool
in the regularity theory of viscosity solutions. This result for C1 interfaces

reads as follows.
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Theorem 4.2.1 (ABP estimate). Let I' = By N {z,, = (2’)}. Let u satisfy

{u € §>\7A(fi) in QF (4‘2‘1)

uf—u, <g onl,

with f* € CO(O*) N L=(B,), g € L*(T'), and 1 € CY*(B}). Then

supu— < supu— + C'(max g + || f5 [la@-) + 1 f{ ln@n),

By 8B, r
where C' > 0 depends only on n, A\, A, «, and [{]cra. We denote by u_ =
—min{0,u}, g, = max{0,g}, fi = max{0, f*}, and T, is the convex envelope

of —u_ on By withu =0 on By \ B.

Remark 4.2.2. The proof of Theorem 4.2.1 is similar to the one given in
Theorem 3.2.1. As we discussed in Remark 3.2.2, the main difficulty that we
encounter on this types of problems is that functions satisfying (4.2.1) may be
singular on I'. To avoid that, we construct an auxiliary function that removes
g from the transmission condition. In the flat interface case, this function is
simply a multiple of |z,|. In the nonflat case, we will construct this auxiliary

function with the help of a Hopf’s type lemma.

First, we introduce some preliminaries.

Definition 4.2.3 (Dini function). A function w : [0, +00) — [0, +00) is called
a Dini function if w is a nonnegative nondecreasing function and satisfies the

following Dini condition for some 7y > 0,

/Towdr<+oo.
0

r
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Definition 4.2.4 (Interior CP™ condition). We say that ) satisfies the in-
terior CPM condition at zo € 99 if there exists 7o > 0 and a system of

coordinates {z1,...,x,} such that zo = 0 in this system, and
By, N{z, > |2'|w(|2'|)} € B,, N,
where w is a Dini function.

The following lemma is proved in [37].

Lemma 4.2.5 (Hopf’s lemma). Suppose that 0 satisfies the interior C'HPM
condition at 0 € 9. Let w € Sy(0) in QN By, with w(0) =0 and w > 0 in

QN By. Then for anyl € R, with |l| =1 and l,, =1 - e, > 0, we have that
w(rl) > clyaw(e,/2)r,
for all 0 < r < ry, where ¢ > 0, and r; depend only on n, \, A, and w.

Lemma 4.2.6 (Barrier). Let Q be a CY domain, with 0 < o < 1. Assume

that 0 € 0S2. Let w be the viscosity solution to

M5 A (D*w) =0 in QN By
w=0 onI'=00QN By (4.2.2)
w=1 on 0By N .

Then w s a classical solution in QN By, with 0 < w < 1, and
w, >¢cg >0 onI NBy, (4.2.3)

where v is the interior normal to Q, and cy depends onn, A\, A, o, and [T']c1,a.
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Proof. The existence and uniqueness of a viscosity solution w of (4.2.2) follows
from the classical theory for fully nonlinear equations. Moreover, since My 4
is a concave operator, by [15, Theorem 6.6], we have that w € C*%(Q), for
any (g CC 2N By, and some 0 < & < 1 depending only on n, A, and A.
Also, from [38, Theorem 1.6|, it follows that w € C*(I' N B;). Hence, from
the interior and pointwise boundary regularity, we get that w is a classical
solution in Q N By. Applying the classical ABP to w and 1 — w, it is easy to

see that 0 < w < 1. Therefore, we only need to show (4.2.3).

Fix zy € I'NBy. Without loss of generality, we may assume that xq = 0,
and QN B, = By N{x, > (z’)} for some o» € CH*(B}) with V'1(0) = 0, after
a possible rotation. Also, we rescale v so that [¢)]c1.0(0) < 1/4. We claim that

QN B satisfies the interior C*P™ condition at 0 with we(t) = t*/2. Indeed,
BiN{z, > |2 |wa(|2'])} € Bin{z, >¢(a")} = BN,

since [1h(z)| < [Y]cra |z [T < |2’ |wa(J2']). Also, w satisfies the assumptions

from Lemma 4.2.5. Hence, setting [ = v(0), we get
w(rv(0)) > cw(e,/2)r forall 0 <r <r;

where ¢ and r; depend only on n, A\, A, and w,. Since w is differentiable at 0,

we see that

w,(0) = Tim w(0 4+ rv(0)) — w(0)

r—0t r

> cw(e,/2).
By the interior Harnack inequality, we have

l—w(e,/2) < sup (1—w)<c¢ inf (1-w)<e,
B s(en/2) By /s(en/2)
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where ¢; is a universal constant. We conclude that
w,(0) > co >0,
with ¢g = ¢(1 — ¢1). O
We are now ready to give the proof of the ABP estimate.

Proof of Theorem 4.2.1. Let w € C°(By) satisfy

M A(D*w™) =0 in QN By
w=~0 on I
w=1 on 0B8;.

By Lemma 4.2.6, we have that 0 < w <1, and
w;“20+>0, w, < —c <0 on I'N By,

where v is the interior normal to QF, and ¢, ¢~ depend only on n, A\, A, «,

and [¢]cre. Fix e > 0 small and consider in By the function

1
V=U— —(maxg++6>w,
Co r

where ¢y = ¢t + ¢~. By [15, Lemma 2.12], we have that v € Sy A(f*) in By

Moreover,

. 1

vi —wv) gg—a<m1§xg+—€>(wj

—w,) < gy —maxg, —e< —€

on I', in the viscosity sense. Without loss of generality, we may assume that
v > 0 on 0B;. Otherwise, we consider v — infyp, v. Assume that v_ # 0, and

let T', be the convex envelope of —v_ in By, where we have extended v by zero
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outside of B;. Clearly, by definition of I',, we have that 0B; N {v =T,} = @.
Also, we claim that ' N {v = T',} = @. Indeed, if A -z + b touches v from

below at xg € I, for some A € R"” and b € R, then
—e>A-v(rg) — A v(xg) =0,

which is a contradiction. Moreover, there exists > 0 such that for any z¢ € T,
we have Bs(zo) N{v =T} = @. If not, for any k > 1, there exist z; € I" such
that there is some y, € By(x) N {v =1T,}. Then, up to a subsequence, it

follows that xy, yr, — yo for some yo € ' N {v =T, }, which is a contradiction.

Next, we show that I', € C11(B;). By [15, Lemma 3.5], it is enough to
see that there are K > 0 and 0 < r < 1 such that for any zy € BN {v=T,}
there exists a convex paraboloid of opening K that touches I', by above at xg
in B,(70). Indeed, fix 7o € ByN{v =T, }. Since zy ¢ 0B, UT, we may assume
that o € QT N{v =T,}. Furthermore, Bs(z) C Q7, for § small enough. Let
[ be a supporting plane of I, at zyp. Then 0 < T', — 1 < —v_ — [ in Bs(xo)
and T',(zg) — I(z9) = —v_(x9) — l(z9) = 0. By [15, Proposition 2.8|, we know
that —v_ —1 € SyA(f*). Applying [15, Lemma 3.3] to —v_ — [ in Bs(z() and
p=1I,—1, we get

T, (z) < I(z) + C+<381(1p) fj) o — 2 forall 2 € Byyi(wg),  (4.2.4)

5(xo
where 77 < 1 and C* are universal constants. If zop € Q™ N {v = T',}, the
proof is analogous. Hence, we take K = 2max{C"||f{|loc, C7||f5 ||} and

r=dmin{y*, " }.
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By [15, Lemma 3.5|, there exists a set £ C By such that |B; \ E| =0

and I, is second order differentiable at any x € FE. Moreover, we have that

1/n
supv_ < C(/ det DT, () d:c) )
En{v=Ty}

By
where C' > ( is a constant depending only on n. Moreover, since f+ € C°(B;"),
letting & — 0 in (4.2.4), we see that det D?T,(zg) < C'f(z0)" for a.e. zg €

Bf n{v=T,}, and thus,

/ det DT, (x) dz < / fo(z)" dx + / [ (@)™ da.
En{v=TCy} Q- n{v=T"4} Qtn{v=T"y}

Therefore,

supv_ < supv_ + C(“f_:”L”(Q*ﬁ{U:FU}) + ||fi||L”(Q+ﬂ{v:Fv}))-
B 9B,

From the definition of v, we have that

1
supu_ <supv_ and supv_ <supu_ + — < max gy + 5).
By By dB1 By Co\ T

Hence, letting € — 0, we see that

supu_ < supu_ + C(maxg+ + [ filln@y + ||fi||Ln(Q+)>,
Bi1 0B, r

where C' depends only on n, A, A, «, and [¢)]c1.a. ]

Remark 4.2.7. In the previous proof, it is not clear how to relate the con-
tact sets {v = I',} and {u = '} given that not much is known about the
barrier w. Hence, the latter set does not appear in the estimate. This is in
contrast to the flat interface problem where w is a convex explicit function

(see Theorem 3.2.1).
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An immediate consequence of the ABP estimate is the maximum prin-

ciple.

Corollary 4.2.8 (Maximum principle). Let u satisfy

{u € Sya(0)  in QF

uf —u, >0 onl.

If u>0 on 0By, then u > 0 in By.

Remark 4.2.9. Replacing u by —u, we get the maximum principle for sub-

solutions.

4.3 Holder regularity across interface

Our main goal of this section is to prove Theorem 4.1.2, that is, Hélder
regularity of viscosity solutions across I'. By [26, Lemma 8.23], it is enough to

show the following oscillation lemma.

Lemma 4.3.1. Let I' = By N {z,, = ¢(a')}. Let u satisfy

{u € SiA(f%) in B

+ o —
u, —u, =g onl

with f* € CO(OF) N L=(QF), g € L=(T), and ¢ € C*(B}). Then

oscu < poscu + C(lgllewy + 1f Ninamy + 1 len@n))
1/3 1

where 0 < p, a1 < 1 and C > 0 depend only on n, \, A, a, and ||¢||Cl,a(37)'

The oscillation lemma will be a consequence of the following result.
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Lemma 4.3.2. Let u, f*,g, and v be as in Lemma 4.5.1. Assume further

that ||ull Loy < 1, w(Z) > 0 with T = te,, and Byj(Z) C QF. There

exist 0 < gg,¢ < 1 depending on n, X\, \, and [¢]cra such that if ||g|ree ) +

1f~ [y + 1T ey < o, then

infu>-1+c

Byy3

The proof is very similar to the one given in Lemma 3.3.2, so we will

omit here some of the details.
Proof. By the Harnack inequality in By /9(Z), we get
1<u(@)+1< sup (u+1) <C(u(z)+1+e),

B1/20(7)

for some universal C' > 1. Hence,
u>—14¢ in Byo(Z), (4.3.1)
with ¢ =1/C —¢¢ and g < 1/C. For x € D = B34(Z) \ B1/20(%), we define
o(e) = né(r) + Zwl@), o) =r" = (@/3)7, r=lr-al

where w and ¢q are as in the proof of Theorem 4.2.1, v > max {0, %(n— 1)— 1},

and 1 > 0 to be chosen later. For any x € DT = QF N D, we have

NGA(D?* (1)) 2 M5 A (D6 () + M5\ (D ()

=y "2 (A(y+1) = An —1)) >0,
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by the choice of v. For x € ' N D, it follows that

o (1) = vy (@) = 2w (r) — w (2)) > 220 > |lgllz=ir) > gle).

First, choose n < 550

%, Then choose g5 < %min{E/Q,—nqﬁ(?)/él)}. By

(4.3.1), we obtain that

v<wu-+1 ondD.
Since u + 1 € SyA([f*]) in D, v* € C*(D*), and M, ,(D*v*) > 0 in D*,
by [15, Lemma 2.12], we have that u+ 1 —v € Sy o(|fF]) in D. Also,

(u+1—v)f—(u+1-v), <g—(v) —v,)<g—g=0 onI'ND

in the viscosity sense. Hence, applying Theorem 4.2.1 to u + 1 — v in D, with

g = 0, we see that

Slll)p(u +1-v)-< S(;g)(u +1=0)- +CO(If Ny + [1f 1 zn@+)) < Ceo,

where C' depends only on n, A\, A, «, and [¢)]cr.a. Therefore, u > —14+v—Ceg

in D. Moreover, for any x € By3(0) \ Bi/20(%), we have that

v(x) > nep(23/60) = ¢

c1

and ¢; > 0 depends only on n, A, and A. Choosing ¢y such that g9 < 75, we
get u > =1+ in By3(0) \ By/20(7). Therefore,

inf u>—-1+c¢,

Byy3
with ¢ = min{¢, ¢}. O
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Proof of Lemma 4.5.1. By choosing an appropriate system of coordinates, we

assume that
¥(0) =0, V'(0)=0, and [|p(z)] <][2].

Then Bijo(z) € QF, with Z = fe,. Let M = ||g|lzoey + |1 f 7 ln-) +

(vl Lr(+), and let g9 be as in Lemma 4.3.2. Consider the rescaled function:

2u — (infp, u + supp, u)
osc g, u+ 2M /e

U= S ;A(fi)

with f= = 2f*(osc g, u 4+ 2M/eo)~'. Also, (a*), — (@), < § on I, in the
viscosity sense, with § = 2g(osc g, u + 2M /) ™! Note that ||a|[e(p,) < 1,
and

max g+ |/~ [y + 1 |znor) < eo.
If 4(z) > 0, then by Lemma 4.3.2, it follows that infp, , u > —1+c. Otherwise,
u(z) < 0, and applying the lemma to —a, we see that supp, , & < 1 —c. In

both cases, we get

2 osc Bys U

osctt = supu — inf @ = <2-c
By/3 Bis B3 oscp, U+ 2M/€0

Therefore,

9scu < poscu + C(lgllzoey + 1f Mm@y + 1 llini@s))
1/3 1

Withu:%_c<1,andC:2—_C. ]

€0

When f* = 0 and ¢ has compact support on I', we obtain the following
global Hélder continuity result. We omit the proof in this case since it is

analogous to the one given in Proposition 4.3.3.
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Proposition 4.3.3. Assume u € C°(B)) satisfies

u€ Sia(0) in QF
+

uy —u, =g onl

U= on 0By,
where g € L>(I"), with suppg C I' N By_y,, for some 0 < p < 1/4, and ¢ €
CO(dBy), with 0 < a < 1. Then u € C%*(By), with 0 < B < min{ay, a/2},
and
C
—

||U||co,6(3i) < P (HSDHCO!‘I((‘)Bl) + ||9||Loo(r)),

where 0 < ay < 1 is given in Theorem 4.1.2, v = max{ay,a}, and C > 0

depends only onn, X\, A, a, [[cra.

4.4 Closedness lemma

Next, we prove that a family of viscosity solutions to transmission prob-
lems with C? interfaces is closed under uniform limits. This result will be useful

in the next section.

Lemma 4.4.1 (Closedness). For all k > 1, assume that u, € C°(By) satisfies

FE(D*wy) = fF in Qi
(uf)y — (uy)y = gi on Ty,

in the viscosity sense, where Uy = By N {x, = ¥i(z')}, for some v, € C*(BY),

fif € C°(%), and gy € CO(Ty). Suppose that:

(1) Fr — F uniformly on compact subsets of 8™.

(17) up — u uniformly on compact subsets of By.
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D) kai“Loo(Qf) — 0.
(1) gk = gllzoery) = subpepy lgn(@’, Yi(2’)) — g(2’, 0)] — 0.

(v) T = T in C*, that is, |[¢xlc2s;) — 0.

Then u € C°(By) is a viscosity solution of
FX(D?u) = 0 in Bf
{u;rn —u, =g onT.
Proof. To prove that wu is a viscosity solution, we need to show that it is both a
subsolution and a supersolution. Since the arguments are analogous, it suffices

to see that u is a viscosity subsolution. First, we show that
F*(D*u)>0  in Bf.

Suppose by contradiction that this fails. Then there is a point 2o € B and a

test function ¢ € C?(Bf) such that ¢ touches u from above at x,, and
F*(D*p()) < 0.

Without loss of generality, we can assume that zo € By, and that ¢ touches
u strictly from above. Otherwise, we can replace ¢ by ¢ + e|x — xo|?, with ¢
small. Then since ur — u uniformly on compact sets, there exists €, > 0 such

that ¢ + e > uy in B,.(z9) C B, for k large and some r small. Define

dip = inf (g0+€k—uk)>0

- Y
Brk (xO
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with 0 < r, < r and r, \, 0. Since Iy, — T, we can choose r; such that
B, (xg) C QZ, for k large. Let x; € Q,j be a point where the infimum is

attained, that is,

dy = (k) + ex — un(y),
and define ¢, = ¢, — dg. Then xp — xg, ¢x — 0, and ¢ + ¢, touches uy from
above at z € Q, for k large. Hence, since F, (D%uy(zy)) > fiF in QF, we
must have

F (D*p(xx)) = fif ()

Passing to the limit as k£ — oo, we get
FH(D*p(x0)) > 0,
which is a contradiction. Indeed, since F; — F'* uniformly, and F* € (), A),

| B (D () — FH(D*p(x0))]
< |Ff(D*0(an) = FH(D*o(xi))| + [FH(D*p(ax)) — FF(D*p(w0))]

< sup |F(M) = FH(M)] + A D*p(ex) = D*p(wo)|| — 0
e n
M<K

where we used that sup; [[D*¢(y)|| < K. Also, |fi" (zx)| < [ |ty — O.

It remains to show that the transmission condition holds. If not, there

exists g € T, r > 0 small, and ¢ € C?(B*(x)) such that ¢ touches u from

above at xy, and

#r, (20) — 5, (20) < g(xo)- (4.4.1)
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We can assume that ¢ touches u strictly from above at xy, and that
FE(D?p(x)) < 0. (4.4.2)
If not, we can replace ¢ by
() +1lan| = Clza/?,

with 1 small and C' large such that n|z,| — C|z,|* > 0 in a small neighborhood
of zg. Arguing as before, there exist ¢, ry, ) such that ¢(z) = @(2, z, —
Yr(2")) + ¢k touches uy, from above at xy, € B, (), with ¢, — 0, 2, — x¢ and
re — 0. Then either there exists ky > 1 such that for every k > ky we have

Tk € Qf, and thus,
FZ(D*¢(r)) = fi (xn),
or for every ky > 1 there exists k > ko such that z; € I'x. Hence,
v (wk) — o () > grla).
Passing to the limit, we get a contradiction in both cases. Indeed, let x} =
x — e r(x)), and compute the partial derivatives of ¢ at xy:
Ors(1) = Pr() = P (@) (U1 (@), <
Go, (Tk) = Pa, ()
Doy (Th) = Paia; (T) = Poian (T5) (Vk)a, ()
~ [(ane; (@%) = Panan (@5) (1), (21)) (), (27)
+ @ (W) (W )aia; (T3)]s 4,5 <m0
Doy (Th) = Pana, (Th) = Pana, (T5) W)z, (2h),  J <n
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Suppose first that z, € T'y. To get a contradiction with (4.4.1), it suffices to
show that ¢ (1) — ¢ (20). By analogy, we will also have that ¢,  (zx) —

¢y, (w0). Moreover,

gk (1) — g(z0)| < |gr(wr) — gy, 0)] + [g(}, 0) — g(w0)| — 0.

—V'p(x).),1
Recall that x,;(xy) = (1-5-|V/1;p:((ﬂ’5;€k))|2))1/2' Then:

Vip(ap) - Vielay) P (@) [V Y1 ()2

(L4 V(@) (1 + [V (a,)]2)1/2
Pu, (TF)

(14 [V (ap)|2)V/2

Since [|1x|lc2(s;y — 0, it follows that ||[V'4y||zec(p) — 0. In particular, zj —

() = —

+

xg. Therefore,

)| < V'o(x}) - V’%(wz)l+|¢xn(xZ)IIV’¢k(ﬂc2)l2
T (L V(@) P2 (L4 V() 2) 12
Pu, (1)

(14 [Vt (,)]2)1/2

o () — ¢ (x

+

— @p, ()| =T+ T4+ 11
Since ¢ is twice differentiable on BF (), we get

IT+11 < [Vl oo (B, o) | V' Uk || Lo (37

+ @zl oo (B, @ont) | VR || Lo () — O

Also,

I < [, (23) = @a, (@0)| + (1 + [V'e(23) )7 = 1[0, (0)] = 0.

Suppose now that x;, € Q. To get a contradiction with (4.4.2), it

suffices to show that D?¢(z) — D?*¢(x). From the previous computations,
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D?¢(xy) = D*¢(x}) — My, with

(Mi)ij = Crian (T0) (Wk)e,; (23) + [(ane; (TF) = Panan (T3) (Vk)e, (23)) (1), (7,)
+ P (T1) (V) 2y (21)], 4,5 <
<Mk)naj = Prpa, (xZ)(¢k)z] (l’;), J<n

Reasoning as before, it is clear that ||My|/oo = sup |(My); ;| — 0. Therefore,

1D*é(2x) — D*o(w0)llo < |1 D*p(}) — D*p(20)lloo + | Mk]|oc — 0.

O
4.5 Approximating lemmas
Consider the nonflat interface problems given by
Fi D2 — fEt Qi
{ +( w=f" i (4.5.1)
uy —u, =g on I

In this section, we will prove some approximating lemmas for viscosity solu-
tions of (4.5.1) that will be useful to derive C'* estimates in the following

section.

From the transmission condition in (4.5.1), we see that we need to
distinguish two cases. If g is close to 0, then we will approximate u with a
function that is differentiable across I' (see Lemma 4.5.1). To prove this, it
is sufficient that the operators F* and F~ satisfy a closeness condition. Our

ideas are inspired by [51]. The most challenging case happens when g is away
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from 0, since u is singular at the interface. In this case, we will approximate
u with solutions to flat interface problems (see Chapter 3). This is known as
the stability result (see Lemma 4.5.6). We point out that, for this case, we do

not require that the operators are close.

4.5.1 Case g close to 0

Lemma 4.5.1. Let0<a<a, 0<7<3/4, and 0 <6 < 1. Suppose that

F*(M)—-F- (M
Mesm\ {0} 1]

for some 0 < 6 << 1 depending only on n, X\, and A. Assume that u €
C%(By) is a viscosity solution to (4.5.1), with ||u|p=p) < 1 and ||g||rer) +
1 em@y + I1FF
such that

@ty < 0. Then there exists v € C’l’a(Bg/4) N 00’5(33/4)

loc

|lu — U||LOO(B3/47T) < O(1° 4 9),

for some C' >0 and 0 < 8 < 1.

Proof. Fix 0 < p < 1/2 and 0 < ¢ < 1 to be determined. Given ¢ > 0 small,

for x € By, we define
Fe(M,x) = he(x)FT (M) + ((1 = he(2))F~ (M),

where h, € C*°(B;), 0 < h. <1, and

he(x) =

1 ifze{x, >¢@)+elnNB;
0 ifze{z, <y(2)—e}nNBhB.
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Note that F. € &\, A) and F.(0,z) = 0. Moreover, F, — F* uniformly on
compact subsets of 8" x Q*. Indeed, let M € Br C 8" and x € K C QF, for

some R > 0 and K compact. Then

|Fe(M,z) = FH(M)] < (1 = he(a))|[F(M) — F~(M)]

< sup(l — h(x))0R — 0,
zeK

as ¢ — 0, where we used (4.5.2) in the last inequality. The argument is

analogous for F'~.

Let v. be the viscosity solution of
F.(D*v.,z) =0 in By
Ve = U on 833/4.
For x € By, define

F.(M,z)— F.(M,0
)~ wp EOLD) —EOLO)
weshio) 7]

By the previous estimate and the fact that 0 < h. < 1, we have
Pe(x) < (1 = he(2))0 + (1 — he(0))0 < 26,

for all z € By, where 6 only depends on n, A, and A. Hence, for any 0 < r <1,

( ][ 3 dm)l/n < 2.
B,

Choose 0 < 6 < 6y/2, where 0y > 0 (independent of €) is given in [15, Theorem

it follows that

8.3]. Then v. € C};7(Bs/4) and, for any 0 < p < 3/4, the following estimate

loc

holds:

[velloracm,) < Collullz=(s,) < Co.
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. 1,
By compactness, Ve — V1N Cloc

(Bsjs) ase — 0, for any 0 < a < &. Moreover,
by the closedness of viscosity solutions under uniform limits (see [15, Proposi-

tion 2.9]), v satisfies
FE(D*) =0 in QF N By, (4.5.3)
in the viscosity sense. By Theorem 4.1.2, we have that u € C%*(Bjy)4), and
[uflco.er 5,7 < C(1+0) < 2C,
for some 0 < a3 < 1 and C depending only on n, A\, A, «, and ||I'f|c1.a.
By |15, Proposition 4.13], it follows that v. € C%#(Bs/4), with 8 = %, and
[Vl co.s a7y < Cllullecoesomy,,) < Cr-

Let w = v —v. Then w € C’O’ﬁ(Bg/4), with w = 0 on B3/, and for any

0 <7 <1/4, we have

IA

HwHL"o(aBs/z;—T) [w]C’Ovﬁ(m)Tﬁ < 027-57

where Cy = 2C 4+ (. Since u and v satisfy (4.5.1) and (4.5.3), respectively,

then
w e S,\/n,A(fi) in Ot N 33/4,7.
wh—w, =g onT'NBsu_,.

From the ABP estimate, and the assumptions on ¢ and f*, we get

[l o (By,4 ) < Nl @By,0-,) + Clgllzooy + 11 " lzr@y + 1 zr@))
< NJwl oo @8y,4_) + C(llgll ooy + Cp- + Cp+)

S 027'6 + Cé.

Therefore, |[u — vl L= (s,,,_,) < C(17 +9). O
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4.5.2 Case g away from 0

Our strategy to approximate wu is similar to the one in Chapter 2. For
la| < 1/2, define T, = By N {x,, = a}. We consider the flat interface transmis-

sion problem,

{Fi(D%) =0 inB\T, (4.5.4)

+ - _
Vg, = Vg, = YGa OL Taa

where g, is a mollification of x7,, with supp g, C Bs;s N T;,. For convenience,
when a = 0, we call the solution vy and the interface T'. Since g, has compact
support, we can apply Proposition 4.3.3, with p = 1/8, to obtain global Holder

continuity of solutions to these flat interface problems.

Corollary 4.5.2. Let v be a solution to (4.5.4) in By, with ¢ = v|gp, €
C%(0By). Then v € C%(By), with 0 < 8 < min{ay,a/2}, and

||U\|coyﬁ(3i) < C(l + HQOHCO’O‘(QBl))a

where 0 < aq < 1 is given in Theorem 4.1.2, and C > 0 depends only on n, X\,

A, and o.

Lemma 4.5.3. For any € > 0, there exists 0 < § < min{e,1/2} such that
if v satisfies (4.5.4), with a = 0, v = vy on 0By, supyp, [vo| < Co, and

95(-,9) — 90('70)HL°°(B;) <4, then
v = vollLe(By) < &
Fiz 0 <r < 1. In addition, if [gs(-,d) — 90(',0)]00,,1(3*1) <5, then
V"0 — V'l coaigry + 105 )y, — 02, — Ulems,) < (1 r)~ (e,

where 0 < @ < «, and Ds, = B, N{0 <z, < d}.
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Proof. We will prove it by contradiction. Assume there exist eg, vg, gr such

that
F:t(DZUk) =0 1in Bl \ Tl/k:
v —vg =gr on Ty
VL = o on 05,

with [lge(, 1/8) = g0(-,0)ll oo apy < 1/k and

v — vo|| oo (By) > €0, (4.5.5)
HV’Uk — VIIUOHCO,&(?r) > (1 — 7’)7(1+a)50, (456)
108, = (V% )an = Llzoo(py ) > (1= 1)1, (4.5.7)

for all £ > 1. From the ABP estimate (Theorem 4.2.1), we get
vkl o (1) < sup ol + Cllgkll ooz, ) < Co +2C.
1
Hence, from the global Holder estimate in Corollary 4.5.2, we have that

[okll co.emry < C(llvrlloesy) + gkl ) < Ci

By compactness, it follows that, up to a subsequence, vy — v uniformly in Bj.
Moreover, by Lemma 4.4.1, v satisfies

F*(D*) =0 in Bf
vf —v, =gy onT

v =y on 0B;.
By uniqueness of viscosity solutions (Corollary 3.5.5), we see that v = vy on Bj.
This contradicts (4.5.5) for k sufficiently large. Moreover, by Theorem 3.1.9

(rescaled) we have that v, € CY® in the z/-direction in B,, with

C Cy
/
A4 Uk||co,a(§r) < W(HWHLW(&) + HngCO*a(Tl/k)) S m
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By compactness, it follows that, up to a subsequence, V'v, — w in C%%(B,),
with 0 < @ < a. By uniqueness of distributional limits, we have that w = V'v;.
This contradicts (4.5.6) for k sufficiently large. Furthermore, from the C1

estimate of Theorem 3.1.9, we have

C

10 )el o (1) = T gyrm Ukl + llgwllevems )
<G .
(1 —r)lta

By the previous argument, up to a subsequence, it follows that (v} ),, —
(Vg ), uniformly in B . Let # € Di,, and denote Z = (2/,0) € T. Note

that |z — Z| < 1/k. Then

(), () = (v )z (2) = 1| < [(05),, () = (v5),,, (2))]

+1(05), (%) = (g ) (2) — 1]

=1+ I+ II+1V.

By construction of vy, II = 0. Moreover, III — 0 as £ — +o0o, by uniform

convergence, and

o C 1 :
I< [(U(T)mn]co,a BT |z —z|* < —~iraia U (r is fixed)
(B7) (1—r)ltok
- . Cs 1
IV < 1{(v )an oo (Brn{ea<i/ky) e — 2" < (1 — r)lto ko — 0.
This contradicts (4.5.7) for k sufficiently large. O
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Remark 4.5.4. An analogous argument shows that the result holds when

a = —9.

Corollary 4.5.5. Fiz e > 0. Let 1,v € C°(By) be as in Lemma 4.5.3, with
a =0, and a = —0, respectively, where § is the minimum between the two

gwen. Fix 0 <r < 1. Then

IN

[V = vllLes) <€

197 = Vel gnagp < (1 =) e

where 0 < @ < 1, and Ds, = B, N {|x,| < d}.

We denote by QFf = Q* N B, and ', =T'N B, for 0 <7 < 1.

Lemma 4.5.6 (Stability). Let ¢ > 0 be given. Assume that u, g, f*, and T
satisfy the assumptions from Lemma 4.6.53. Let v = Uxq- +VXa+, where v and

v are gwen in Corollary 4.5.5, replacing By by Bsyy. If v = on 0Bsyy, then

[u = v|lL(s, ) < Cel/?,

where C' > 0 depends only onn, X\, A, and a.

Proof. By Theorem 4.1.2, and the assumptions of w, g, f*, we have u €
OO’Q<B3/4), with

[ullcond;my < Clulliemy + gl + 1 zn@-) + 1/ len@r)) < Ch

128



Moreover, since v = wu on dBss, by Corollary 4.5.2 it follows that v €

00’6(954), with 0 < f < min{ay, «/2}, and

H’UHCO’B(@) < C(l + HUHCO’O‘(BBSM))

for some C' > 0 depending only on n, A, A, and «. Hence,

o]

) < C(1+CY).

Coﬁ(f/4
Note that v is not continuous across I's 4 since v —v # 0 on I's/4. Let w satisfy

FH(D>w*) =0 inQF

3/4
w = %(UJF—FU*) on F3/4
w="v on 0Bs,.
By Theorem 3.1.9 (rescaled), we know that v* € C’ll(;f(Q:fM), and for any
0<n<3/4,
+ 1+apg, +
77||VU ||L°°(Q§[/4_n) +1 [VU ]CO’&(Q;,‘:/zlfn) < 03' (458)

Then from [38, Theorem 1.6], we have w* € Cl7a(Q3i/ 4_y), and we will see that

+

w, —w, = 1 omn F3/4*TI'

Indeed, for any x € I'3/4—,, we have
wy (z) —w, () = 1= ((w = v); (2)) = ((w =), (2)) + (v (z) — v, (x) - 1)
=91+ g2+ g3
We will show that g1, ¢go, and g3 are small in terms of £ and §. For g3, we have
lg3(2)| < v () — v (@)] + [v], (2) — v, (@) = 1] + |v, (2) — v, (2)]

=1+ 11+ III.
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By Corollary 4.5.5, it follows that IT < 5~ (+%¢_ Also, since V']l Lo myy <0,

/ / C
L< [V @)1o(@) = 0] € CIV0 e, [ T0()] < 20

/4—=n
Similarly for III. For ¢; and g, we consider w — v. Since w* —v* € Sx/n,a(0)

in QF

3/4 by the classical ABP, and Corollary 4.5.5, we get

||wi - UiHLOO(Q?ﬁfM) < ||w:t - Ui||L°°(F3/4) = ||E - Q||L°°(F3/4) < e

Hence, ||w — v||r=(s,,) < €. Moreover, from [38, Theorem 1.6], we have

0@ < = (0t = 0l + 17— tllonem).

=|Q

where ||’U”Cl,a( ) = ||UHL°°(F3/4_,7) + HV/U + van’@DHCo,a( ): By Corol-

U3/4—y Pg/a—p

lary 4.5.5, and estimate (4.5.8), it follows that

17— vllenagyy < 19— ollmimy + 195 = Vellooagriy

1—‘3/4—77
+ ||(Exn - an)V,@ZJHCO’@(l}M_,})
<e+n M+ 2|7, — Qm||co,a(r3/4_,,')||V/¢||00ﬁ(3ﬁ)

< e 4 n e 440y~ Fg,

Therefore, |g1(x)] < On~t(e + 770+ (e +6)) < Cn~C+¥e. Similarly for g,.

Next, the function u — w satisfies

u—w € Symal(fF) in Q;’—LM
(u—w)f —(u—w), =(g—1)— (g1 +9g2+9g3) on | Ry~
u—w=>0 on 833/4.
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Therefore, by Theorem 4.2.1 applied to v — w in Bsj4_,, we have

[ = wl[ree (B, < llu—vll=@8y,_, + |0 = Wll1=@8,,,_,)
+C(lg = Uy + 17 Nemgaz y + 17 emier
+ g1l zeo ey + g2l oo vy ue,y) + ||93||L°°(F3/47,,))
<lu-— U]co,ﬂ(m)ﬁﬁ + [lv — w||L°°(B3/4)

+C6 4200 F e 4 O

< (Cy + Co)nP 4 e + Oy~ @),
Choose 0 < 1 < 1/4 such that n < min{52<21+a> , 5ﬁ}. We conclude that
Hu - UHLOO(BI/Q) < Hu - wHLOO(B3/4—n) + HU) - UHLOO(33/4) < 081/27

where C' > 0 depends only on n, A\, A, and a. O

4.6 C'“ regularity at the interface

In this section, we derive pointwise C'1® boundary estimates for viscos-
ity solutions of nonflat interface problems following a perturbation method.
The approximating lemmas from Section 4.5 will be a key ingredient for this

argument.

Theorem 4.6.1. Fizx 0 < a < &, for some & depending only on n, \, and A.

Assume that 0 € T', ¢ € C1*(0), ¢ # 0, g € C**(0), and f* satisfy

1/n
(][ " dx) < Cper®' for all r > 0.
B.NOQ*E
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Assume further that

Ft(M)—-F (M
p IFTOD—F(D] _
Mesn\{0) M|
for some 0 < 0 << 1 depending only on n, A\, A, and «. Suppose that u is a

bounded viscosity solution of (4.5.1) in By, with ||u||pes,) < 1. Then
u® € CM*(0).
Namely, there exist affine functions I*(x) = A* - x + b such that

ju*(z) — I*(z)| < Clz|"™ for all z € QF

T0?

where g = Co/||Y||c1.0(0) and Cy > 0 depends only onn, \, A, and . Moreover,

|A[ 4+ [AY] + ] 4+ |C| < Collellcrao) (19(0)] + [glcoa) + Cp- 4+ Cpe).

This theorem will follow from iterating the next two lemmas.

Lemma 4.6.2. Given 0 < a < @, there exist Cy >0, 0<d <1, and 0 < p <
1/2, depending only on n, A\, A, and «, such that for any viscosity solution
u € C°(By) of (4.5.1) and (4.5.2), with ||ullr=s,) < 1 and ||gllL~mnB,,.) +
Ci- 4+ Cp+ <0, there is an affine function l(x) = A-x+b, with |A]+ |b|] < Cy,

such that

lu = 1|z (B,) < P

loc

Proof. Fix 0 <7< 1/4and 0 < § < 1 to be chosen. Let v € C%°(Bs,4) be
the function given in Lemma 4.5.1, for some € > 0 sufficiently small so that
& — € > a. Then

< C(r% 4 6).

lw = vllzoe By,
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Moreover, if I(z) = v(0) + Vv(0) - z, then |VI|+ |I(0)| < Cy, and the following

estimate holds,
v —=1]|Leo(B,) < Cop' o7,
for any 0 < p < 1/2. It follows that
lu— U oe(B,) < lu— v, + 10 = U] z(s,) < C(77 +8) + Cop' ™.

First, choose p small enough such that Cop'™@ ¢ < pl*t@/3. Then choose T
and § such that C7° < p!**/3 and C6 < p'te/3. ]

Lemma 4.6.3. Given 0 < a < @, there ezist constants Cy > 0, 0 < p < 1/2,

0 < 6 < p, depending only on n, A\, A, and « such that for any viscosity

solution u € C°(By) of

+ - =
ul —u, =g on I,

{Fi(D%Li) = f* inQ*

with ||u||pez) < 1, [|g = 1| zoery + Cp- + Cpv <6, and Hz/’Hcl,a(Bﬁ) < 0, there

exist affine functions I*(x) = AT -z +b, with |A~|+|A*| + |b| < Cy, such that
lu* — li”Loo(ﬂpi) <ptte

Moreover, V'lI= = V'I" and I} — 1 =1.

Proof. Fix 0 < £,0,p < 1/2 to be chosen. Let v be the function given in

Lemma 4.5.6. Define [(z) = Vo*(0)-z+0v%(0), where v* = U}Qi . We proved
3/4

that v* € OCV%(Q55,), with |lvt||

12 ) < (Y, for some Cy > 0 depending

a +
cl (91/2

only on n, A\, A and a. In particular, we have that |[Vo®(0)| + |[v*(0)| < Cy.
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We define the affine functions /* as [F plus a small correction, that is,
H(z) =I5 (2) + (@),
with (£(z) = AZ - 2 + bF such that

bl = —b- = 3(v7(0) —v™(0)),

£ 3

€

(AD) = —(A2) = 3(V'v(0) — V'v™(0)),
(AD)n = —(AD)n = 5(1 = v (0) + v, (0)).
By Corollary 4.5.5, we have that [b%| + |AX| < e. Moreover, by definition of

[*, it holds that

17(0) =17(0), VI~ =V1I", and I

Tn

l,, =1
For any x € Qf, by Lemma 4.5.6, and the C%estimate for v*, we

have that

[u*(2) = U (2)] = |u*(2) — 5 (2) = I ()]
< [u(2) — v ()] + [o* (@) = 15 (2)] + |iZ ()]

< CeY? 4 Cop'te Fepte.

First, choose 0 < p < 1/2 such that Cyp'™® < p!'T@/2. This is possible since
0 < a < a< 1. Then choose 0 < £ < p such that Ce'/? +ep + ¢ < p'*e/2.

Finally, recall that 0 < § < ¢ is given as in Corollary 4.5.5. Therefore,

[l — li”LOO(Q?,E) < ptte
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4.6.1 Proof of Theorem 4.6.1

Fix 0 < a < a. Let Cy, p,0 > 0 be the minimum of the constants given
in Lemma 4.6.2 and Lemma 4.6.3. Let d; > 0 to be chosen sufficiently small.

First, we normalize the problem. Recall that we are assuming that 0 € I, that

is, 1(0') = 0.

(1) After a rotation, we can assume that v(0) = e,. In particular,

V'4(0') = 0. Also, we can suppose that [¢)]c1.a() < do. Recall that

W = sup  [THEL

x'eBY, x'#0’ |I/|a
Indeed, let K* = [¢)]c1.0(0y/do, and consider v(y) = u(y/K), for y € B;. Then

v satisfies

Fr(D*F) = f in OF
’U;_ -V, = 9K on fa

where Fi(M) = K2F(K2M), for M € 8", O* = {y € B, : y/K € Q*},
['={yeBi:y/KeT} fily) = K?f*(y/K), for y € O, and gx(y) =
K~'g(y/K), for y € I'. In particular, it holds that Fx € €, 4, that is, Fx is
a fully nonlinear operator with the same ellipticity constants as F'. Also, f;

satisfy

<]€3er¢ |f§(y)|” dy) . - <]{3er1 |K_2fi(?//K)|n dy) Hn

1/n
~(f K@ )
BT/KﬁQi

(e
= — T T
K? B, xkNQ*
< K2C(r/K)*™ = K- papet,
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Hence, Cf?g = K_(HO‘)C'fi. Moreover, gy satisfies

— 0 K)—g(0
lgx]coe) =  sup |9 (y) agx( I _ e sup l9(y/ )a 9(0)|
yeB1, y#0 Yl yEB1,y#0 Y
< KM glora).
If y € T, then y, = ¢(y/), with (/) = Ki(y'/K). Moreover,
B v/~ / / 1K
VOW) . I/

[Wloray = sup —— == =
2(0) JEB,, /40 |yl|a YEB, y £ |y/|a

< K~ *Wora(o) = do
If we show that there exist affine functions [ (y) = A% -y + b such that
v (y) — )] < Cly™  forall y € Oy,
and there exists Cy > 0 depending only on n, A\, A, and «, such that
Al + [AE] + [biel +1Cx] < Collgxc(O)] + lgxclooeroy + Cy + Cz)
then rescaling back, we get that
luF(z) — IF(x)| < Clz[™™™  for all z € Qag)-1,
with I¥(2) = A* -2 +b, AT = KAL, b=bg, C = K'**Ck, and

K YA 4+ K7YAT| + |b| + K~

< Co(KMg(0)] + K0 glonaey + K-0HCy + K-0)C,.).
Multiplying by K™, and using that K* = &; ' [)]cra() > 1, we get

[A™| + JAF] + [o] +|C] < Codg* [Y]era) (19(0)] + [gleoq) + C- + Cp+).
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(1) Assume that ||u||L=(p,) < 1, Cp- + Cpr < 09/2, and

0, — Sup
[Q]C © xz€l'NB1, x#0 |x|a

Indeed, let K = ||u|zoo(p,)+65 ' ([g]coa() +Cp- +Cf+), and consider v = u/K.

Then v satisfies
Fr(D*v*) = f& in QF
Ulj_ -V, = 9K on Fa

where Fx(M) = K *F(KM), for M € 8", ff = K~'f* and gx = K~lg.

Moreover, ||v||re(p,) < 1, and [gx]co.a) + Cp- 4 Cpr < do.

(zi1) If g(0) # 0, we can suppose that g(0) = 1. Indeed, we consider
v =u/g(0), and argue similarly as in (i7). The case g(0) = 0 will be addressed

at the end.

For simplicity, we use the same notation as in the statement, that is, ¥, u, F,

f* and g.

Under these assumptions, it is enough to prove the following:
Claim. For all k > 1, there exist affine functions l;-(z) = Af - 2 + by with
AT = A+ AL = AL+ b — b | < Coph005),
where AY =0, by = 0, Cy > 0 depends only on n, \, A, and «, and such that

HUjE - lifHLoo(ij) < Pk(lm)-

Moreover, V'l, = V'UE, and (I}F)., — (1)z, = 1.
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We prove the claim by induction. For £ = 1, by the normalization, we

are under the assumptions of Lemma 4.6.3. Indeed, by (i), we have that

lll e ary = 1 = O Loy + 1V = VO ooe(ag) + [V gy

< 3 cra) < 30 < 0.
Moreover, by (i) and (7i7), it follows that

lg = Ulzeery = [lg — 9(0)|| ory < [glcoaqoy < do < 6.

Hence, by Lemma 4.6.3, there exist [i () = AT -x+0by, with |A7|+|AT|+|by] <

Cy such that
[l — litHLoo(szpi) < ptte

Moreover, V'I; = VI, and (I{),, — (1] )z, = 1.

For the induction step, assume that the claim holds for some £ > 1,

and let l,f be such affine functions. Denote by

Of = {z € B, : pfz € Q%)

Iy={zeB :plzeT}.

Note that if vy, is a parametrization of I'y in B}, then v, (z') = p~*(p*z’). In
particular, V' (2') = V'¢(pFx), and thus, for z € Ty, if v4(z) is the normal
vector on x pointing at Q| then v(z) = v(p*z). Define [, = l;“XQ: + Z;XQ;.

Consider the rescaled function

e for x € B;.
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Then v satisfies

{Flj:(DQUi) = fl;t in lect (461)

Vi - /U;k = gk on Fk?)

in the viscosity sense, where

FE(M) = pPU= FE(pHe=DAr) for M € 8"
fE(x) = pPU fE(pk),  for z € QF

ge(x) = p*(g(pFx) — va(ptx)), for x € Ty

By the induction hypothesis, ||v||z5,) < 1. Notice that

1/n 1/n
fi y ndy — ][ pnk(lfa) f:t pky ndy
(f, o EWra) " = (f, om0l i)

1/n
—p (£ @)
Brpkmf
< PP Oy (rpk) ot = Cpar (4.6.2)

Hence, kai = Cy=+, and Cf: + Cf,: < dp. Moreover,
98|l oo () < [9lcoao) + [Vnlcoa) < 0o + do = 200. (4.6.3)

However, we cannot apply Lemma 4.6.2 to v since it has a jump discontinuity

on I'y. In fact, if v* = v| then for z € '}, by the normalization (i), and

S E=R)
Qk

the induction hypothesis, we have

[l (o) — I (p*)]

(™ = v*)(@)| = i = ke < o sup [y
P zel'y
Yi(a’
< su]g) | pia )| < [w]cl,a(g) < 50. (464)
z'eB]
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Let w € C°(B;), with w* = w|zx, be the viscosity solutions of the following

@7
Dirichlet problems:

FE(D*w*) =0 in Qf

w=3w"+v") only

w="v on 0B;.
We will prove that w satisfies the assumptions of Lemma 4.5.1. By the maxi-
mum principle, ||wl|re(s,) < ||v]|z=@s,) < 1. Moreover, v¥ — w* € S(fF) in

Qki, v —wt = :l:%p*kaxn on f‘k, and v* —w* =0 on 8@% \ fk Then by the

classical ABP, and (4.6.4), we see that
[vF = 0| @y < 10T = 0| ity + Ol ey < Cdo. (4.6.5)

since kaiHL"(Qf) < |Bi|Y"C+ < C(n)dy by (4.6.2) with r = 1. By boundary
pointwise C estimates (see [38, Theorem 1.6]), for any zg € Ty N By, we

have

V(" = w*)(20)| < C(I[v* = w* | gty + 307 IWllcra + Cpz)

IN

C'do, (4.6.6)

where the last inequality follows from (4.6.2), (4.6.5), and the normaliza-

tion (7). Indeed:

~ka _ (2] _ W (p )|
P Nkl Loy = s A TR AT < [Plere) < o,
e V/wk ! V/,¢ pkx/
P g ’|V/7/’kHL°°(Bg) = Ssup l—ké” = sup % < [w]Cl«a(O) < do,
a'eB] p z'EB] p
- [V'd(pta’) — V'b(p*y')]
P VU cowry = sup < [Ylere@ < do-
ehe By o'y €BY, a'Fy’ prela’ =yl B
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Hence, p~"||[Uxlcrowe) < o7 ¥kl oragary < 3d0-

Let o € Ty N By /4. Suppose there exists a test function ¢ touching w
by above at z( in a small neighborhood of z contained in Bs/,. In particular,

¢ = — (w—v) is a test function that touches v by above at . Therefore,
5 (x0) = by, (20) > gr(xo).-
It follows that:
o (x0) = 0y, (20) = grl(wo) + (w —vT),, (w0) — (W™ —v7 )y, (w0) = Gr(z0)-
Moreover, by (4.6.3) and (4.6.6), we get
19| Lo (7m0 < 200 + 204y < 6.

Similarly, if ¢ is a test function touching w from below at zy, in a small

neighborhood of zy contained in Bs/4, then

oo (20) = @, (20) < grlzo).

Hence, wlz —w,, = gk on ['+NBs /4 in the viscosity sense. Applying Lemma 4.6.2
to w, we see that there exist Cy > 0 depending only on n, A\, A, and «, and an

affine function l(x) = A -z + b, with |A| + [b| < Cy, such that
Jw = | Lo(s,) < p'T/2. (4.6.7)

Note that we can always choose p sufficiently small such that the previous
estimate holds (see proof of Lemma 4.6.2). Hence, by (4.6.5) and (4.6.7), we

see that

||U — lHLOO(Bp) S H'U - wHLOO(Bp) + H'U} — l||L°°(Bp) S ééo + p1+a/2 S p1+a.
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In particular, for any « € B,, we have

u(phx) — L(p*x) 1+a
SR+a) —l(z)| < p™™,

or equivalently, if y = p*z, then for any y € B+,

u(y) — k(y) — PO y)| < pEFDIT),

Define the affine approximations at the step & + 1 as
liea () = L (y) + 0900 Fy).
It llf—f—l(y) = Aiq * Y + bgy1, then
Af = A+ 0" A by = by + 0,
Using the estimate |A| + [b] < Cp, we have
P A = Af |+ [brgr — i < Cop™ ).

From (4.6.8), we see that

” + l]:€t+1”Loo(ij+l) < p(k+1)(1+a).

Moreover, by the induction hypothesis,
Vi, — V'l/,:rl =V, - V'l =0,

(lit)en = lit)en = (5 )an — (1)) = 1.

The proof of the claim is completed.

142

(4.6.8)



Finally, we consider the case g(0) = 0. As before, it is enough to prove

the following:

Claim. For all k > 1, there exist affine functions l, = Ay - x + by such that
PFAR — Ap_1] + b, — b_y| < CopF—10F),

where Ag =0, by =0, Cy > 0 depends only onn, A\, A, and «, and such that

lu = lillze(s ) < P

The proof is by induction. For k = 1, we can apply Lemma 4.6.2 to .

Indeed, ||u||L=(p,) <1, and ||g||ze@) + Cfp- + Cp+ <4, given that

gl ooy = SUIF> lg(x) — g(0)] < [g]coa@y < do < 6.
e

Then we find an affine function [1(x) = Ay - x4 by, with |A;| + |b1| < Cp, such

that
lu— Ll (s, < p'7°
Assume the claim holds for £ > 1. Define
k —1 k -
v(x) = ulpre) — (o) for x € By.

ph(1+a)

Then, arguing as before, we have that v € C°(B;) satisfies (4.6.1), with the

same operator Fj, and the same right-hand sides f,f, but with different g:

ge(z) = pFg(pFz)  for x € Ty
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In particular, for any x € 'y, we have

|9k ()] = p~*1g(p*2)] < lgleoa) < do < 6.
Then the claim follows for k£ + 1 by applying again Lemma 4.6.2. ]

Remark 4.6.4. The C'1° regularity estimate of ™ and u™ up to the interface
(Theorem 4.1.3) follows from a standard argument by patching the classical
interior estimates ( [15, Theorem 8.3|) and the boundary estimates (Theo-

rem 4.6.1). For instance, see [17, Proposition 6.2].
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Chapter 5

A new family of integro-differential operators
related to the Monge-Ampére equation

5.1 Introduction

Integro-differential equations arise in the study of stochastic processes
with jumps, such as Lévy processes. As we discussed in the introduction, a
classical elliptic integro-differential operator is the fractional Laplacian,

1

Asu(l’0> = Cn,s PV/ (U(ZEO + CL’) — U(ﬁo))mdl‘, S € (O, ]_),

n

which can be understood as an infinitesimal generator of a stable Lévy pro-
cess. These types of processes are very well studied in probability, and their

generators may be given by
Liu(zg) = / (u(xo + ) — u(xg) — x - Vu(xy)) K (z)dz,

where the kernel K is a nonnegative function satisfying some integrability

condition.

Over the last few years, there has been significant interest in studying
linear and nonlinear integro-differential equations from the analytical point of

view. In particular, extremal operators like

Fu(xg) = Ii(IéECLKu(xO) (5.1.1)
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play a fundamental role in the regularity theory. See [10-12,52| and the refer-
ences therein. The above equation is an example of a fully nonlinear equation
that appears in optimal control problems and stochastic games [32,46]. The
infimum in (5.1.1) is taken over a family of admissible kernels X that depends
on the applications. In fact, as we discussed in Section 1.2, nonlocal Monge-
Ampeére equations have been developed recently in the form (5.1.1), for some

choice of K [8,13,27].

For the purpose of this chapter, we recall the definition of the nonlocal

Monge-Ampére operator given by L. Caffarelli and L. Silvestre [13]:

MA® u(xg) = ¢ inf /n(u(xo + ) —u(xg) — x - Vu(zg))K(x) de,

KEK,‘Z R

where the infimum is taken over the family,
% = {K R SR, |{r eR": K(z) > r "2} =|B,|, Vr > o}. (5.1.2)
In this work, we introduce a new family of operators of the form,

inf / (o + ) = uleo) — &+ Vala) K(z) do. (5.1.3)

KeXs [
for any integer 1 < k < n, which arises from imposing certain geometric
conditions on the kernels. Moreover, we will see that |y|™" 2 € K§ C K C
K;, for any 1 < k < n, and thus, this family will be monotone decreasing,
and bounded from above by the fractional Laplacian and by below by the

Caffarelli-Silvestre nonlocal Monge-Ampére.

This chapter is organized as follows. In Section 5.2, we construct the

family of admissible kernels K73, and give the precise definition of our operators
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for C! functions. We introduce in Section 5.3 the basic tools from the theory
of rearrangements necessary for our goals. In Section 5.4, we study the infi-
mum in (5.1.3) and obtain a representation formula, provided some condition
on the level sets is satisfied (see Theorem 5.4.1). We also study the limit as
s — 1 and give a connection to optimal transport. The Hoélder continuity of

2u is proved in Section 5.5, following similar geometric techniques from [13].
In Section 5.6, we consider a global Poisson problem, prescribing data at in-
finity, and introduce a new definition of our operators for functions that are
merely continuous and convex. We show existence of solutions via Perron’s
method and C'! regularity in the full space by constructing appropriate bar-

riers. Finally, we discuss some future directions in Section 5.7.

5.2 Construction of kernels

Let us start with the construction of the family of admissible kernels.
Notice that any kernel K in X7, defined in (5.1.2), will have the same distri-

bution function as the kernel of the fractional Laplacian, since for any r > 0,
{zeR": 2| "> >r ">} =B,

Geometrically, this means that the level sets of K are deformations in any di-

|7n72s

rection of R™ of the level sets of |z , preserving the n-dimensional volume.

In view of this approach, a natural way of finding an intermediate family
of operators between the nonlocal Monge-Ampére and the fractional Laplacian

is to consider kernels whose level sets are deformations that preserve the k-
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dimensional Hausdorff measure J*, with 1 < k < n, of the restrictions of balls

in R™ to hyperplanes generated by {e;}*_,.

{ K(,z) > r—n=2s} (e1,e2) + zes

Figure 5.1: Area preserving deformation in R3.

We define the set of admissible kernels as follows.

Definition 5.2.1. We say that K € X3 if for all z € R"* and all r > 0, it
holds that

%k(B(r2,|z‘2)1/2) if ‘Z| <r

5.2.1
0 if |z| >, ( )

H* ({y eR*: K(y,2) > 7’7”725}) = {

where B,z |21/ is the ball in R¥ of radius (r? — |z|*)"/2.

In Figure 5.1 we illustrate condition (5.2.1) for k = 2 and n = 3. Note
that for k¥ = n, we recover the definition of X%. Moreover, |z|™""% € X3, for

all 1 <k <n.
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Proposition 5.2.2. Let 1 <k <n. Then Xj C Xj , C X,

Proof. Let K € X;. Fix any z € R"*! and r > 0. Then:

U'Ck+1({y e RFL . K(y,z) > 7’_“_28})

= / X{yGRk+1:K(y,z)>r*"*25}(y) dy
]Rlc+1

= / (/ X{(w,t)eRkXR:K(w,t,z)>r*”*25}(w7t) dw>dt
R Rk

= / H ({w e R : K(w,t,2z) >r " >})dt =L
R

If |z| > 7, then for any ¢t € R, we have that (¢,2) € R** with |(¢,2)] > 7.

Therefore, by Definition 5.2.1, it follows that I = 0. If |z| < r, then

I: / j‘(:k (B(r27t27|z|2)1/2) dt
R

(r2—[2f2) /2 .
:wk/ (r? —t* — |z|*)2 dt

(r2—|z[2)1/2
(2= 22 ¢ Nt
= (Gppm) )
/(r2z|2>1/2 ( (r2 = [2[?)1/2

1
—anlr? ~ :1)F [ (1= o) do
—1
k
A ar () (o)
L(5+1) I(5+1)
= wpya(r? = |25 = H*(Bia_py),

NE

= wi(r* — |2]*)

where w; = HY(B;) = r(ﬂll/;) and B,z _|,p2y1/2 is the ball of radius (r? —[2|?)"/?2
3

in RFHL O

Definition 5.2.3. A function v : R® — R is said to be C!! at the point z,

and we write u € C%1(xy), if there is a vector p € R", a radius p > 0, and a
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constant C' > 0, such that
lu(xo + x) — u(zg) — - p| < Clz|?, for all x € B,.

We denote by [u]c1.1(z,), the minimum constant for which this property holds,

among all admissible vectors p and radii p.

Definition 5.2.4. Let s € (1/2,1) and 1 < k < n. For any u € C°(R™) N
CH1(xp), we define

wu(zo) = cps Inf /n (u(mo + x) — u(wo) — - Vu(w)) K (z) dz,

KeX;

where X, is the set of kernels satisfying (5.2.1) and ¢, s is the constant in A®.

As an immediate consequence of Proposition 5.2.2, we obtain that the

operators are ordered.

Corollary 5.2.5. Let s € (1/2,1) and 1 < k < n. Then for any u € C°(R™)N
0171(1”0);
MA® u(zg) < Fiul(xg) < A’u(zy).

Moreover, {F3}1-1 is monotone decreasing.

The regularity condition on w in Definition 5.2.4 allows us to compute
Jju at the point z( in the classical sense. To obtain a finite number, we need

to impose two extra conditions:

(P1) An integrability condition at infinity:

fu(x)|
— 7 d .
/Rn (L [z 0=
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(P,) A convexity condition at xy:
w(z) = u(zo + x) — u(xg) — x - Vu(xg) >0, for all z € R™.
Proposition 5.2.6. Ifu € CO(R")NCY(xg) and satisfies (Py) and (Py), then
0 < Fru(zg) < o0.

Proof. Let p > 0 be as in Definition 5.2.3. Then

n

o o |22
Yy "
B, 2] R™\ B, (z0) |z — o

1
+ |u(zo)]| ingas 4+ [Vu(zo)]
rm\B, |T["t% R™\B,

< C(S,p)<|U(l’o)| + [Vu(zo)| + [U]Cl’l(ﬂfo))

14|zo|+p ‘u@j)‘ ;
+ tizol+e —————dr < o0, sincese€ (1/2,1).
g /R" (1 + [af)rr2e ey

0 < Fpu(zg) < / (u(zo + ) — u(wo) — x - Vu(xo))mn% dx

||
|$|n+25

]

We point out that if u is not convex at xg, then the infimum could be

—00. We show this result in the next proposition.

Proposition 5.2.7. Let u € CO(R") N CH'(xg). Assume that u satisfies (Py).

If there exists T € R™ with T = (,0) and § € R*, such that

then Fju(zg) = —oo.
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Proof. Let K(x) = |z — z|7"72%. For any r > 0 and z € R" % if |2| < r, then

I ({y € B K(y,2) > 1 2)) =9 (fy € R : Jy — g* + 2> < 7))

- g{k (B(rz—\z|2)1/2) .
Also, the measure is clearly zero if |z| > r. Therefore, K € K. It follows that

Fru(zg) < / a(z)|x — 2|7 do

n

:/ a(z)|x — | d:)s+/ a(z)|r — 2|7 de =1+ 11
Be(z) R\ B (7)

Since u € C*(R™) N C*(zg), we have that @ is continuous. Hence, given that
(z) < 0, then a(z) < 0, for all x € B.(z), for some £ > 0. Moreover, since
K ¢ LY(B.(7)), it follows that I = —oco. Arguing similarly as in the proof of

Proposition 5.2.6, we see that II < oo. Therefore,
wu(xg) = —o0.
]

Remark 5.2.8. The operators Jj, are not rotation invariant. This is because,
for simplicity, in the construction of the family of admissible kernels XK; we
chose the first k vectors from the canonical basis of R™. In general, we may take
any subset of k unitary vectors, 7 = {7;}¥_,, and replace the first condition on

(5.2.1) by
fH"”({y € <7‘>J' . K(y + ZT) > T_n_zs}) = j‘fk (B(T2_|z‘2)1/2), (5.2.2)

for all 2 € (1) and r > 0, where () denotes the span of {r;}¥_,, and (r)*

the orthogonal subspace to (7). Let SO(n) be the group of rotation matrices
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n x n. Since 1; = Ae;, for some A € SO(n), it follows that any kernel K,
satisfying (5.2.2) can be written as K, = K o A, where K satisfies (5.2.1).
Therefore to make the operators rotation invariant, one possibility is to take

the infimum over all possible rotations. Namely,

inf  inf / u(z)K(Ax) d.
A€SO(n) K€K}, Jgn

To focus on the main ideas, we will not explore this operator in this work.

5.3 Rearrangements and measure preserving transfor-
mations
We introduce some definitions and preliminary results regarding rear-
rangements of nonnegative functions. For more detailed information, see for

instance |2, 3].

Definition 5.3.1. Let f : R” — R be a nonnegative measurable function. We
define the decreasing rearrangement of f as the function f* defined on [0, c0)
given by

fr@)=sup{A>0:[{z e R": f(z) > \}| > t},

and the increasing rearrangement of f as the function f, defined on [0, 00)
given by
fot) =inf {A>0:|{z e R": f(z) <A} > t}.

We use the convention that inf ) = co.
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Proposition 5.3.2. Let f,g : R" — R be nonnegative measurable functions.

Then
| swgwars [ swoede< [ rog@

The upper bound is the classical Hardy—Littlewood inequality. For the
proof see [3, Theorem 2.2] or [2, Corollary 2.16]. For the sake of completeness,

we give the proof of the lower bound.

Proof. For j > 1, let f; = f|p, and g; = g|p,, where B; denotes the ball of

radius j centered at 0 in R™. By [2, Corollary 2.18|, it follows that

1B
/0 (f5)«(®)(g;)"(t) dt < /B. fi(x)g;(z) dx.

Since f,g > 0, we get
| paadn< [ sl ds
B, R
Note that for any ¢ € [0, |B;|], we have
A>0:{zeB;: filz) <A >t} Cc{A>0:{z eR": f(z) <A} >t}

Hence, (f;)«(t) > f«(t), and
| Bj

| B,
/O G- @) @de= [ f)e) ) dt

0
Moreover, g; /* ¢ pointwise on R™. Then by [2, Proposition 1.39|, we have
(g;) " g* pointwise on [0,00), as j — oo. By the monotone convergence

theorem, we get
|B;]

im [ L0 @ = [ 00

j—00 0
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Combining the previous estimates, we conclude that

| swgwas [ e
[

Definition 5.3.3. We say that a measurable function ¢ : R — R™ is a
measure preserving transformation if for any measurable set £ in R™, it holds
that

I (v~ (E)) = H"(E).

Lemma 5.3.4. If ¢ : Rl — R™ is a measure preserving, then for any measur-

able f : R™ — R, and any measurable set E in R™, it follows that

[fwa=[ s

An important result by Ryff [53]| provides a sufficient condition for
which we can recover a function given its decreasing/increasing rearrangement,

by means of a measure preserving transformation.

Theorem 5.3.5 (Ryff’s theorem). Let f : R" — R be a nonnegative mea-
surable function. If limy_,o f*(t) = 0, then there exists a measure preserving

o :supp(f) — supp(f*) such that
f=foa

almost everywhere on the support of f. Similarly, if limy_, f.(t) = oo, then

f=/feioo.
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We will call Ryff’s map, a measure preserving o satisfying Ryft’s theo-

rem.

Remark 5.3.6. In general, o is not invertible. Furthermore, there may not

exist a measure preserving transformation ¢ such that f* = f o 1.

As a consequence of Ryft’s theorem, we obtain a representation formula

for the admissible kernels. We denote wy, = H*(B).

Lemma 5.3.7. Let K € X;. Fir z € R"™* and denote by K.(y) = K(y, 2).
Then

__ n+42s

K(t) = (W) + 122) 2

In particular, there exists a measure preserving o, : supp(K,) — (0,00), such

that

K(y,z) = K (0.(y)), fora.e. y € supp(K.,).
Proof. Fix z € R"*. Then

K:t)=sup{A>0:H"({y eR¥: K(y,2) > \}) >t}
= sup {/\ < |z|_”_25 - ek (B(/\—2/(n+2$)_|z|2)1/2) > t}
= sup {/\ <z wk(/\_2/(”+28) — |Z|2)k/2 > t}
= sup {)\ <z N2/ (H2s) (wk_lt)z/k + \z|2}

n+2s

— (W) 4127

Moreover, lim;_,o, K} (t) = 0. Therefore, the result follows from Theorem 5.3.5.

]
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In view of Definition 5.3.1, we introduce the symmetric rearrangement
of a function in R™ with respect to the first k variables as follows. Fix k € N
with 1 < k < n. Given z € R", we denote z = (y, z), with y € R* and

z € R" % Furthermore, for z fixed, we call f, the restriction of f to R*.

Namely, f.(y) = f(y, 2).

Definition 5.3.8. Let f : R” — R be a nonnegative measurable function. We
define the k-symmetric decreasing rearrangement of f as the function f** :
R™ — [0, 00| given by
fE () = £ (wnlyl®),
and the k-symmetric increasing rearrangement as the function f,; : R" —
[0, 0] given by
fer(@) = (f2)e(wrlyl®).

When k = n, we obtain the usual symmetric rearrangement.

Remark 5.3.9. (1) Notice that f** and f, ; are radially symmetric and mono-
tone decreasing/increasing, with respect to y. In the literature, this type of

symmetrization is also known as the Steiner symmetrization [2, Chapter 6].
(2) By Lemma 5.3.7, we see that any kernel K € K satisfies

K**(2) = |o| ™%, for x # 0. (5.3.1)
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5.4 Analysis of J}

Our main goal of this section is to study the infimum in the definition

of the operator,

Fru(xo) = ¢p,s inf / u(z)K(x)dx,

KeX;

where @(z) = u(zo + x) — u(zxg) — x - Vu(zg). Throughout the section, we will
assume that u € C°(R") N CY!(xy) and satisfies properties (P;) and (P,), so

that 0 < Fju(zg) < oo.

5.4.1 Analysis of the infimum

We will study the following cases:
Case 1. For all A > 0 and z € R"%,
H*({y e R" s a(y, z) < A}) < oo

Case 2. There exists some Ay > 0 such that for all z € R"*,

<oo for0< A< g
=00 for A > Ao

5 ({y € B* s iy, 2) < A}) {
Case 3. For all A > 0 and z € R"%,
}Ck({y cR*:da(y,2) < A}) = 0.
In the first case, when all of the level sets of % have finite measure,
we show that the infimum is attained at some kernel whose level sets depend
on the measure preserving transformation that rearranges the level sets of .

More precisely:
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Theorem 5.4.1. Suppose that for all A > 0 and z € R"F,
H*({y e R" s a(y, z) < A}) < oo

Then, for any z € R"™* there exists a measure preserving o, : R¥ — [0, 00)

such that

s u(y, 2
?ku(x(J) - Cn,s/ . /k 71 ( ) nt2s dydz
w S (o )+ 12)

In particular, the infimum is attained.

Remark 5.4.2. Observe that if u(-, z) is constant in some set of positive
measure, then the kernel where the infimum is attained is not unique since the
integral is invariant under any measure preserving rearrangement of K within

this set (see [53]).

Before we give the proof of Theorem 5.4.1, we need a lemma regarding
the k-symmetric increasing rearrangement of 4. By Definition 5.3.8, this is

given by the following expression:
U k(y,z) =inf {A > 0: H*({w € R* s @(w, 2) < A}) > wylyl*}.

Lemma 5.4.3. Fiz z € R"™*. If H*({y € R" : a(y,2) < A}) < oo, for all
A >0, then

lim 1, 4(y, 2) = oco.
ly[—o0

Proof. Assume there exists M > 0, independent of A, such that

H* ({w e R" : 4w, z) <A}) <M, forall A > 0. (5.4.1)
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Then for any y € R¥, with wy|y|* > M, we have that
U (Y, 2) = 00,

since inf ) = oo. If (5.4.1) does not hold, then there must be an increasing

sequence { M) }rso, with M, — oo, as A — oo, such that
H*({w € R" : 4w, z) < A}) = M,.

Then for any M > 0, there exists A = A(M) > 0 such that M, > M, for
all A > A. Since M) is monotone increasing, we can assume without loss of
generality that M, < M. Otherwise, we take A to be the minimum for which
this property holds. Also, A(M) is monotone increasing, and A(M) — oo, as

M — oo. In particular, it holds that
inf{A\>0: My>M}>AM)— oo as M — occ.
Then for any K > 0, there exists M > 0 such that
inf{A\>0:My>M}>K.
Therefore, for any y € R*, with wy|y|* > M, we have
T (y, 2) = inf{\ > 0: My > wp|y|*} > inf{\ >0: My, > M} > K.

We conclude that

lim 1, 4(y, 2) = oco.
ly[—=o0
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Proof of Theorem 5.4.1. Since u is convex at zg, we have that a(y,z) > 0.

Moreover,

Fru(zo) —cnsKlgng /]R” k/Rk (y, 2)K(y, z) dydz.

Fix 2 € R"* and consider the functions f(y) = u(y, z) and g(y) = K(y, 2).
Since

H*({y e R" s a(y, 2) < A}) < oo,

for any A > 0, then by Lemma 5.4.3, we have

lim f.(t) = lim f.(z) = oo,

t—o00 ‘y|
with fox(®) = G i(y, 2) and for(x) = fi(wi]y¥). By Ryff’s theorem (Theo-
rem 5.3.5), there exists a measure preserving o, : R* — [0, 00), depending on

z, such that
iy, z) = fi(o:(y)), (54.2)
for all y € supp (-, z) C RE.

_ni2s
Let K(y,z) = ((wy,'0.(y))** +|2|*)” 2 . For any r > |z|, we have

%k({y cRF: K(y,2) > 7“_"_25})

+2s

> 7“_"_25})

o2 (0, (r? = [2)")))
= H' (0, wi(r* — |2[*)"?))

= wk(r2 - |Z|2)k/2 = g{k (B(T2—|z|2)k/2)a
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since oy, is measure preserving (see Definition 5.3.3). Then K € X3, and thus,

u(y, z
EFZ'U,(Z'O) S Cn,s/ / 1 (y ) n+2s dydz
Rk SRR ((w o (y)?% + |2]2) 2

To prove the reverse inequality, let K € Xj. Applying Proposition 5.3.2, we

see that

/Rk uly, z) K(y, z) dy = /Ooo fut)g"(t) dt
=/, fulo=(y))g*(o-(y)) dy
— [l 2)g (0. o
by Lemma 5.3.4 and (5.4.2). Moreover, by the definition of rearrangements,

g (0.(y)) =sup {A > 0: H*"({w e R* : K(w, 2) > \}) > 0.(y)} = K**(7, 2)

with w ¥ = 0.(y). By (5.3.1), we get

_ni42s _ n+42s
2

g"(o:(y)) = (|91 + |=?) = (Wl + 1) 7

Hence, integrating over all z € R"* and taking the infimum over all kernels

K € Xj, we conclude that

ZU(IE) — Cn,s/ / u<y7z> s dde
woe S ()4 1)

O

Remark 5.4.4. A natural question that arises from this result is whether

there exists a measure preserving ¢, : R¥ — R¥ such that

- ()] = (wito: ()"
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In that case, we would have that the infimum is attained at a kernel K such

that

K(y,z) =y, 2)| "™,
where ¢ : R" — R" is a measure preserving with ¢(y, 2) = (¢.(y), 2).

Recall that Ryff’s theorem gives a representation of a function f in
terms of its increasing rearrangement f,, that is, f = f, oo, with o : R¥ -+ R
measure preserving. If this result were also true for the symmetric increasing
rearrangement, given by fu(z) = fi(wi|x|¥), then there would exist a measure

preserving ¢ : R¥ — R¥ such that f = f4 o). In particular,

f@) = falo(2)) = fulwrleo(@)]*) = fulo(@)).

Hence, it seems reasonable that wy|p(x)|* = o(z). As far as we know, this is

an open problem.

As an immediate consequence of Theorem 5.4.1, we obtain the following
representation of the function Jju in terms of the k-symmetric increasing

rearrangement of .

Corollary 5.4.5. Under the assumptions of Theorem 5.4.1, we have
Fru(xo) = A%, 1 (0).

Proof. Note that @, ,(0) = 0, since u(0) = 0. Therefore, using the same
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notation as in the proof of Theorem 5.4.1, we showed that

Fru(zg) = cns/ / f+(t)g" (t) dtdz
Rn— k

:wkcn,s/ / folwrr™) g (wpr®)r* =t drdz
Rk J 0
o [ [ £l l®) du
Rn
:cms/ / U (Y “F(y, 2) dydz
Rn—k JREK

= Cps / / ey, 2 W dydz = A, 1(0).
rr—k JrE (|y)? 4 [2]?)

O

From the previous result and the fact that the family of operators
{F,}7=] is monotone decreasing, we see that the fractional Laplacian of the

k-symmetric rearrangements are ordered at the origin.

Corollary 5.4.6. Suppose we are under the assumption of Theorem 5.4.1.
Then
A%, 41(0) < A%, 5(0).

Next we treat the second case.
Theorem 5.4.7. Suppose that there exists some N\g > 0 such that for all
z € Rk

<o for0< A< )\
=00 for A> ).

H*({y e R ra(y, z) < A}) {

164



Then there exists a kernel Ko € X3, with supp Ko(+,2) C {y € R* : a(y, 2) <

Xo}, such that
Fru(xo) =cn,s/ / u(y, z)Ko(y, z) dydz.
Rn—k JRE
In particular, the infimum is attained.
Proof. Fix z € R"*. For j > 1, define the set
Aj(z)={y eR" 1y, 2) < Ao — %}

For simplicity, we drop the notation of z. We have that H*(4,) < oo, A; C

Aj+1, and

Ay = DA]- ={y eR" 1 ai(y,2) < Ao}
j=1
Observe that if K € K3, then
H ({y eR": K(y,2) > 0}) = 11_13%9{]“({3/ eR": K(y,z) > r}) = oo.
Hence, we need to distinguish two cases:

Case 2.1. Assume that H"(Ay) = co. Let K € X} and v; = txa,.

By Proposition 5.3.2,

[ ARy = [ oKz [ w10k @

J

By Lemma 5.3.4, for any measure preserving o : R¥ — [0, 00), it follows that
| wr @i~ [ o) o) dy
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By Ryff’s theorem (Theorem 5.3.5), there exists o; : A; — [0, H*(A;)] measure

preserving such that v; = (v;). 0 0; in A;. Therefore,

/,

J

iy, K .2 dy > [ (02K (0,(0) dy. (5.4.3)

Aj
We claim that o0;11(y) < o;(y), for all y € A;. Indeed, since A; C A; 1y, we

have

vi(y) = vj(y), forallye A;
Uj(y) S Uj+1(y), for all Y < Aj+1 \ Aj.

In particular, for all y € A;,
(V1) (@541(y)) = (V1)(0;(y)) < (V341)(05(y))-
Since (vj41)« is monotone increasing, we must have
oi41(y) <o,(y), forallye A,
Therefore, there exists 0 : As — [0, 00) measure preserving such that

0oo(y) = lim o;(y).

Jj—00
Define the kernel K as

n+2s

T L (y).

Ko(y, ) = (Wi 'oso(y)™ + |2I7)

Since H*(A.,) = oo, then Ky € K. Furthermore, note that supp K-, 2) =

E = {y € Rk : ﬁ(y,2> g )\0} and K0<y7 Z) = KS(Uoo(y))a for all Yy € Aoo-
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Then by Fatou’s lemma, Lemma 5.3.7, and (5.4.3), we get

/Rk iy, z) Koly, 2) dy—/A a(y, 2)Kq (000 (y)) dy

§liminf/ u(y, 2)Kq(o;(y)) dy
Aj

j—00

— liminf /A iy, 2) (o3 (y)) dy

< [ ity (.2 dy

for any K € Xj. Integrating over z and taking the infimum over all kernels

K, we conclude the result.

Case 2.2. Assume that HF(A,) < co. Set A = {y € R* : a(y,2) =
Ao}. Then
H*(A) = oo, (5.4.4)

since {y € R¥ : i(y, 2) < Ao} = Ao U A. Fix & > 0 and define
ve(y, 2) = (Y, 2)Xa. (y) + max{ro, (Ao + €)d(y, 2) xa(y),

with ¢(y, z) = 1—e~WP=1=", Note that 0 < ¢ < 1, o(y,z) — 1, as |(y, 2)| = oo,
and @(y, z) =~ |y|*+1z|%, as |(y, 2)| — 0. Also, {v.}.>¢ is a monotone increasing

sequence, and

}:EI(]) v=(y, 2) = @(y, 2)Xa. (y) + max { Ao, lii%(/\o +2)o(y, 2) }xa(y) (5.4.5)

= WY, 2)X4s (y) + max{ Ao, M@ (y, 2) }xa(y) = U(y, 2)Xa.0a(y).

For any j € N, with 7 > 1/e, consider the set
Bi(z)={y € R* ;v (y,2) < Ao +¢e — %}
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Then B C Bj,, and By, = U;.,,.B; = {y € R* 1 v.(y,2) < Ao + €}

Moreover, we have

FH(B) < H*(Aw) + H* ({y € A max{Ao, (Ao + )8y, 2)} < Ao +e—3}).
(5.4.6)

Choose R > 0 large enough (depending on ¢, j, Ag, and z) so that
(Mo +e)e 7l < 1,
Then (Ao +€)o(y,z) > Xog+¢€ — % > ), for all y € Bf;, and thus,
F*({y € AN By max{Ao, (Ao +¢)(y, 2)} < Ao +e—1}) =0.(54.7)
By (5.4.6) and (5.4.7), we see that
H*(B5(2)) < H*(Ax) + H* (AN Bg) < o0.
Furthermore, A C BS_, and thus, by (5.4.4), we get
H*(BS,) > H*(A) = oo.

In particular, v, satisfies the assumptions of Case 1, so there exists K, € X7,

n+2s

Ko(y.2) = ((w; o) + 217) 7 % xms.(v), (5.4.8)

with o, : B, — [0, 00) measure preserving, depending on v, such that

inf/ /vs(y,z)K(y,z)dydz:/ /vs(y,z)KE(y,z)dydz. (5.4.9)
Rn—k JREk Rn—k JREk

KeX;

Finally, we need to pass to the limit. First, we prove that {o.}.~0

is monotone decreasing. Indeed, let V. = {y € R* : v.(y,2) = a(y,2)}. In
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particular, A, C V. C A, U A. Also, V., C V,,, for any 1 < e5. By Ryff’s
theorem, recall that

Vey (4, 2) = (V21)+(05, () and - ey (y, 2) = (V)4 (0, (y))-

Since v, (y, 2) = v, (y,2), for all y € V,,, and v, (y,2) < ve,(y, 2), for all

y € R*, we see that

(V2)4(02,(Y)) = (Ve))x(02,(¥)) < (Vey)u(0e, (y)), forally € V.

Since (v, )« is monotone increasing, we must have that o.,(y) < o, (y), for all

y € V.,. Hence, there exists 0¢ : By, — [0, 00) measure preserving such that

oo(y) = lim o.(y),

e—0

where By = (oo B% = {y € R 1 a(y, 2) < Ao} = A UA. In particular, the

sequence of kernels { K. }.~¢ is monotone decreasing. Define
Ko(y,z) = lir% K.(y,2). (5.4.10)
E—r

By (5.4.8) and (5.4.10), we have

_ n+42s

2 XBw ()

Ko(y, ) = ((wi o0 ()*? + |2I?)
Moreover, K, € K3 since K. € K3, and for any r > 0, it follows that
3" (Do(r)) = lim H* (D (r),

where D.(r) = {y € R¥ : K (y, z) > r~(+2)},
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Finally, using (5.4.5), (5.4.9), (5.4.10), and the monotone convergence

theorem, we get

/ / u(y, z)Ko(y, 2 dydz-/ / lim (v.(y, 2)K-(y, 2)) dydz
Rn—k JRE Rr—k JRE e—0
:lim/ / ve(y, 2)K:(y, 2) dydz
e—0 Rr—k JRE
=i f (Y, dyd
€1~I>n0[(123< /R" k/RkU Y,z ) yaz
< inf 1 (. )K ) dyd
_Klgx/RM/Rk lim v (y, 2) | K (y, 2) dydz

= Klgij /Rn ) /Rk (y, 2 Y, 2) X accua(y)) dydz

= inf dydz.
o [ [0 R 2

The last equality follows from the following observation: since
={K €KX :suppK(-,z) C A UA} C K3,

then the infimum over all kernels in X3 is less than or equal to the infimum

over 5(2 Moreover, the reverse inequality holds trivially. ]

Finally, we deal with the third case, that is, when all of the level sets

of & have infinite measure. In particular, notice that
Uy () =0, forall z e R™

This is the only case where the infimum is not attained. Indeed, we prove in

the following theorem that the infimum is equal to zero.
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Theorem 5.4.8. Suppose that for all A > 0 and z € R"F,
H* ({y € R" : a(y, z) < A}) = o0.
Then Fiu(zy) = 0.

Proof. From (P,), we have that Fju(z¢) > 0. To prove the reverse inequality,

it is enough to find a sequence of kernels { K. }.~o C K§ such that

e—0

lim inf/ / u(y, 2)K:(y, z) dydz = 0. (5.4.11)
Rn—k JRk
Fix ¢ > 0 and z € R**. For any j > 0, we define the set
Ui =Uj(z) = {y e R* 1 a(y,z) < 52’3'("*25)6"2‘2}.

Note that U,,; C U;. Also, by assumption, with A = £277(1+2) ¢~ we have
that

H*(U;) = 00, for all j > 0.
We will construct K. € K by describing first where to locate each level set of

the form:
A=Az ={yeR": 0< K.(y,2) <1}
A;j=Aj(z)={yeR": 2 +2) < K (y, 2) < 2(j+1)(”+25)} for j > 0.

Recall that K € K if for all » > 0, we have H*({y € R* : K(y,2) >

_ n+2s

r*(n+28)}) - }Ck({y e RF : (ly>+ 122 > T*(”“S)}). In view of this

definition, we define the sets

n+

20 < 1}

B_1 =B_4(z) = {y eRM 0 < (JyP+ 2"

n+2s

;= Bj(z) = {y € RF : 2707729 < (g2 4 |2})~ "2 < 20D for § > 0.
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Note that
:H:k(Afl) = U'Ck(B,l) =
HF(A;) = HF¥(B;j) < oo,  forall j > 0.

More precisely, for j > 0, if |z| < 27U+D < 277, then
G (Ay) = I (Bamaspoppyz) = H(Bla-auenfapyz)
(27— |22)E2 (27204 22)R2 < 2
If 27U+ < |2| < 277, then
3(A) = I (Baar as) = wn(2Y — o2 < (322
If [2] > 279 > 27U+ then
H*(A;) = 0.

Therefore, H*(A;) < 27 where ¢ > 0 only depends on k. It follows that
3 (JAs) =D (4) e 2 <o (5.4.12)
j=0 j=0 j=0

For any i > 0, let D; be the collection of all dyadic closed cubes of the

form
[m27", (m 4+ 1)277F = [m27, (m +1)27] x -+ x [m27%, (m +1)27].

Note that if Q € D;, then I[(Q) = 27, where [(Q) denotes the side length of
the cube (). For any j > 0, since U; is an open set, by a standard covering
argument, we have that there exists a family of dyadic cubes J; such that

U= @

QE?J'

satisfying the following properties:
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1. For any ) € 3}, there exists some 7 > 0 such that @) € D;.

2. Int(Q) NInt(Q) = 0, for any Q,Q € F;, with Q # Q.

3. If x € @ € Jj, then @ is the maximal dyadic cube contained in U; that

contains z.

Analogously, for the sets B;, with j > —1, there exists a family of dyadic cubes

F; satisfying properties (1) — (3) such that

Int(B U Q.

QET;
Note that 5"]- N §"j+1 = () since B; N Bj41 = 0.

We will construct the sets A; by properly translating the dyadic cubes

partitioning the sets B; into U;. In particular, we will prove that

:T()(Bo) C U()
:T(BJ)CU\U A;, forall j>1
T1(B-1) C UO\Uz‘:OAi’

for some translation mappings 7 : f;rj — J; to be determined.

We start with the case j = 0. For any ¢ > 0, denote by
:J{O(gjoﬂpz) and n; :}Co(gjgmﬁz),

where H°(E) is equal to the cardinal of the set E. Note that m;,n; € ZTU{oc}.

We will recursively place By into Uy. First, fix ¢ = 0. If mg > ng, then

for any Q € Fo N Dy, there exists some 7 € R¥ and some Q € F, N Dy, such
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that Q@ = Q + 7. Then define

Toi gjoﬂDg — gjomDo
Q = Q

Moreover, we can define Ty one-to-one since mg > ng, and we can always

(5.4.13)

choose a different Q for each Q. Note that there are py cubes in FoN Dy, with
Po = Mg — Ng, that have not been used. Hence, to all of these cubes, divide
each side in half, so that each cube gives rise to 2¥ cubes with side length 2.
Call this collection of new cubes Q = {Q, 12:10 C Dy, and add them to the

family ¥y N D;. Namely, we replace Fo N Dy by (Fo N Dy) U Q.

If myg < ng, then take gg cubes in Fo N Do, with go = ng — mg, and
divide each side in half. Call this collection of new cubes Q = {Q;}'% c D;.

Then, we replace Fy by f;"o, where

grom‘D():(gjo\Q)m‘Do
FoND; = (FouQ)ND,

FoND; =FoND,;, forali>2.

If ng = 9{0(57"0 N Dy), then mg = ng. Hence, by the same argument as in the
previous case, we find Tp as in (5.4.13). For ¢ > 1, we can repeat the same
process until we run out of cubes from F, (or the modified family). We know
the process will end since H*(By) < H*(Up). When this happens, we will have
constructed a one-to-one mapping 7y : f;"o — Fp, since f;"o = U;’io f;"o N D, and

350 = Ufi(] f_fo N Dz Then define
AO - T(](B()> C U(].
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Iterating this process, we find a sequence of translation mappings {7} } 32,

with Tj : F; — F;, and a sequence of disjoint sets {A;}32, such that
j-1
Aj=Ty(B) CU;\ U A

The case j = —1 is somewhat special since H*(A_;) = H*(B_;) = oo.

We will see that
A = T_1<B_1) C Uo\ UAl
i=0
This is possible because H*(Uy \ Uiz, Ai) = oo using (5.4.12). Indeed, we can
write
{y cR":0< K.(y,2) < 1} — U {27(j+1)(n+2s) < K.(y,2) < 2*j(n+25)}.
=0

Now call

__n+42s

C; = {27(j+1)(n+2s) < (lyP+12»)""2 < 2*1("”5)}, for 7 > 0.

Then B, = U;2,Cj, with 3*(Cj) < oo, for all j > 0. Hence, instead
of partitioning all of B_; into dyadic cubes, we partition each of its disjoint
components C;. Arguing as before, we place them into Uy \ ;= A; recursively,

according to the following scheme:
T°(Co) C Up \ UA;
i=0
. 00 j—1
T7,(C5) C Uo \ <UA7jU UQ), for j > 1,
i=0 =0

where TV 1 is defined as before. At the end of this process, we find a translation

map T with T_1(Q) = T7,(Q), for Q € C;. Therefore, we define

A,1 = T,1<B,1).
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Lastly, let y € RF = A_; U (U;’io Aj). In particular, there exists some
j > —1 such that y € A;. Furthermore, recall that A; = T;(B;), where Tj is
a one-to-one and onto translation map. Hence, there exists a unique w € B;
such that y = Tj(w) = w + 7, for some 7 € R*. Let T, : R* — R* be given by
T.(y) = w. Note that T, is measure preserving. Then we define the kernel K.

as

n+2s

Ky, z) = (I +117) >

We have that
/ u(y, z)Ke(y, z) dy = / a(y, z)Ke(y, z) dy + Z/ u(y, 2)Ke(y, 2) dy
RF A,y 07 A
=I1+1L

For I, we use that @(y, z) < ee”1*°, since A_; € Uy. Then by Lemma 5.3.7
and Lemma 5.3.4:

I S 867‘Z|2 / Ks(ya Z) dy
{0<K:(y,2)<1}

—|2|2 —n—2s
— / 0. ()| dy
{0<|ox(y)|~m—25<1}

= ce P / ly| "2 dy = Cee P,
{ly|=>1}

where C' > 0 depends only on n and s. For II, we use that u(y,z) <

£277n+29) =12 “gince A; € U; and K.(y,z) < 20TD0+2) in A, by defini-
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tion. Then
1< ce—l# Z Q—j(n+28)2(j+1)(n+28)g{k(14j)
=0

(oo}

2 . 2

< cee IHIgnt2s E 27k < Cee PP,
Jj=0

where C' > 0 depends only on n, s, and k.

Integrating over z, we see that

[ [ oot s s [ oas< e
Rn—Fk JRE Rn—k

Letting € — 0, we conclude (5.4.11). O

5.4.2 Limit as s — 1

Let u € C*(R"). We define MA; u as the Monge-Ampére operator

acting on u, with respect to the first k variables, that is,
1/k
MAju(z) = k(det ((uz‘j(l‘))lsajﬂ)) :

with D*u(z) = (ui(2))1<ij<n. We define A,,_ju as the Laplacian of u, with

respect to the last n — k variables, that is,

n

A, _pu(z) = Z uii ().

Then under some special conditions, it holds that

lirr% Fru(x) = MAL u(x) + A,_gu(z). (5.4.14)
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In particular, the family {F3}7Z can be understood as nonlocal analogs of

concave second order elliptic operators, which are decomposed into a Monge-

Ampére operator restricted to R* and a Laplacian restricted to R**.

Indeed, by Corollary 5.4.5, we have Fju(x) = A®u,,(0). Since the
k-symmetric rearrangement does not depend on s and A®* — A, as s — 1,

passing to the limit we see that

lim Fu(x) = At x(0).

s—1

Suppose that i, x(y, z) = @(¢;(y),2), where ¢, : R¥ — R* is an invertible

measure preserving transformation, with ¢,(0) = 0, and

wilp:(y)| " = 0-(y).
Recall that o, is given in Theorem 5.4.1 (see also Remark 5.4.4). In this case,
A, 1,(0) = Aya(e; M (y), 2) + ALa(p; ' (y), Z>‘(y,z):(0,0)' (5.4.15)
For the first term, we use that
MA u(z) = irel\flf At o)(0),

where U = {9 : R¥ — R¥ measure preserving such that 1(0) = 0}, and the
fact that the infimum is attained when @ o) is a radially symmetric increasing

function [13]. Hence,

Ayia(0 (1), )] ) 00) = MAR u(@). (5.4.16)
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For the second term, call ¢(y, z) = (¢;'(y), 2) and compute:

A (o §)(0) = tr (D.4(0)" D2a(4(0)) D-6(0)) + V.a(¢(0))" - A.¢(0).
Recall that ¢(0) = 0 and u(y, z) = u(z+(y, 2)) —u(z) = Vyu(z) -y —V,u(x) - 2
Then

V.a(¢(0)) =0, DIu(¢(0)) = Diu(x), and D.¢(0) = (0, L),

where I,,_; denotes the identity matrix in M,,_,. Therefore,

ALa(9 (1), 2)] )00y = D:(@0 9)(0) = tr (D2u(2)) = Ap_ju(z). (5.4.17)

Combining (5.4.15), (5.4.16) and (5.4.17), we conclude (5.4.14).

5.4.3 Connection to optimal transport

In Corollary 5.4.5, we obtained a representation of the function Jju in
terms of the k-symmetric increasing rearrangement. Using this representation,
we find an equivalent expression of Fju that can be understood from the

viewpoint of optimal transport.

Theorem 5.4.9. Suppose we are under the assumptions of Theorem 5.4.1.
Then for any z € R"*, 2 # 0, there erists an invertible map ¢, : R¥ — RF

such that

—cn/ / 3 dydz. (5.4.18)
Rt SR ( !y|2+| %)

Moreover, if o, : RF — [0, 00) is the Ryff’s map given in Theorem 5.4.1, then

. is measure preserving if and only if

wrle:-()F = o.(y), for a.e. y € R¥. (5.4.19)
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The key tool to prove Theorem 5.4.9 is Brenier-McCann’s theorem, a
very well-known result in the theory of optimal transport [7,44|. We state it

here in the form that we will use it.

Theorem 5.4.10. Let f,g € L*(R¥). Assume that

||f||L1(Rk) = ||g||L1(]Rk)-

Then there exists a convex function v : RF — R whose gradient V1 pushes

forward fdy to gdy. Namely, for any measurable function h in RF,

/Rk h(y)g(y) dy = / (VW) (y) dy. (5.4.20)

Moreover, Vi : R¥ — R* is invertible and unique.

In the literature, V1 is known as the (optimal) transport map.

Proof of Theorem 5.4.9. Fix z € R"* z # 0, and consider f.,g. € L'(RF)
given by

_ n+42s

L) =P+ and g.(y) = (wiloa()?* +122) ",

where o, : R¥ — [0, 00) is given in Theorem 5.4.1. Note that

_ n+2s

Il = [ (o) + 1)~ dy

e _n42s
= k;wk/ (r*+1z1%)" 2 " ldr
0

n+2s

= [P +1)7 % dy = lallsgon,
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since o, is measure preserving. By Theorem 5.4.10, there exists a convex
function v, : R* — R (depending on z) whose gradient V1), pushes forward
f.dy to g.dy. Moreover, Vi, is invertible and unique. Call ¢, = (Vi),)™!
Using (5.4.20), with h(y) = u(y, z), we see that

n+2s y n+2s dy (5421)
/R’“ ((wy o (y) 2 + |22) /R (|y|2+|z|) 2

Integrating over z € R"* we obtain (5.4.18).

It remains to show that ¢, is measure preserving if and only if (5.4.19)

holds. Indeed, for any measurable set £ C R¥, we have

n+2s
(lyl* +12%) >

s ) = [ = | L
ez 1(B) o (B) (Jy|2 + [2]2) *

n+2s
_/ (=(oz WP+ 12P) =
- n+2s y
oz () (lyl* +12[?)

n+2s
. 2+ 22 2
:/E( (e-f + 1)

wilo () + 122)

where the last equality follows from (5.4.21) with

hy) = (o) + 1227 xely).

Therefore,

I+ () (B)) = 94 (E)

if and only if wi|e.(y¥)|* = 0.(y), for a.e. y € R*.
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5.5 Regularity of Fju

Given zy € R”, we define the sections
Dyu(t) = {z € R" : u(z) — u(xo) — (x — x0) - V() < t}, fort > 0.
Our main regularity result is the following.

Theorem 5.5.1. Let s € (1/2,1) and 1 < k < n. Let u € C"(R™) be conver.
Fiz zg € R" and ro,e > 0. Suppose that A = sup,cp, (z,) diam(Dyu(e)) < oo
and M = SUp,ep, (n) Tpu(x) < co. Then Fju € C%1=5(B,(z0)) with r <
min{ro/4,A,e/(8A)}, and

[Filcor-s By < Colulcrmn)

for some constant Cy > 0 depending only onn, k, s, €, A, and M.

This theorem will be a consequence of the next proposition.
Proposition 5.5.2. Fiz zqg € R™ and € > 0. Suppose that

A = diam(Dy u(e)) < oo and [u]craimny < 1.

Then for any x; € B,(xg), with r < e/(4A), it holds that

Fpu(zr) — Fru(ze) < CN*|lzy — o' ° + 2wy — mo|Fyu(wo)
for some C' > 0 depending only on n, k, and s.

First, we prove Theorem 5.5.1.
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Proof of Theorem 5.5.1. Without loss of generality, assume that [u]c11 @y < 1.
Otherwise, we consider u/[u]cii@ny. Let r < min{ro/4,A,e/(8A)}. It is

enough to show that
[?Z]co,lfs(m) < Cy, (5.5.1)

for some constant Cy > 0 depending only on n, k, s, €, A, and M.

Let x1,29 € B.(z9). Then zy € Ba.(v1) C B,,(x0), since 4r < ry.
Moreover, diam(D,,u(¢)) < A < oco. Hence, applying Proposition 5.5.2 to u,

replacing B, (zg) by Ba,(x1), we get

Fpu(zs) — Fru(zr) < ONF|wy — 21| % + oy — 24 |Fu(z)

< Colzg — 1]' 7%,

where Cy = CA'™+4A'™ M /(£2°). Since z; and 5 are arbitrary, we conclude

(5.5.1). 0

Before we prove Proposition 5.5.2, we need several preliminary results.

Lemma 5.5.3. If f is monotone increasing, then

/000 f(r)w(r)dr = /000 /I:()t)w(r) drdt,

with () = |{r > 0: f(r) < £}

Proof. By Fubini’s theorem, we have

/ / w(r) drdt:/ w(r)/ dtdr.
0 Jup®) 0 {r>pp(t)}
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Since f is monotone increasing, then r > p(¢) if and only if ¢ < f(r). There-

fore,

[

Proposition 5.5.4. Let x € R". Under the assumptions of Corollary 5.4.5 it
holds that

e’} 1 t l/k
Fru(z) = Cns/ / W(,uxu( %) ) dzdt,
“Jo o Jre-k |2|nTREES 2]

where pu(t, z) = wy ' H*({y € R* : @,(y, 2) < t}) and

kal

) ) o (1+72)%

Proof. By Corollary 5.4.5, we have that

- 1 Us (Y, 2
Fru(x) = AU (0) = ¢y T #(,2) = dy ) dz
|| Rk (

Il +1)

1 0 Tk_l
= Cps —— | kw v(|z|r, 2 —Hd?")dz,
’ /Rnk |z’nk+2s( k/O (’ | )(7’2 T 1)+T2

where v(r, z) = . x(y, 2) for |y| =r.

Next we apply Lemma 5.5.3 to

_ n+42s

fr)y=v(|z]r,z) and w(r) = kwpr* (P2 +1)" 2 .

Note that since v is the k-symmetric increasing rearrangement of u, we have

pe(t) = é]{?‘ >0:v(r,z) <t}

w V/E ~ k
= = H* ({y e R s a(y, 2) < t})l/

= dgu(t, )%,
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Therefore,

0 kal 0 eS] rkfl
kwk/ v(|z|r, 2) ———r dr = / (/{;wk/ —_— dr)dt
0 (r24+1)" =2 0 peu(t,2) /%2 (r2+ 1) 2
e8] - t 1/k
_ / W(M) i
0 2]
where W is given in (5.5.2). By Fubini’s theorem, we conclude that

1/k

S _ > 1 Mxlb(t, Z)
wu(x) = Cms/o [Rnk ‘Z‘HHZSW( 2] ) dzdt.

]

Lemma 5.5.5. Suppose we are under the assumptions of Proposition 5.5.2.

Let x1 € B, (xg) and d = |z1 — xo|. The following holds:

(a) Ift € (2Ad, €], then Dy u(t — 2Ad) C Dy, u(t).

(b) Ift € (£,00), then Dyyu(t — 2Adt/e) C Dy ul(t).

Proof. First we prove (a). Fix t € (2Ad, €] and let € D, u(t — 2Ad). Then
u(x) —u(zg) — (x — xg) - Vu(zg) <t — 2Ad. (5.5.3)

Using (5.5.3), convexity, and [u]c11@ny < 1, we see that

u(x) —u(zy) — (x — 1) - Vu(zy) = u(z) — u(xg) — (x — xo) - Vu(zo)
— (u(z1) — u(wg) — (z1 — o) - Vu(zo))
+ (x — 1) - (Vu(zg) — Vu(z))

<t—2Md+ |z — my|d.
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Moreover, © € D, u(€), since t < ¢, and thus,
|z — 21| < |z —mo| + |0 — 21| < A+ d < 2A.

Therefore, © € D, u(t).
Next we prove (b). Fix t € (£,00) and let © € Dy u(t — 2Adt/e). By
the previous computation, we have that

w(x) —u(ry) — (x — 1) - Vu(zy) <t —2Adt/e + (Jx — xo| + A)d.(5.5.4)
To control the distance from z to zy, we need to estimate the diameter of
D, u(t). Take y € Dyyu(t) \ Dyu(e) and let z be in the intersection between
0D, u(e) and the line segment joining xy and y. Then there is some A > 1
such that y — zg = A(z — x¢). By convexity of u,
u(z) < 2bu(zo) + Luly).
Therefore,
e = AMu(z) — u(wo) — (2 — o) - Vu(x))
< (A= Du(zo) + u(y) — Mu(zo) — (y — o) - Vu(zo)
= u(y) — u(zo) — (y — @o) - Vu(zo) < t,

so A < t/e. By convexity, we have that D, u(t) C xo+ L(Dyou(e) — xp). It
follows that

diam D, u(t) < t/ediam D, u(e) = At/e.
Hence, |z — x¢| < At/e, and by (5.5.4), we get

w(z) —u(zy) — (x — 1) - Vu(zy) <t —2Adt/e + (At/e + N)d < t,
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which means that € D, u(t). O
We are ready to give the proof of Proposition 5.5.2.

Proof of Proposition 5.5.2. Let x1 € B,(x), with r < ¢/(4A), and call d =
|zg — x1]. We will estimate Fju(z,) using Proposition 5.5.4:

1/k

s, (0 — - 1 Py ult, 2)
Fru(zy) = Cn,S/O /Rn_k ’Z‘nkHsW( 2] ) dzdt.

In view of Lemma 5.5.5, we divide the integral with respect to ¢ in three parts:

I te(0,2Ad], 1L te (2Ad,e], I t€ (,00).

Let us start with I. Since v € C'(R™) with [u]crigsy < 1, then

k
payult, 2) > (8 — |2

Hence, using that W(p) is monotone decreasing, we get

) =W (- 13)

W(umu(t, z)'/k

||

Therefore,

/ 1 W(%U(t, 2)1/’“) "
O K L 2]

1 1 1
< —W(L—w)de(O)/ S S—
/{|Z<t1/2} |z’n—k+2s (\z|2 ) (2> 11/2) ’Z|n—k+zs

= [1 —|—Ig

Note that W(0) = C(n,k,s) < co. Then

OO 1 n—k—1 — 4—S
Izg/tm pn_k+25p dp =~ t°.
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For I;, we make the change of variables, w = z/t'/2. We see that

— 1 1 . 1 n—k
he /{Iw|<1} tnké%|w|"—k+2sw((W 1)2)t 2 dw

D=

) dp.

L L (-

Z_
142
ts 0 p+s

1
Note that if 0 < p < 1/2, then ({% — 1)2 > f%p. Hence,

o] k—1
1 3 1\ _ r n—k+2s

WG —1)%) <W(g) = /1 TR

V2p
Therefore,
1/2 1 1
I < t_s/ —— "2 dp W (0 / dp =t %,
1 0 p1+23 ( ) 1/2 p1+28

since n — k > 0. We conclude that

1/k

[— ¢ /W/ ! W(“”““(t’z) >dzdt
Y P e |2|

2Ad
< / 5 dt = (2Ad)' 7% = (2A) |2y — o)t E
0

Next we estimate the integral for ¢ € (2Ad,e|. To this end, we use

Lemma 5.5.5, part (a):

Dy u(t —2Ad) C Dy, u(t).
In particular, for any z € R"7* fixed, we have

{y e R* @iy (y,2) <t —2Ad} C {y € R* : 1y, (y, 2) < t}.
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Hence, piz,(t — 2Ad, 2) < pg, (¢, 2), which yields

€ 1 . t 1/k
Hzcn,s/ / = (~ ulf: 2) ) dzat
ong Jrn-k |2|PTRF2S ||

e—2Ad 1/k
1 ot
< cm/ / W(“ ot 2) )dzdt.
“Jo O ] L |2|

Finally, we estimate the integral for ¢ € [¢,00). By Lemma 5.5.5, part (b):

Dyyu(t — 2Adt/e) C Dyult).

Hence, p u(t —2Adt/e, z) < p,u(t, z), and

B o 1 fho, u(t, 2)1/E
HI_cn,S/ /R - ’Z’nHQSW( A ) ddt
payu(t — 2Adt e, 2)'/E
dzdt
< / e 2 )
Hao u(l, Z)l/k
= —— w dzdt.
1-— 2Ad/€ /€2Ad /Rn_k | z|n—k+2s < || ) :

Note that

foou(t, 2) 1/
11+ 111 < ( >d dt
tHls T —2Ad/s/ /R L |z|” Fi2s B z

——Fiu(zo).

E—ZAd

Therefore, we conclude that

Frou(zr) — Fru(zo) < ON*loy — o) ™ + (=5 — 1) Frulao)

< CA"Plzy — 2ol 4 222y — 0| Fyu(zo)

since d < r < ¢e/(4A), and thus, € — 2Ad > ¢/2.
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5.6 A Global Poisson Problem

We consider the following Poisson problem in the full space:

(5.6.1)

Fu=u—¢ in R”
(u—p)(x) =0 as|z| — oo,

where ¢ : R" — R is nonnegative, smooth, and strictly convex. Furthermore,

we ask that ¢ behaves asymptotically at infinity as a cone ¢, that is,

lim (¢ — ¢)(x) = 0. (5.6.2)

|z| =00

Similar problems have been studied for nonlocal Monge-Ampére operators

in [8,13].

We will prove the following theorem.

Theorem 5.6.1. There exists a unique solution u to (5.6.1) such that u €
CH(R™) with
[u]cl,l(Rn) S [SO]Clal(R”)-

To define the notion of solution, we introduce a natural pointwise defi-

nition of Fju for functions u that are merely continuous.

Definition 5.6.2. Let u € C°(R").

(a) We say that a linear function I(y) =y-p+b, with p € R", and b € R, is a
supporting plane of u at a point z if [(z) = u(z) and I(y) < u(y), for all
y € R™
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(b) We define the subdifferential of u at a point z as the set Ju(x) of all vectors

p € R" such that I(y) = y - p+ b is a supporting plane of u at z, for some
beR.

Definition 5.6.3. Let u € C°(R™) be a convex function. For zy € R", we

define

Fru(xg) = ¢ps sup  inf /n(u(xo + ) —u(zg) —x - p)K(x) dx.

pEdu(zo) KeXy Jr
Remark 5.6.4. Note that if u € OV (zg), then du(zo) = {Vu(zg)}, and the

previous definition coincides with Definition 5.2.4.

The following properties of F7u will be useful for our purposes. The

proof is analogous to the one in [13], so we omit it here.

Lemma 5.6.5. Let u,v € C°(R™) be convex functions. The following holds:

(a) (Homogeneity). For any A > 0,

Fi(Au) = AFju.

(b) (Monotonicity). Assume that u(xg) = v(xg) and u(zr) > v(z) for all
x € R". Then

Fru(xg) > Fro(xo).

(¢) (Concavity). For any x € R™,

53 (u ~2|— v) (2) > Fiu(z) —|2— rf,iv(x)'
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(d) (Lower semicontinuity). Assume that u € CHY(R™). Then

Fru(zo) < liminf Fyu(z).

T—0
Definition 5.6.6. Let u € C°(R") be a convex function. We say that u is a
subsolution to Fju = u — ¢ in R™ if

Fru(zo) > u(zg) — p(zo), for all zg € R™.
Similarly, u is a supersolution if

Fru(xo) < u(zg) — @(xg), for all g € R".
We say that u is a solution if it is both a subsolution and a supersolution.

Lemma 5.6.7. If u and v are subsolutions, then max{u,v} is a subsolution.

Proof. Let w = max{u,v}. Then w is continuous and convex. Fix zy, € R".
Without loss of generality, we may assume that u(xg) > v(xg). Then w(zg) =
u(zo) and w(z) > u(z), for any € R". By monotonicity (see Lemma 5.6.5),

we have
Frw(zo) > Fpu(zo) > u(wo) — p(z0) = w(T0) — ¢ (T0).

Hence, w is a subsolution. O

We will show existence and uniqueness of solutions to (5.6.1) using
Perron’s method. The key ingredients are the comparison principle, and the
existence of a subsolution (lower barrier) and a supersolution (upper barrier).
We state this in the following proposition. We omit the proof since it is similar

to that in [13].
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Proposition 5.6.8. Consider the equation Fju = u— ¢ in R". The following
holds:

(a) (Comparison principle). Let u and v be a subsolution and supersolution,
respectively. Assume that u < v in R™ \ Q, for some bounded domain

QCR™ Thenu <wvinR"™

(b) (Lower-barrier). The function ¢ is a subsolution.

(¢) (Upper-barrier). The function ¢ + w is a supersolution, where w = (I —

AT ASp. In particular, w(z) < C(1 + |z|)'72, for some C > 0.

An immediate consequence of the comparison principle is the unique-

ness of solutions.

Lemma 5.6.9 (Uniqueness). There exists at most one solution to (5.6.1).

Proof. Suppose by means of contradiction that there exist two functions u, v €
C°(R™) with u # v, satisfying (5.6.1). Then |u(z) — v(z)| — 0, as |z| = oc.
Hence, for any € > 0, there exists a compact set (). € R", depending on &,
such that

v(z) —e <wu(zr) <v(xr)+e forallzeR"\ Q..

Moreover, for any zy € R", the function v + ¢ satisfies

Fr(v+e)(wo) = v(zo) — p(20) < (v(T0) + ) — 0(T0)-
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Therefore, v is a supersolution and by the comparison principle, it follows that
u < v+ ¢ in R". Similarly, we see that v — ¢ is a subsolution and u > v — ¢ in

R™. Hence,

| — V|| oo rry <€,
and letting ¢ — 0, we get u = v in R", which is a contradiction. ]
To prove existence of a solution, we define
u(z) = supv(x), (5.6.3)
vES
where 8§ is the set of admissible subsolutions given by
8 = {v e C¥'(R") : v subsolution, ¢ <v < p+w,

and [U]CO,I(Rn) < [@]Oo,l(Rn)}.

Note that 8 # ) since ¢ € 8, and the supremum is finite since v < ¢ + w, for

any v € 8. Moreover, u is convex and Lipschitz, with

[U] CO,l(Rn) S [SO] CO,l(Rn) .

From ¢ < v < ¢ + w, and the upper bound for w in Proposition 5.6.8, it

follows that
0< (u—y)(r) <w() <COA+z))'" =0,
as |z| — oo since 1 — 2s < 0.
Proposition 5.6.10. The function u given in (5.6.3) is C1(R") with
[u]cri@mny < [@lora@ny-
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Proof. We will show that for any xq,z; € R,
0 < u(wo+ 1) — u(zo — 1) — 2u(x0) < [Plorawny|z1]*.

Indeed, the lower bound follows from convexity of u. Hence, we only need to

prove the upper bound. Call M = [¢]c11(gny. Then
(o 4+ 11) — (w9 — 1) — M|21* < 20(0). (5.6.4)
Take any v € § and fix x; € R". Define
d(zo) = 1 (v(zo + 1) + v(x0 — 1) — M|31[*), for zp € R™.

We claim that 9 is a subsolution to Fju = u— ¢ in R". Indeed, since JFj is ho-
mogeneous of degree 1, concave, and translation invariant (see Lemma 5.6.5),

we have

Fio(xg) = ?Z(%U(xo + x1) + 30(zo — I1)>

v

sFiv(zo + 21) + Fv(wo — 21)

l(U(xo + 1) — (20 + 21) + v(0 — 1) — P(T0 — I1>)

v

(v(wo + 21) — v(wo — 21) — M|24]?)

— 3 (p(wo + 21) + (w0 — 21) — M|241]?)

> 0(z0) — ¢(x0)-
Moreover, using that v < ¢ + w, we get

0(xg) < %((p(l‘g +21) + p(xg — 1) — M\x1]2) + %(w(mo + 1) +w(xg — :Ul))
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By (5.6.4) and the upper bound of w in Proposition 5.6.8, part (c), we see that
0(20) = p(w0) < (1 + |wo + 21 ['7%) + (1 + zo — 1)) ) =0,

as |zo| — oo and x; fixed, since 1 — 2s < 0. Then for all € > 0, there is some

compact set ()., depending on € and x, such that
0(xg) —e < p(xg), forall zg € R"\ Q..

Consider 0. = max{0 — €, p}. Then 9. is a subsolution, since the maximum
of subsolutions is a subsolution (see Lemma 5.6.7). Also, 0. = ¢ < p + w in
R™\ Q., and ¢ + w is a supersolution by Proposition 5.6.8, part (c). Applying
the comparison principle, we get ¢ < 9. < ¢ +w. Moreover, [U]co1(gn) <

[¢]co1(mny. Therefore, 0. € 8.

Since u(xg) = sup,es v(xo), it follows that u(zg) > 0.(zo) > 0(xo) — €.

Letting € — 0, we conclude that for any v € 8§ and xg, 1 € R",
u(zo) > 1 (v(wo + 1) + v(2o — 21) — M|21]?). (5.6.5)

Finally, by definition of supremum, for any 6 > 0, and x(, z; € R", there exist
v1,v2 € 8 such that u(xg+x1)—0 < vi(zo+z1) and u(zg—x1)—3 < vo(rg—21).

Let v = max{vy,v2}. Then using (5.6.5) for this v, we get
u(zg) > %(u(xo +x) — 0+ u(xg—x1) — 9 — M|x1|2).
Letting 6 — 0, we conclude that

u(wo + 1) — u(zo — 1) — 2u(20) < [Plorin)|zi]®.
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To complete the proof of Theorem 5.6.1, it remains to see that u is a
solution. Hence, we need to show that u is both a subsolution and a superso-

lution. We will prove these results in the next two propositions.

Lemma 5.6.11. For any xo € R" and € > 0, the set
Dyu(e) = {z € R" : u(z) — u(zo) — (x — x0) - Vu(zy) < e}
18 compact.

Proof. Let ¢y € R™ and € > 0. Without loss of generality, we may assume that
xo = 0. Let [ be the supporting plane of v at 0, that is, [(z) = u(0) 4z - Vu(0).
Clearly, D, u(e) is closed. Hence, we only need to show that it is bounded.
Recall that

o(z) < p(r) <u(z), forallxzeR", (5.6.6)

where ¢ is a cone. Note that the strict inequality in (5.6.6) follows from the

strict convexity of ¢. Moreover, by (5.6.1) and (5.6.2), we have

lim (u—¢)(x) =0.

|z| =00

Therefore, D, u(e) C {¢ <1+ c}. We claim that
‘ 1|im (¢ —1)(x) = o0. (5.6.7)
Tr|—0o0

If this condition holds, then for all M > 0, there exists R > 0, such that

¢(z) —l(x) > M, forall |z| > R.
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Choosing M = ¢, we see that {¢ < [+ €} C Bg, for some R depending on e.

Hence, the set D,,u(e) is bounded.

To prove the claim, we distinguish two cases. If «w(0) = 0, then u
attains an absolute minimum at 0, so Vu(0) = 0. In particular, I(z) = 0, for
all z € R", and thus, (5.6.7) is clearly satisfied. Hence, it remains to show the

claim when

u(0) > 0.

We will prove it by contradiction. If (5.6.7) is not true, then there exists a

sequence of points {r;}22, C R" such that [z;| — oo, as j — oo, and

lim (¢ — )(z;) < oo.

Jj—00
Using that ¢ is continuous and homogeneous of degree 1, and letting j — oo,

we get
oe) _Mm) (i) — MO gy (0) = ¢(e) — Dou(0) =0,

where z;/|z;| — e, up to a subsequence. Therefore, ¢(e) = D.u(0). For any

A > 0, we have
[(Ae) = u(0) + Ae - Vu(0) = u(0) + Ap(e) = u(0) + p(Xe).

Since [ is a supporting plane of u, we know that u(z) > I(x), for all z € R",
and thus,
u(Ae) > l(Xe) = p(Ae) + u(0).
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Letting A — oo, we see that
0= lim (u— ¢)(Xe) > u(0) > 0,
A—00
which is a contradiction.
O

Proposition 5.6.12 (u is a subsolution). The function u given in (5.6.3)
satisfies

Fru(zo) > u(zo) — w(x0), for all zp € R".
Proof. By Proposition 5.6.10, we know that u € C11(R"™). Without loss of gen-
erality, we may assume that [u]c1.1zn) = 1. Otherwise, consider u/[u]c11(gn).

Let o € R™. Then the quadratic polynomial
P(z) = u(zo) + Vu(zo) - (x — x0) + |2 — 20>

touches u from above at xy. Moreover, we may assume that P touches u
strictly from above at zy. If not, we replace P by P + ¢|z — x|* with ¢ > 0

small.

Fix 6 > 0. Then there exists h > 0, with h — 0 as 6 — 0, such that
P(z) —u(z) > h >0, forallzeR"\ Bs(xo).

Since u(x) = sup,es v(z) and v € § is uniformly continuous, there is a mono-
tone sequence {v;}32; C & such that v; — u uniformly in compact subsets of

R™. In particular, there exists jo > 1, depending on h, such that for all 7 > 7o,

u(x) —h <wv;(z), forall z € Bs(x). (5.6.8)
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Call v = v; for some j > jo. It follows that

P—v>h in R™\ Bs(xo)
P—v<P—u+h in Bs(xg).

Let d = infgn (P — v). Then d = P(x1) — v(x1), for some x; € Bp(xg), with
0 <d < h,and P(z) —d > v(x), for all x € R". Hence, P — d is a quadratic

polynomial that touches v from above at z;. In particular, since v is convex,

then v has a unique supporting plane [ at z, so dv(x1) = {VI}.

Let 7 > 0 be such that [ + 7 is the supporting plane of u at some point
2. Note that x5 approaches xy as h goes to 0, and thus, there exists some
r =r(h) > 0 such that r — 0, as h — 0, and x5 € B,(z¢). Furthermore, since

l(x1) +d=v(x1) +d = P(x1) > u(xy), then 7 < d < h (see Figure 5.2).

(@2 ‘» "
y - R

Figure 5.2: Geometry involved in the proof of Proposition 5.6.12.

Fix ¢ > 0. By Lemma 5.6.11, we have that D, u(e) is bounded, so
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A = diam D, u(e) < oo. Choose § sufficiently small, so that r < e/(4A).

Then by Proposition 5.5.2, it holds that
Fiu(za) < Fyu(wo) + CA S|y — 20| ™% + LT (o) |0 — o
< Fu(zo) + C(r), (5.6.9)
where C(r) — 0, as r — 0. Next we will show that
Fiv(xy) — C7° < Fiu(wy) (5.6.10)

for some constant C' > 0 depending only on n, k, and s. Since dv(x;) = {VI},

then v € CY!(z;), and using Proposition 5.5.4, we get

Hay U (th)l/k
Fro(zy) / /Rn ) ]z\” s ( - ] )dzdt,

where j1,0(t, 2) = w; 'H*({y € R* : 0,(y,2) < t}), and W is the monotone

decreasing function given in (5.5.2). Observe that since v < u, [ is the sup-
porting plane of v at 1, and [ + 7 is the supporting plane of u at x5, then for

any t > 0, it follows that
Dyu(t) ={u—(I+7)<t} C{v—1<t+7}=Dyv(t+7).
In particular, p,u(t, 2) < pg,v(t + 7,2), for any z € R**. Therefore,

W payu(t, 2)) = W g, 0(t + 7, 2)),

which yields

S OO 1 :uxlv(t?’z)l/k
Fru(zy) > cn,s/ /Rn ) ’z‘n_HZSW( ] )dzdt
pay v(t, 2) "
= Fv(xy) / /Rn ) z|" s ( B )dzdt
Crls,

> Fu(zry) —
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where the last inequality follows from the fact that p,,v(t, 2) > C(t — |z|2)’i/2

and W is monotone decreasing.

Combining (5.6.9) and (5.6.10), using that v is a subsolution, and
(5.6.8), we get

Fiu(wo) + C(r) > Fiv(xy) — Cr'7° > v(ay) — p(ay) — C7' 75

> u(zy) —h — p(zy) — CT75.

Letting § — 0, it follows that h — 0, C(r) — 0, 7 — 0, and 1 — zo. By

continuity of u and ¢, we conclude the result. [

Proposition 5.6.13 (u is a supersolution). The function u given in (5.6.3)
satisfies

Fru(xo) < u(zg) — @(xg), for all xy € R™.

Proof. Assume the statement is false. Then there exists some g € R™ such
that

Fru(xg) > u(zg) — @(0).
Without loss of generality, we may assume that u(zg) = 0 and Vu(zy) = 0.
Otherwise, consider v(z) = u(x) —u(xg) — (x — o) - Vu(zg). Then there exists
some ¢ > 0 such that

Fru(xg) > —p(x0) + 0. (5.6.11)

Fix ¢ > 0 and let v*(z) = max{u(z),e}. We will show that for e
sufficiently small, u® is an admissible subsolution, and thus, reaching a con-

tradiction with u being the largest subsolution. Indeed, u® is convex and
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uf € C™H(R™) with [uf]coagn) < [p]coa(gn). Moreover, note that uf(z) = u(z),
for x large. Hence, once we show that u® is a subsolution, it will follow from

the comparison principle that ¢ < u® < ¢ + w.

If v € {u. = u}, then u.(x) = u(z) and u. > v in R”. By monotonicity
(Lemma 5.6.5),

s () = Fiu(e) = u(z) — ¢(r) = u(z) — o(z),

since u is a subsolution, by Proposition 5.6.12.

If x € {u® > u}, then u®(x) = ¢ and du*(z) = {0}. In particular,

Fru(z) = Fous(xo). (5.6.12)

Moreover, for any ¢ > 0, we have D, u(t) = {u* —e <t} ={u <t+¢e} =

D, u(t + ¢€). Therefore, in view of Proposition 5.5.4, we get
u(t, z)V/*

S, € S : 1 Mm )
T2 (o) = Fiu(z) — /0 /R - |Z|n_k+2sw( . )dzdt
> Fiu(xg) — Cet™* (5.6.13)

since u € CY(R™) and pgyult, z) > (t — |2|2)"?.
Combining (5.6.11), (5.6.12), and (5.6.13), we see that
Suf (1) = Fiuf(z0) > Fulwg) — Ce'™* > —p(xg) +6 — Ce'™*
= () — p(x) + (¢(x) — p(z0) +0 = Ce'™* —¢),

since u®(x) = . We need the term inside the parenthesis to be nonnegative.

Hence, it remains to control ¢(x) — ¢(xg). Since ¢ is smooth,
lp(z) = p(20)| < [Plcor@n|z — 2ol.
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We distinguish two cases. If {u = 0} = {zo}, then |z — 2o < d. — 0, as

e — 0. Hence, choosing ¢ sufficiently small, we see that
p(z) — p(mg) +6 — Ce' ™ —e > 6 — [plcoanyd. — Ce' > — e > 0.

Therefore, u® € 8, which contradicts u®(zo) > u(xg) = sup,cg v(xo) > u° (o).

Suppose now that {u = 0} contains more than one point. By compact-
ness of {u = 0} and continuity of ¢, there exists some z; € {u = 0} where ¢

attains its maximum. Then
Fru(z1) = Fiu(ro) > ulwo) — @(w0) + 0 > u(z1) — p(11) + 6.

Moreover, by convexity of {u = 0} (since u > ¢ > 0) and ¢, we must have
that z; € 0{u = 0}. Hence, there exists {z;}52, C {u > 0} such that z; — x,
and u is strictly convex at x;. Namely, there is a supporting plane that touches

u only at z;.

By continuity of u, there exists some jo > 2 such that
u(xy) > u(z;) —6/4, forall j > jo.
By continuity of ¢, there exists some j; > 2 such that
o(r1) < p(z;)+6/4, forall j > j.

By lower semicontinuity of Fju, up to a subsequence, there exists some jo > 2
such that

wu(z;) > Fu(zy) —o0/4, for all j > js.
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Let J > max{jo, j1, jo}. Then
Fru(xy) > Fru(zy) — 6/4 > u(xy) — p(x1) +30/4 > u(zy) — @(zy) + /4,

and we can repeat the previous argument, replacing oy by x;. We conclude
that

Fru(xo) < u(zg) — @(xg), for all o € R".

5.7 Future directions

As mentioned in the introduction, the main idea to define a nonlocal
analog to the Monge-Ampére operator is to write it as a concave envelope of

linear operators. More precisely,

2 /n _ 2
ndet(Du(x)) z\?g\mtr(MD u(z)),

where M = {M € 8" : M > 0, det(M) = 1} and 8™ is the set of n x n
symmetric matrices. In fact, this extremal property does not only hold for
ndet(B)Y/™ with B € 8" and B > 0. Observe that if A = (\;,...,\,), where
A; are the eigenvalues of B, then the function f defined in I' = {A € R" : \; >

0, forall i =1,...,n}, given by

n 1/n
FN) = n(H )\i) — ndet(B)Y"
i=1
is differentiable, concave, and homogeneous of degree 1. In general, if f satisfies

these conditions in an open convex set I' in R", then

FO) = inf {f(0) +VF(p) - A= p)} = E VF(u) - X,
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where the second identity follows by Euler’s theorem. Therefore,

f(\) = inf tr(MB),

MEMf

where My = {M € 8" : A\(M) € Vf(D)}, VFT) = {Vf(n) : p € T}, and
A(M) are the eigenvalues of M.

For instance, the k-Hessian functions introduced by Caffarelli, Niren-
berg, and Spruck in [9] satisfy these conditions and, in fact, fractional analogs
have been recently studied by Wu [62]. It would be interesting to explore
fractional analogs to a wider class of fully nonlinear concave operators, as the

ones mentioned above.

We remark that the 1-Hessian is equal to the Laplacian, and the n-
Hessian is equal to the Monge-Ampére operator. Moreover, for 1 < k < n, we
obtain an intermediate discrete family between these operators. In view of this
observation, a natural question of finding a continuous family connecting the
Laplacian with the Monge-Ampére operator arises. Here we suggest possible
families that connect smoothly these two operators, passing through the k-
Hessians, in some sense. Indeed, let a € (0, 1]" and denote |a| = a4+ a,.
For A € R"}, we consider the functions,

1
fa(A) = (Z /\?%1) T )‘:?n)> - )
oes
where S is the set of all cyclic permutations of {1,...,n}. Observe that for
any 1 <k <n,ifa =7}, e;, with |[J| =k, then f, is precisely the k-Hessian

function. Consider any smooth simple curve v : [0, 1] — (0, 1]” such that
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1. v(0) = e;, for some 1 <i <mn,

2. y(tg) = Ziejk e;, with |[Jx| =k, and 0 <t < tpq < 1, forall 1 < k <n,

and

Then the family { fa }acim(y) is as we described. In particular, fractional analogs
of these functions would give a continuous family from the fractional Laplacian

to the nonlocal Monge-Ampére. We will study this problem in a forthcoming

paper.
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