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This dissertation is divided into two main topics. First, we study trans-

mission problems for elliptic equations, both linear and nonlinear, and prove

existence, uniqueness, and optimal regularity of solutions. In our first work,

we consider a problem for harmonic functions and use geometric techniques.

Our second work considers viscosity solutions to fully nonlinear transmission

problems. Given the nonlinear nature of these equations, our arguments are

based on perturbation methods and comparison principles.

The second topic is related to nonlocal Monge-Ampère equations. We

define a new family of integro-differential equations arising from geometric

considerations and study some of their properties. Furthermore, we consider

a Poisson problem in the full space and prove existence, uniqueness, and C1,1

regularity of solutions. For this problem, we use tools from convex analysis

and symmetrization.
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Chapter 1

Introduction

This thesis is divided into two main parts. The first part is about

elliptic transmission problems and includes Chapters 2-4, where each chapter

considers a different problem. The second part, in Chapter 5, deals with the

construction and analysis of a new family of integro-differential operators that

are motivated by a nonlocal Monge-Ampère equation.

Next, we briefly introduce transmission problems and explain the main

features. Then we present the Monge-Ampère equation and discuss two dif-

ferent nonlocal versions. Finally, we provide an outline describing the several

problems we studied.

1.1 Transmission problems

Transmission problems describe phenomena in which a physical quan-

tity changes behavior across some surface, known as the interface. Historically,

the study of these types of problems started in the 1950s, with the pioneering

work of M. Picone in elasticity theory [49]. Further significant contributions

to Picone’s problem were made by J. L. Lions [39], G. Stampacchia [61] and

S. Campanato [18]. In 1960, M. Schechter generalized the problem of transmis-
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sion for elliptic equations with smooth coefficients and interfaces [54]. Other

variations, such as the so-called diffraction problems in the theory of discontin-

uous coefficients, were given by O. A. Ladyzhenskaya and N. N. Ural’tseva [33],

O. A. Oleinik [47], and M. V. Borsuk [6], among others. See [5] for a detailed

exposition on classical transmission problems. Since then, many mathemati-

cians have been interested in studying these problems due to their wide range of

applications in different areas of science. For instance, they appear in electro-

magnetic processes, composite materials in solid mechanics, vibrating folded

membranes, etc. For more recent developments, see [20, 31, 35, 36, 43] and the

references therein.

Mathematically, a simple model may be described as follows: let Ω be

a bounded domain in Rn divided into two subdomains, Ω1 and Ω2, by some

surface Γ (the interface). On each subdomain, we prescribe some PDE and

call u1 and u2 the solutions, respectively. For the problem to be well-posed, we

need to determine some compatibility conditions on Γ. These are known as the

transmission conditions, and they describe how both u1 and u2 interact with

each other from each side of the interface. For example, typical transmission

conditions include, (u1)ν−(u2)ν = 1 or (u1)ν = 2(u2)ν , where (ui)ν denotes the

normal derivative of ui. Both equations prescribe a jump between the normal

derivatives of u1 and u2, so we expect solutions to be singular on Γ. Therefore,

the primary interest is to study the regularity of solutions near the interface.

Transmission problems can be understood as two (or more) boundary

value problems that have been attached via the transmission conditions. In
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general, it is not possible to decouple the problems, and thus, their study

becomes more challenging. In contrast to free boundary problems, classical

transmission problems deal with a fixed interface (i.e., Γ is known a priori). It

is worth mentioning that several works in the literature consider the so-called

free transmission problems, where Γ is a free boundary, in the sense that it

depends on the solution itself. For instance, see [1, 25, 29,50,51].

In this dissertation, we consider three transmission problems with dif-

ferent flavors, including linear and nonlinear equations, and flat and nonflat

interfaces. One of our principal features is the minimal regularity of the inter-

face. We will explain them in more detail in Section 1.3.

1.2 Nonlocal Monge-Ampère equations

The Monge-Ampère equation arises in several problems in analysis,

such as the Monge–Kantorovich optimal mass transportation problem, and in

geometry, such as the prescribed Gaussian curvature problem. The classical

equation prescribes the determinant of the Hessian of some convex function u

in a given domain Ω. Namely,

det(D2u) = f in Ω.

This is a nonlinear second order elliptic equation that degenerates whenever

the Hessian of u equals 0. There are many works that study the theory of this

equation and its variations. The books by Gutiérrez [28] and Figalli [24] give

a detailed description of the main results and techniques.
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On the other hand, in the recent years, there has been significant inter-

est in studying nonlocal diffusion equations. These equations arise in the study

of diffusion processes with long-range interactions such as Lévy processes, in

probability, or particles jumping through random media, in fluid dynamics. A

classical nonlocal operator is the fractional Laplacian, given by

∆su(x) = cn,s PV

ˆ
Rn

u(x+ y)− u(x)

|y|n+2s
dy.

The term nonlocal is motivated by the fact that the value of ∆su at the point

x depends on all the values of u in Rn, and the term fractional has to do with

the order of the operator, 2s, with 0 < s < 1. For instance, this can be seen

using the Fourier transform or a scaling argument. Furthermore, cn,s ≈ 1− s

and ∆s → ∆, as s→ 1. Hence, ∆s is a fractional analog of ∆. The integral is

understood in the principal value sense to be able to cancel out the singularity

from the kernel, |y|−n−2s. Note that this requires some differentiability for the

function u. Hence, the fractional Laplacian is a particular case of an integro-

differential operator, where the latter considers more general kernels.

In the literature, there are different nonlocal versions of the Monge-

Ampère operator that N. Guillen and R. W. Schwab [27], L. Caffarelli and

F. Charro [8], and L. Caffarelli and L. Silvestre [13] have considered. See also

[42] for a nonlocal linearized Monge-Ampère equation given by D. Maldonado

and P. R. Stinga. These definitions are motivated by the following linear

algebra extremal property: if B is a positive definite symmetric matrix, then

n det(B)1/n = inf
A∈A

tr(ATBA),
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where A = {A ∈ Mn : A > 0, det(A) = 1} and Mn is the set of n × n

matrices. If a convex function u is C2 at a point x0, then by the previous

identity with B = D2u(x0), we may write the Monge-Ampère operator as a

concave envelope of linear operators. It follows that

n det(D2u(x0))
1/n = inf

A∈A
∆[u ◦ A](A−1x0).

L. Caffarelli and F. Charro study a fractional version of det(D2u)1/n, replacing

the Laplacian by the fractional Laplacian in the previous identity (see also

[27]). More precisely,

Dsu(x0) = inf
A∈A

∆s[u ◦ A](A−1x0),

or equivalently, using the integral representation,

Dsu(x0) = cn,s inf
A∈A

PV

ˆ
Rn

u(x0 + x)− u(x0)

|A−1x|n+2s
dx.

A different approach based on geometric considerations was given by L. Caf-

farelli and L. Silvestre. In fact, the authors consider kernels whose level sets are

volume preserving transformations of the fractional Laplacian kernel. Namely,

MAs u(x0) = cn,s inf
K∈Ks

n

ˆ
Rn

(u(x0 + x)− u(x0)− x · ∇u(x0))K(x) dx,

where the infimum is taken over the family

Ks
n =

{
K : Rn → R+ : |{x ∈ Rn : K(x) > r−n−2s}| = |Br|, ∀ r > 0

}
.

Notice that |A−1x|−n−2s ∈ Ks
n, for any A ∈ A. Therefore,

MAs u(x0) ≤ Dsu(x0) ≤ ∆su(x0).
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We point out that, at the nonlocal level, the operators Ds and MAs are not

equivalent. However, when we pass to the limit as s → 1, both MAs u and

Dsu converge to det(D2u)1/n, up to some constant.

In the last chapter of this dissertation, we will discuss a nonlocal prob-

lem related to the Monge-Ampère equation. The problem is motivated by the

previous construction and the fact that there is a gap between the nonlocal

Monge-Ampère operator and the fractional Laplacian. Our goal is to find a

reasonable family of intermediate operators that will somehow link them.

1.3 Outline

This manuscript is organized as follows. In Chapter 2, we study a trans-

mission problem for harmonic functions, which is motivated by the pioneering

work of Schechter for smooth domains [54]. One of our main novelties is that

the transmission interface has only C1,α regularity. This minimal regularity

assumption makes the problem nontrivial and challenging. For instance, to

prove regularity of solutions up to the interface, the classical Schauder ap-

proach of flattening the boundary is not available. Integrating by parts, we

reduce the transmission problem to a distributional Poisson equation, where

the right-hand side is a measure supported on the interface. We prove exis-

tence and uniqueness of continuous solutions using techniques from potential

theory. Then we prove optimal regularity up to the interface via a pertur-

bation method. For this, we build up a new fine geometric argument based

on the mean value property and the maximum principle. This is joint work
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with L. Caffarelli and P. R. Stinga, published in Arch. Ration. Mech. Anal.

(2021), see [17].

Chapters 3 and 4 consider transmission problems for second order fully

nonlinear equations with flat and nonflat interfaces, respectively. The theory

of fully nonlinear equations started around the 1980s, and nowadays it is a

hot research topic with many open problems. The notion of solution for these

equations is understood in the viscosity sense. This concept was introduced

by M. G. Crandall and P. L. Lions for Hamilton-Jacobi equations [22], and

was generalized later on to second order fully nonlinear operators [21]. In

this work, in contrast to the problems introduced in Chapter 2, we allow the

operators from each side of the interface to be different, as well as having

nontrivial right-hand sides. These features, especially the nonlinear character

of the equations, give rise to new difficulties. For example, we cannot use

variational techniques or tools such as Green’s functions and representation

formulas. This is joint work with P. R. Stinga that will soon be submitted for

publication [60].

First, we study the flat interface case, that is, the case where the in-

terface is a hyperplane. These problems are in the same spirit as the ones

introduced by D. De Silva, F. Ferrari, and S. Salsa in [58]. Problems with

flat boundaries are relatively easier to understand, and one can extend many

ideas to more general domains. Furthermore, they play a fundamental role

in the regularity theory of nonflat problems that we will consider in Chap-

ter 4. One of our main results is the existence and uniqueness of viscosity
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solutions to flat interface transmission problems with prescribed boundary

values. We point out that this problem was left open in [58]. To prove it, we

follow the usual greatest subsolution approach, also known as Perron’s method.

The most challenging step is to show the comparison principle. This is pos-

sible thanks to a new maximum principle for these problems, also called the

Alexandroff-Bakelman-Pucci estimate (ABP estimate). Our ideas are inspired

by the remarkable book of L. Caffarelli and X. Cabré [15].

Second, we consider C1,α interfaces. Our strategy builds on similar

ideas as the ones given in Chapter 2 for the Laplace equation. In the linear

case, one important ingredient is the Hölder continuity of solutions across the

interface, which we obtain thanks to classical estimates for the Green’s func-

tion for the Laplacian. For the fully nonlinear problem, we can also get a

similar result using nonlinear techniques such as the construction of appropri-

ate barriers and comparison principles. To obtain optimal regularity results

at the interface, we require an additional closeness assumption between the

operators since they may be different on each side of the interface. This con-

dition is analogous to asking that the coefficients are sufficiently close, in the

case of linear operators. Then following a perturbation argument and using

flat interface problems, we are able to prove that viscosity solutions are C1,α

up to the interface.

In Chapter 5, we introduce a new family of intermediate operators

between the fractional Laplacian and the nonlocal Monge-Ampère operator,

studied by L. Caffarelli and L. Silvestre in [13]. Our operators are also given

8



by infimums of integro-differential operators over a family of kernels satisfy-

ing specific geometric properties. One of the main challenges in their study is

that they are not rotationally invariant, due to our construction of the kernels.

This is in contrast to the nonlocal Monge-Ampère operator, where the level

sets of the kernels are volume preserving transformations of balls in Rn (see

Section 1.2). Using symmetrization techniques, we obtain representation for-

mulas and give a connection to optimal transport. Furthermore, we consider

a global Poisson problem, prescribing data at infinity, and prove existence,

uniqueness, and C1,1 regularity of solutions in the full space. This is joint

work with L. Caffarelli that has been submitted for publication [16].

9



Chapter 2

Transmission problems for harmonic functions

2.1 Introduction and main results

Let Ω be a smooth, bounded domain of Rn, n ≥ 2. Let Ω1 be a

subdomain of Ω such that Ω1 ⊂⊂ Ω and set Ω2 = Ω \ Ω1. Suppose that the

interface Γ between Ω1 and Ω2, namely, Γ = ∂Ω1, is a C1,α manifold, for some

0 < α < 1. Then Ω = Ω1 ∪ Ω2 ∪ Γ. For a function u : Ω → R we denote

u1 = u
∣∣
Ω1

and u2 = u
∣∣
Ω2
.

We consider the problem of finding a continuous function u : Ω → R such that

∆u1 = 0 in Ω1

∆u2 = 0 in Ω2

u2 = 0 on ∂Ω
u1 = u2 on Γ

(u1)ν − (u2)ν = g on Γ.

(2.1.1)

Here g ∈ C0,α(Γ) and ν is the unit normal vector on Γ that is interior to

Ω1, see Figure 2.1. This is a transmission problem in the spirit of Schechter

in [54], where Γ is the transmission interface. In contrast to our problem, [54]

only deals with Γ ∈ C∞. The last two equations on (2.1.1) are called the

transmission conditions.

10



Ω1

Ω2

Γ

Ω

ν

Figure 2.1: Geometry for the transmission problem (2.1.1).

If in (2.1.1) we set g ≡ 0 then u is a harmonic function in Ω. Therefore,

in order to have a meaningful elliptic transmission condition, we assume that

g(x) ≥ 0 for all x ∈ Γ.

Hence, u will not be differentiable at those points on Γ where g > 0. In turn,

we prove that u is C1,α from each side up to Γ. In (2.1.1) we have also imposed

homogeneous Dirichlet boundary condition on ∂Ω. This is not a restriction

since we can always add to u a harmonic function v in Ω such that v = ϕ on

∂Ω, to make u2 = ϕ on ∂Ω. The one dimensional case is excluded because one

can easily find explicit solutions.

Our main result is the following.

Theorem 2.1.1. There exists a unique classical solution u to the transmission

problem (2.1.1). Moreover, u1 ∈ C1,α(Ω1), u2 ∈ C1,α(Ω2), and there exists

C = C(n, α,Γ) > 0 such that

∥u1∥C1,α(Ω1)
+ ∥u2∥C1,α(Ω2)

≤ C∥g∥C0,α(Γ).

11



The appropriate notion of solution to (2.1.1) comes from computing ∆u

in the sense of distributions. Indeed, if u and Γ were sufficiently smooth and

φ ∈ C∞
c (Ω), then by Green’s identities, recalling that ν is the interior normal

to Ω1, and using that u1 = u2 on Γ, we get

∆u(φ) =

ˆ
Ω

u∆φdx =

ˆ
Ω1

u1∆φdx+

ˆ
Ω2

u2∆φdx

=

ˆ
Ω1

φ∆u1 dx−
ˆ
∂Ω1

(
u1φν − φ(u1)ν

)
dHn−1

+

ˆ
Ω2

φ∆u2 dx+

ˆ
∂Ω2

(
u2φν − φ(u2)ν

)
dHn−1

= −
ˆ
Γ

(
u1φν − φ(u1)ν

)
dHn−1 +

ˆ
Γ

(
u2φν − φ(u2)ν

)
dHn−1

=

ˆ
Γ

(
(u1)ν − (u2)ν

)
φdHn−1 =

ˆ
Γ

gφ dHn−1.

Hence, ∆u is a singular measure concentrated on Γ with density g. In Section

2.2 we show that there exists a unique distributional solution u ∈ C0(Ω) to

(2.1.1), where C0(Ω) denotes the space of continuous functions on Ω that

vanish on ∂Ω. Moreover, we prove that u is Log-Lipschitz on Ω, see Theorem

2.2.2. The main issue is the optimal regularity of u up to Γ. Theorem 2.1.1

will be a consequence of our next result.

Theorem 2.1.2 (Pointwise C1,α boundary regularity). Let Γ = {(y′, ψ(y′)) :

y′ ∈ B′
1}, where ψ is a C1,α function, for some 0 < α < 1. Assume that 0 ∈ Γ.

Let u ∈ C(B1) be a distributional solution to the transmission problem

∆u = g dHn−1
∣∣
Γ
,

where g ∈ L∞(Γ), g ≥ 0, and g ∈ C0,α(0). Then there are linear polynomials

12



P (x) = A · x+B, and Q(x) = C · x+B such that

|u1(x)− P (x)| ≤ D|x|1+α for all x ∈ Ω1 ∩B1/2,

|u2(x)−Q(x)| ≤ D|x|1+α for all x ∈ Ω2 ∩B1/2,

with

|A|+ |B|+ |C|+D ≤ C0∥ψ∥C1,α(B′
1)

(
[g]Cα(0) + ∥g∥L∞(Γ)

)
,

and C0 = C0(n, α) > 0.

The key tool to prove Theorem 2.1.2 is a stability result, obtained via

the novel geometric approach we develop, which is based on the mean value

property and the maximum principle, see Theorem 2.4.2. In fact, our idea

is to explicitly construct classical solutions to problems with flat interfaces

that are close to u. With this, we can transfer the regularity from classical

solutions to u. Indeed, as shown in Section 2.3, solutions to flat problems have

the expected optimal regularity up to the interface. More precisely, we show

that if the flatness and oscillation of the interface Γ are controlled, then we

can construct a solution for a flat interface problem, where the flat interface

does not intersect Γ. We also quantify how close solutions must be, depending

only on the geometric properties of Γ and the basic regularity of u. These

ingredients are crucial for the first step in the proof of Theorem 2.1.2, see

Lemma 2.5.1. To close the argument, one needs to use these approximations

at each scale. Through this techniques, and similar to the case of elliptic

equations [14], we are able to find that solutions to flat interface problems are

asymptotically close to solutions to nonflat interface problems.
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Our geometric techniques developed in Section 2.4 are constructive and

quantitative, and provide a precise understanding of the underlying geome-

try of the transmission problem. Furthermore, this work is essentially self-

contained. We believe that the tools presented here could be used in free

boundary problems, an idea we will explore in the future. Finally, notice that

our results are also useful in terms of numerical analysis, as our constructions

give explicit rates of approximation.

The chapter is organized as follows. In Section 2.2, we prove existence,

uniqueness, and global Log-Lipschitz regularity of the solution u to (2.1.1).

Section 2.3 deals with the case when the transmission interface is flat. Our

geometric stability result based on the mean value property is proved in Sec-

tion 4. The proof of Theorems 2.1.2 and 2.1.1 are given in Sections 2.5 and

2.6, respectively. The appendix contains some basic geometric considerations

about integration on Lipschitz domains.

Notation. For a point x ∈ Rn we write x = (x′, xn), where x′ ∈ Rn−1,

xn ∈ R. The gradient in the variables x′ is denoted by ∇′, dHn−1 is the

(n − 1)-dimensional Hausdorff measure in Rn and B′
r(x

′) denotes the ball in

Rn−1 of radius r > 0 centered at x′. When the ball is centered at the origin

x′ = 0′ or x = 0 = (0′, 0), we will just write B′
r or Br.
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2.2 Existence, uniqueness and global Log-Lipschitz reg-
ularity

As we mentioned in the Introduction, the notion of solution to (2.1.1)

comes from computing ∆u in the sense of distributions.

Definition 2.2.1 (Distributional solution). We say that u ∈ C0(Ω) is a dis-

tributional solution to (2.1.1) if for any φ ∈ C∞
c (Ω) we haveˆ

Ω

u∆φdx =

ˆ
Γ

gφ dHn−1.

In this case, we write

∆u = g dHn−1
∣∣
Γ
.

Even though the definition of distributional solution makes sense for u ∈

L1
loc(Ω), we ask u to be continuous up to the boundary so that the boundary

condition u = 0 is well-defined.

Recall that a bounded function u : Ω → R is in the space LogLip(Ω) if

[u]LogLip(Ω) = sup
x,y∈Ω
x ̸=y

|u(x)− u(y)|
|x− y|| log |x− y||

<∞.

Theorem 2.2.2 (Existence, uniqueness, and Log-Lipschitz global regularity).

Let Γ be a Lipschitz interface, and g ∈ L∞(Γ). Then the unique distributional

solution u ∈ C0(Ω) to (2.1.1) is given by

u(x) =

ˆ
Γ

G(x, y)g(y) dHn−1 for x ∈ Ω, (2.2.1)

where G(x, y) is the Green’s function for the Laplacian in Ω. Furthermore,

u ∈ LogLip(Ω) and there exists C = C(n,Γ,Ω) > 0 such that

∥u∥L∞(Ω) + [u]LogLip(Ω) ≤ C∥g∥L∞(Γ).
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Proof. Let u be as in (2.2.1). By using a partition of unity on Γ, it is enough

to assume that Γ = ψ(Rn−1) where ψ : Rn−1 → R is a Lipschitz function and

that g(y′, ψ(y′)) has compact support in B′
1 (see Appendix 2.7). Then, for any

x ∈ Ω, we have that

|u(x)| ≤
ˆ
Γ

|G(x, y)|g(y) dHn−1
y

=

ˆ
B′

1

|G(x, (y′, ψ(y′)))|g(y′, ψ(y′))
√
1 + |∇′ψ(y′)|2 dy′

≤ C(n,Γ)∥g∥L∞(Γ)

ˆ
B′

1

1

|(x′ − y′, xn − ψ(y′))|n−2
dy′

≤ C(n,Γ)∥g∥L∞(Γ)

ˆ
B′

1

1

|x′ − y′|n−2
dy′

≤ C(n,Γ)∥g∥L∞(Γ).

Thus the integral defining u in (2.2.1) is absolutely convergent and u is bounded.

Next, for any φ ∈ C∞
c (Ω), by Fubini’s Theorem and the symmetry

G(x, y) = G(y, x), we get

ˆ
Ω

u(x)∆φ(x) dx =

ˆ
Ω

[ˆ
Γ

G(x, y)g(y) dHn−1

]
∆φ(x) dx

=

ˆ
Γ

g(y)

ˆ
Ω

G(y, x)∆xφ(x) dx dH
n−1

=

ˆ
Γ

g(y)φ(y) dHn−1.

Moreover, since G(x̄, y) = 0 for x̄ ∈ ∂Ω and y ∈ Ω, by dominated convergence

we see that u(x) converges to 0 as x ∈ Ω converges to x̄.

Now we show that u ∈ LogLip(Ω). Since u is harmonic in Ω \ Γ, we

only need to prove the regularity of u near Γ. Suppose that x1, x2 ∈ K, where

16



K ⊂ Ω is a compact set containing Γ. Let 0 < d << 1. If |x1 − x2| ≥ d then

|u(x1)− u(x2)| ≤
2∥u∥L∞(Ω)

d
d ≤ C|x1 − x2|.

Assume next that |x1 − x2| = δ < d. If n ≥ 3 then, since B2δ(x1) ⊂ B4δ(x2),

by classical estimates for the Green’s function,

|u(x1)− u(x2)| ≤
ˆ
Γ

|G(x1, y)−G(x2, y)||g(y)| dHn−1

≤ Cn,K∥g∥L∞(Γ)

[ ˆ
B2δ(x1)∩Γ

1

|x1 − y|n−2
dHn−1

+

ˆ
B4δ(x2)∩Γ

1

|x2 − y|n−2
dHn−1 +

ˆ
Γ\(B2δ(x1)∩Γ)

|x1 − x2|
|x1 − y|n−1

dHn−1

]
≤ Cn,K,Γ∥g∥L∞(Γ)

[ˆ
B′

2δ(x
′
1)

1

|x′1 − y′|n−2
dy′ +

ˆ
B′

4δ(x
′
2)

1

|x′2 − y′|n−2
dy′

+ |x1 − x2|
ˆ
B′

1\B′
2δ(x

′
1)

1

|x′1 − y′|n−1
dy′

]
≤ Cn,K,Γ∥g∥L∞(Γ)

(
|x1 − x2|+ |x1 − x2|| log |x1 − x2||

)
.

The estimate in dimension n = 2 follows the same lines.

For uniqueness, if u, v ∈ C0(Ω) are distributional solutions then

ˆ
Ω

(u− v)∆φdx = 0 for every φ ∈ C∞
c (Ω).

Hence, u− v ∈ C0(Ω) is harmonic in Ω and, as a consequence, u ≡ v.

Remark 2.2.3. Note that if u ∈ LogLip(Ω) then u ∈ C0,γ(Ω) for every

0 < γ < 1 and there exists C = C(Ω, γ) > 0 such that

[u]C0,γ(Ω) ≤ C[u]LogLip(Ω).
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2.3 Flat interface problems

For the next results, we fix the following notation. For a ∈ R we denote

Br,a = Br(0
′, a)

B+
r,a = Br(0

′, a) ∩ {xn > a}

B−
r,a = Br(0

′, a) ∩ {xn < a}

Tr,a = {x ∈ Br(0
′, a) : xn = a}

Ta = B1 ∩ {xn = a}

T+
a = {xn ≥ a}

T−
a = {xn ≤ a}.

When a = 0, we use the simplified notation T = T0 and B±
r = B±

r,0.

Theorem 2.3.1 (Flat problem). Let r > 0 and a ∈ R. Given 0 < α, γ < 1,

let g ∈ C0,α(Tr,a) and f ∈ C0,γ(∂Br,a). Then there exists a unique solution

v ∈ C∞(Br,a \ Tr,a) ∩ C0,γ(Br,a) to the flat transmission problem{
∆v = g dHn−1

∣∣
Tr,a

in Br,a

v = f on ∂Br,a

that satisfies the global estimate

∥v∥C0,γ(Br,a)
≤ C

(
∥g∥C0,α(Tr,a) + ∥f∥C0,γ(∂Br,a)

)
,

where C = C(n, α, γ, r) > 0. Moreover, if we let v± = vχ
B±

r,a
, then v± ∈

C1,α(B±
r/2,a) and

∥v±∥
C1,α(B±

r/2,a
)
≤ C

(
∥g∥C0,α(Tr,a) + ∥f∥L∞(∂Br,a)

)
,
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where C = C(n, α, r) > 0. If g ∈ Ck−1,α(Tr,a), k ≥ 1, then v ∈ Ck,α(B±
r/2,a)

and

∥v±∥
Ck,α(B±

r/2,a
)
≤ C

(
∥g∥Ck−1,α(Tr,a) + ∥f∥L∞(∂Br,a)

)
,

where C = C(n, α, r, k) > 0.

Proof. By subtracting from v the harmonic function h in Br,a that coincides

with f on ∂Br,a, it is enough to assume that f = 0 on ∂Br,a. We consider only

the case k = 1, that is, g ∈ C0,α(Tr,a). When k ≥ 1 the proof is completely

analogous. Moreover, it is sufficient to prove the result for a = 0 and r = 1.

Indeed suppose that g is as in the statement, and let g̃ be defined on T , so

that

g(x′, xn) = r−1g̃
(
r−1x′, r−1(xn − a)

)
,

whenever x ∈ Tr,a. If ṽ is the corresponding solution in B1, then

v(x′, xn) = ṽ
(
r−1x′, r−1(xn − a)

)
for x ∈ Br,a

is the unique solution to ∆v = g dHn−1
∣∣
Tr,a

such that v = 0 on ∂Br,a. More-

over, we have the following control of the norms:

∥v±∥
C1,α(B±

r/2,a
)
= ∥ṽ±∥

L∞(B±
1/2

)
+ r−1∥∇ṽ±∥

L∞(B±
1/2

)
+ r−(1+α)[∇ṽ±]

C0,α(B±
1/2

)

≤ max{1, r−1, r−(1+α)}∥ṽ±∥
C1,α(B±

1/2
)

≤ Cmax{1, r−1, r−(1+α)}∥g̃∥C0,α(T )

≤ Cmax{1, r−1, r−(1+α)}
(
r∥g∥L∞(Tr,a) + r1+α[g]C0,α(Tr,a)

)
≤ C∥g∥C0,α(Tr,a),
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and, similarly,

∥v∥C0,γ(Br,a)
≤ C∥g∥C0,α(Tr,a),

where C > 0 is as in the statement.

Let v+ be the solution to the mixed boundary value problem
∆v+ = 0 in B+

1

v+ = 0 on ∂B+
1 \ T

v+xn = g/2 on T.

By classical elliptic regularity, v+ ∈ C∞(B+
1 ) ∩ C1,α(B+

1/2) and

∥v+∥
C1,α(B+

1/2
)
≤ C0∥g∥C0,α(T ),

for some C0 = C0(n) > 0. Furthermore, v+ ∈ C0,γ(B+
1 ). Indeed, consider the

solution w to 
∆w = 0 in B+

2

w = 0 on ∂B+
2 \ T2,0

wxn = g̃/2 on T2,0,

where g̃ = g on T with ∥g̃∥C0,α(T2,0) ≤ C̃∥g∥C0,α(T ), for some constant C̃ > 0.

Then w ∈ C∞(B+
2 ) ∩ C1,α(B+

1 ) with

∥w∥
C1,α(B+

1 )
≤ C1∥g̃∥C0,α(T2,0) ≤ C1C̃∥g∥C0,α(T ),

where C1 = C1(n). Define u(x) = v+(x)− w(x), for x ∈ B1, and consider the

even reflection extension of u to B1 given by ũ(x′, xn) = u(x′, |xn|). It follows

that ũ is harmonic in B1 and ũ = −w̃ on ∂B1, where w̃ is the even reflection

of w to B1. Since w̃ ∈ Lip(B1), by using the Poisson kernel in B1 (see [26]), it

can be checked that

∥ũ∥C0,γ(B1)
≤ C∥w̃∥C0,γ(∂B1) ≤ C∥g∥C0,α(T ),
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where C = C(n, α, γ) > 0. Therefore, v+ ∈ C0,γ(B+
1 ), with the corresponding

estimate for ∥v+∥
C0,γ(B+

1 )
as in the statement. Next, the function v−(x′, xn) =

v+(x′,−xn) solves 
∆v− = 0 in B−

1

v− = 0 on ∂B−
1 \ T

v−xn = −g/2 on T,

and v− ∈ C∞(B−
1 )∩C1,α(B−

1/2)∩C0,γ(B−
1 ). It follows that v = v+χ

B+
1

+v−χ
B−

1

is the unique distributional solution to ∆v = g dHn−1
∣∣
T

such that v = 0 on

∂B1. Furthermore, v ∈ C∞(B1 \ T ) ∩ C0,γ(B1) and v± ∈ C1,α(B±
1/2) with

∥v∥C0,γ(B1)
≤ C(n, α, γ)∥g∥C0,α(T )

and

∥v±∥
C1,α(B±

1/2
)
≤ C(n, α)∥g∥C0,α(T ).

Corollary 2.3.2. Given |a| < 1/4, c0 > 0, and f ∈ C0,γ(∂B1), with 0 < γ <

1, there exists a unique solution v ∈ C∞(B1 \ Ta) ∩ C0,γ(B1) to{
∆v = c0 dH

n−1|Ta in B1

v = f on ∂B1

such that

∥v∥C0,γ(B1)
≤ C

(
c0 + ∥f∥C0,γ(∂B1)

)
,

where C = C(n, γ) > 0 and, for any k ≥ 1,

∥v±∥Ck,α(B1/2∩T±
a ) ≤ C

(
c0 + ∥f∥L∞(∂B1)

)
,

where C = C(n, α, k) > 0.
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Proof. The global C0,γ estimate follows immediately from Theorem 2.3.1 with

g = c0. Hence, we only need to show the Ck,α estimate. Fix k ≥ 1. By Theo-

rem 2.3.1 with r = 4, there is a unique solution w ∈ C∞(B4,a\T4,a)∩C0,γ(B4,a)

to ∆w = c0 dH
n−1

∣∣
T4,a

such that w = 0 on ∂B4,a. Moreover, ∥w±∥
Ck,α(B±

2,a)
≤

Cc0, for some C = C(n, α, k) > 0. Let h be the harmonic function in B1 such

that h = w − f on ∂B1. Then h ∈ C∞(B1) ∩ C0,γ(B1), and

∥h∥Ck,α(B1/2)
≤ C

(
∥w∥L∞(∂B1) + ∥f∥L∞(∂B1)

)
≤ C

(
c0 + ∥f∥L∞(∂B1)

)
,

where C = C(n, α, k) > 0. Define v = w − h on B1. Then v is the unique

solution to ∆v = g dHn−1|Ta with v = f on ∂B1. Moreover,

∥v±∥Ck,α(B1/2∩T±
a ) ≤ ∥w±∥

Ck,α(B±
2,a)

+ ∥h∥Ck,α(B1/2)
≤ C

(
c0 + ∥f∥L∞(∂B1)

)
,

since B1/2 ∩ T±
a ⊂ B±

2,a.

2.4 The stability result

In this section we prove our stability result, Theorem 2.4.2. As we

mentioned at the beginning, our argument is based on the mean value property

and, therefore, it is self-contained.

Fix ε > 0, and define the sets

Ωε = {x ∈ Ω : d(x, ∂Ω) > ε} and Γε = {x ∈ Ω : d(x,Γ) < ε}.

Consider the average function:

uε(x) =
1

|Bε|

ˆ
Bε(x)

u(y) dy for x ∈ Ωε.
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Proposition 2.4.1 (Properties of averages). Let u be the distributional solu-

tion given in Theorem 2.2.2. The following properties hold:

(i) If Bε(x) ∩ Γ = ∅, then uε(x) = u(x).

(ii) uε → u uniformly in compact subsets of Ω, as ε→ 0.

(iii) If g ∈ L∞(Γ), then gε ∈ Cc(Γε), where

gε(x) =
1

|Bε|

ˆ
Γ∩Bε(x)

g(y) dHn−1 for x ∈ Γε.

Moreover, ∆uε(x) = gε(x) for any x ∈ Ωε.

Proof. Since u is harmonic outside of Γ, (i) is immediate by the mean value

property.

For (ii), recall by Remark 2.2.3 that u ∈ C0,γ(Ω). Therefore,

|uε(x)− u(x)| ≤ 1

|Bε|

ˆ
Bε(x)

|u(y)− u(x)| dy ≤ C∥g∥L∞(Γ)ε
γ → 0,

as ε→ 0.

We now show (iii). If g ∈ L∞(Γ), then by dominated convergence,

gε ∈ Cc(Γε). Moreover, for any φ ∈ C∞
c (Ω), we have
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(∆uε)(φ) =

ˆ
Ω

uε(x)∆φ(x) dx

=
1

|Bε|

ˆ
Bε

ˆ
Ω

u(x+ y)∆φ(x) dx dy

=
1

|Bε|

ˆ
Bε

ˆ
Ω

u(z)∆φ(z − y) dz dy

=
1

|Bε|

ˆ
Bε

ˆ
Γ

g(z)φ(z − y) dHn−1
z dy

=
1

|Bε|

ˆ
Γ

[ˆ
Bε

φ(z − y) dy

]
g(z) dHn−1

z

=
1

|Bε|

ˆ
Γ

[ˆ
Ω

χBε(z − y)φ(y) dy

]
g(z) dHn−1

z

=
1

|Bε|

ˆ
Ω

ˆ
Γ

χBε(z − y) g(z) dHn−1
z φ(y) dy

=

ˆ
Ω

[
1

|Bε|

ˆ
Γ∩Bε(y)

g(z) dHn−1
z

]
φ(y) dy =

ˆ
Ω

gε(y)φ(y) dy.

Theorem 2.4.2 (Stability). Let 0 < ε, θ < 1/2 and 0 < δ, γ < 1 be given, and

let Γ = {(y′, ψ(y′)) : y′ ∈ B′
1}, where ψ is a Lipschitz function. Assume that Γ

is θε-flat in B1, in the sense that

Γ ⊂ {x ∈ B1 : |xn| < θε},

and that Γ is also ε-horizontal in B1, that is,

1− ε ≤ ν(x) · (0′, 1) =
(
1 + |∇′ψ(x′)|2

)−1/2 ≤ 1,

for every x ∈ Γ, where ν(x) denotes the upward pointing normal on Γ. Then

there exists C = C(n, γ) > 0 such that for any u ∈ C(B1) and g ∈ L∞(Γ)

24



satisfying 
∆u = g dHn−1

∣∣
Γ

in B1

|u| ≤ 1 in B1

|g − 1| ≤ δ on Γ,

the classical solution v ∈ C∞(B3/4 \ T−θε) ∩ C0,γ(B3/4) to the flat problem{
∆v = dHn−1

∣∣
T−θε

in B3/4

v = u on ∂B3/4

satisfies

|u− v| ≤ C(θ + δ + εγ) in B1/2.

Remark 2.4.3. The interface for the flat problem in Theorem 2.4.2 is T−θε =

B3/4 ∩ {xn = −θε}, which lies below Γ in the xn-direction. To approximate

u with the solution to a flat problem where the interface lies above Γ in the

xn-direction, it is enough to consider the classical solution v to{
∆v = dHn−1

∣∣
Tθε

in B3/4

v = u on ∂B3/4.

In this case, the same conclusion as in Theorem 2.4.2 holds.

Before we give the proof, we need the following geometric result.

Lemma 2.4.4. Let Γ be as in Theorem 2.4.2. Define M = 1 + 2θ and let

x ∈ B3/4−Mε be such that dist(x,Γ) < ε. Then

{y′ : (y′, ψ(y′)) ∈ Bε(x)} ⊂ B′
((Mε)2−(xn+θε)2)1/2

(x′)

= {y′ : (y′,−θε) ∈ BMε(x)} (2.4.1)
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and

{y′ : (y′, ψ(y′)) ∈ BMε(x)} ⊃ B′
(ε2−(xn+θε)2)1/2

(x′)

= {y′ : (y′,−θε) ∈ Bε(x)}. (2.4.2)

We illustrate this result in Figure 2.2.

x

0

Bε(x)

BMε(x)

Γ
−θε

θε

Figure 2.2: The red set is {y′ : (y′,−θε) ∈ BMε(x)}\{y′ : (y′, ψ(y′)) ∈ Bε(x)}.

Proof. If x is as in the statement then, by the flatness condition on Γ, we have

|xn| < (1+ θ)ε. Let us prove (2.4.1). Suppose first that −θε < xn < θε. Then

{y′ : (y′, ψ(y′)) ∈ Bε(x)} ⊂ {y′ : (y′, xn) ∈ Bε(x)} = B′
ε(x

′).

Since

(Mε)2 − (xn + θε)2 = (1 + 2θ)2ε2 − (xn + θε)2

≥ (1 + 4θ + 4θ2)ε2 − (2θε)2 = ε2 + 4θε2 > ε2,
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we see that B′
ε(x

′) ⊂ B′
((Mε)2−(xn+θε)2)1/2

(x′), and the conclusion follows. As-

sume now that θε ≤ xn < (1 + θ)ε. Notice that

{y′ : (y′, ψ(y′)) ∈ Bε(x)} ⊂ {y′ : (y′, θε) ∈ Bε(x)} = B′
(ε2−(xn−θε)2)1/2(x

′).

Since

(Mε)2−(xn + θε)2 − (ε2 − (xn − θε)2)

= (1 + 2θ)2ε2 − (x2n + 2θεxn + (θε)2)− ε2 + (x2n − 2θεxn + (θε)2)

= 4θε2 + 4θ2ε2 − 4θεxn ≥ 4θε2 ≥ 0,

we find that B′
(ε2−(xn−θε)2)1/2(x

′) ⊂ B′
((Mε)2−(xn+θε)2)1/2

(x′), as desired. The last

case is when −(1 + θ)ε < xn ≤ −θε. Here it is clear that, since M > 1,

{y′ : (y′, ψ(y′)) ∈ Bε(x)} ⊂ {y′ : (y′,−θε) ∈ Bε(x)}

= B′
(ε2−(xn+θε)2)1/2

(x′)

⊂ B′
((Mε)2−(xn+θε)2)1/2

(x′).

This concludes the proof of (2.4.1).

For (2.4.2), notice that if xn ≥ (1 − θ)ε, then the inclusion follows as

{y′ : (y′,−θε) ∈ Bε(x)} = ∅. We therefore assume that −(1 + θ)ε < xn <

(1− θ)ε. If xn ≥ −θε, then

{y′ : (y′, ψ(y′)) ∈ BMε(x))} ⊃ {y′ : (y′,−θε) ∈ BMε(x)}

= B′
((Mε)2−(xn+θε)2)1/2

(x′)

⊃ B′
(ε2−(xn+θε)2)1/2

(x′)
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because M > 1. If −(1 + θ)ε < xn < −θε, then

{y′ : (y′, ψ(y′)) ∈ BMε(x))} ⊃ {y′ : (y′, θε) ∈ BMε(x)}

= B′
((Mε)2−(xn−θε)2)1/2(x

′)

and

(Mε)2 − (xn − θε)2 − (ε2 − (xn + θε)2)

= (1 + 2θ)2ε2 − (x2n − 2θεxn + (θε)2)− ε2 + (x2n + 2θεxn + (θε)2)

= 4θε2 + 4θ2ε2 + 4θεxn ≥ 0.

Therefore,

B′
((Mε)2−(xn−θε)2)1/2(x

′) ⊃ B′
(ε2−(xn+θε)2)1/2

(x′),

and we conclude that (2.4.2) holds.

Proof of Theorem 2.4.2. Let M = 1 + 2θ > 1. By Corollary 2.3.2 with a =

−θε, c0 =Mn(1+δ)(1−ε)−1 and B3/4 in place of B1, there is a unique classical

solution w to the flat transmission problem{
∆w =Mn(1 + δ)(1− ε)−1 dHn−1

∣∣
T−θε

in B3/4

w = u on ∂B3/4.

Moreover, by subtracting the harmonic function h in B1 such that h = u on

∂B1 and applying similar arguments as in the proof of Theorem 2.2.2, it can

be seen that u ∈ C0,γ(B3/4) with

∥u∥C0,γ(B3/4)
≤ C(n, γ,Γ)(∥u∥L∞(B1) + ∥g∥L∞(Γ)) ≤ C,
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where C = C(n, γ) > 0 because Γ is ε-horizontal, ∥u∥L∞(B1) ≤ 1, and ∥g −

1∥L∞(Γ) ≤ δ. Hence, by Corollary 2.3.2 with B3/4 in place of B1, w ∈ C∞(B3/4\

T−θε) ∩ C0,γ(B3/4) with

∥w∥C0,γ(B3/4)
≤ C(n, γ)(c0 + ∥u∥C0,γ(B3/4)

) ≤ C,

where C = C(n, γ) > 0.

Define the averages

uε(x) =
1

|Bε|

ˆ
Bε(x)

u(y) dy for x ∈ B3/4−ε ⊂ B3/4

and

wMε(x) =
1

|BMε|

ˆ
BMε(x)

w(y) dy for x ∈ B3/4−Mε ⊂ B3/4.

By Proposition 2.4.1(iii), ∆uε(x) = gε(x) for every x ∈ B3/4−ε, and

∆wMε(x) =
1

|BMε|

ˆ
BMε(x)∩T−θε

Mn(1+δ)(1−ε)−1 dHn−1 for x ∈ B3/4−Mε.

In addition, notice that

supp(∆uε) ⊂ {x ∈ B3/4−ε : dist(x,Γ) < ε}

and

supp(∆wMε) ⊂ {x ∈ B3/4−Mε : |xn| < Mε}.

Since Γ is θε-flat in B1 and M = 1 + 2θ it follows that

supp(∆uε) ⊂ supp(∆wMε).

Let us first show that

∆wMε ≥ ∆uε in B3/4−Mε.
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If x /∈ supp(gε) there is nothing to prove because ∆wMε ≥ 0 in B3/4−Mε. Let

us then take x ∈ B3/4−Mε such that dist(x,Γ) < ε. Using that 0 < g ≤ 1 + δ,

Γ is ε-horizontal and (2.4.1) in Lemma 2.4.4, we get

∆wMε(x) =
1

Mn|Bε|

ˆ
BMε(x)∩T−θε

Mn(1 + δ)(1− ε)−1 dHn−1

≥ 1

|Bε|

ˆ
{y′:(y′,−θε)∈BMε(x)}

g(y′, ψ(y′))
√

1 + |∇′ψ(y′)|2 dy′

≥ 1

|Bε|

ˆ
{y′:(y′,ψ(y′))∈Bε(x)}

g(y′, ψ(y′))
√
1 + |∇′ψ(y′)|2 dy′

=
1

|Bε|

ˆ
Bε(x)∩Γ

g dHn−1 = ∆uε(x).

We also have

wMε ≤ uε + Cεγ on ∂B3/4−Mε,

for some C = C(n, γ) > 0. Indeed, fix any x ∈ ∂B3/4−Mε, and let z ∈ ∂B3/4

be such that dist(x, ∂B3/4) = |x − z| = Mε. By using that w, u ∈ C0,γ(B3/4)

and w = u on ∂B3/4,

wMε(x)− uε(x) = (wMε(x)− w(x)) + (w(x)− w(z))

+ (u(z)− u(x)) + (u(x)− uε(x))

≤ 1

|BMε|

ˆ
BMε(x)

|w(y)− w(x)| dy

+
(
[w]C0,γ(B3/4)

+ [u]C0,γ(B3/4)

)
|x− z|γ

+
1

|Bε|

ˆ
Bε(x)

|u(y)− u(x)| dy ≤ Cεγ,

(2.4.3)

where C = C(n, γ) > 0. Hence, by the maximum principle, wMε − uε ≤ Cεγ

in B3/4−Mε. Consequently, by arguing similarly as in (2.4.3), it follows that,
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for some C = C(n, γ) > 0,

w − u ≤ Cεγ in B3/4−Mε. (2.4.4)

Secondly, consider the classical solution w̄ to the flat transmission problem{
∆w̄ =M−n(1− δ) dHn−1

∣∣
T−θε

in B3/4

w̄ = u on ∂B3/4,

and the corresponding averages w̄ε and uMε of w̄ and u, respectively. Since

g ≥ 1− δ, by (2.4.2) in Lemma 2.4.4 we find that

∆w̄ε(x) =
1

|Bε|

ˆ
Bε(x)∩T−θε

M−n(1− δ) dHn−1

≤ 1

|BMε|

ˆ
{y′:(y′,−θε)∈Bε(x)}

g(y′, ψ(y′))
√
1 + |∇′ψ(y′)|2 dy′

≤ 1

|BMε|

ˆ
{y′:(y′,ψ(y′))∈BMε(x)}

g(y′, ψ(y′))
√
1 + |∇′ψ(y′)|2 dy′

=
1

|BMε|

ˆ
BMε(x)∩Γ

g dHn−1 = ∆uMε(x).

By using parallel arguments to those in (2.4.3) we also get that

u− w̄ ≤ Cεγ in B3/4−Mε. (2.4.5)

for some C = C(n, γ) > 0. Define w = w+w̄
2
. By (2.4.4) and (2.4.5),

u− w ≤ w̄ + Cεγ − w + w̄

2
=
w̄ − w

2
+ Cεγ

and

u− w ≤ w − Cεγ − w + w̄

2
=
w − w̄

2
− Cεγ.

Hence,

∥u− w∥L∞(B1/2) ≤
1

2
∥w̄ − w∥L∞(B1/2) + Cεγ,
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where C = C(n, γ) > 0. Since{
∆(w̄ − w) = [M−n(1− δ)−Mn(1 + δ)(1− ε)−1] dHn−1

∣∣
T−θε

in B3/4

w̄ − w = 0 on ∂B3/4,

by Theorem 2.3.1,

∥w̄ − w∥L∞(B1/2) ≤ C|Mn(1 + δ)(1− ε)−1 −M−n(1− δ)| ≤ C(θ + δ + ε),

for some C = C(n) > 0. Therefore,

∥u− w∥L∞(B1/2) ≤ C(θ + δ + εγ) (2.4.6)

for some C = C(n, γ) > 0. Also, ∆w = (1 + η) dHn−1
∣∣
T−θε

, where

1 + η =
Mn(1 + δ)(1− ε)−1 +M−n(1− δ)

2
.

Observe that, since 0 < θ, ε < 1/2, 0 < δ < 1, it follows that

|η| = |M2n(1 + δ) + (1− δ)(1− ε)− 2(1− ε)Mn|
2(1− ε)Mn

≤ C
(
|(1 + 2θ)2n + 1− 2(1 + 2θ)n|+ δ + ε

)
≤ C(θ + δ + ε),

(2.4.7)

where C = C(n) > 0.

Let v ∈ C∞(B3/4 \ T−θε) ∩ C0,γ(B3/4) be the solution to{
∆v = dHn−1

∣∣
T−θε

in B3/4

v = u on ∂B3/4

(see Corollary 2.3.2). Then v − w solves{
∆(v − w) = η dHn−1

∣∣
T−θε

in B3/4

v − w = 0 on ∂B3/4.
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Therefore, by (2.4.7),

∥v − w∥L∞(B3/4) ≤ C|η| ≤ C(θ + δ + ε), (2.4.8)

where C = C(n) > 0. From (2.4.6) and (2.4.8) the estimate on the statement

is proved.

Remark 2.4.5 (Divergence form equations). Recall that our proof of The-

orem 2.4.2 is self-contained, based on the mean value property for harmonic

functions and the maximum principle. In view of recently developed mean

value formulas for solutions to divergence form elliptic equations by Blank–

Hao [4], the natural question of extending our geometric techniques to trans-

mission problems for divergence form elliptic equations arise. For this case,

our maximum principle techniques must be replaced by energy methods. More

importantly, not much is known about the geometry of the mean value sets

from [4], so it is not clear at all how to mimic geometric arguments such as

those in Lemma 2.4.4.

Remark 2.4.6 (Nondivergence form equations). The second natural question

would be to extend our methods to transmission problems with nondivergence

form elliptic equations, where the maximum principle is a more adequate tool.

In this situation, not only there are no useful mean value formulas available,

but also the notion of distributional solution we consider in this work does

not apply anymore. We approach this problem in Chapters 3 and 4, including

more general equations.
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2.5 Pointwise C1,α boundary estimates

Throughout this section, Γ is an interface in B1 given by the graph of

a function xn = ψ(x′) : T → R. Thus, we can write B1 = Ω1 ∪ Γ ∪ Ω2, where

Ω1 = {x = (x′, xn) ∈ B1 : xn > ψ(x′)}. We also assume that 0 ∈ Γ.

2.5.1 Preliminary lemmas

Lemma 2.5.1. Let Γ = {(y′, ψ(y′)) : y′ ∈ B′
1}, where ψ is a Lipschitz function.

Given 0 < α, γ < 1, there exist constants C0 > 0, 0 < λ < 1/2, 0 < θ, δ, ε < λ

depending only on n, α and γ, such that for any u ∈ C(B1) satisfying
∆u = g dHn−1

∣∣
Γ

in B1

|u| ≤ 1 in B1

|g − 1| ≤ δ on Γ,

if Γ is θε-flat and ε-horizontal in B1, then there are linear polynomials P1(x) =

A·x+B and Q1(x) = C·x+B, with A,C ∈ Rn, B ∈ R, and |A|+|B|+|C| ≤ C0,

such that

|u1(x)− P1(x)| ≤ λ1+α for all x ∈ Ω1 ∩Bλ,

|u2(x)−Q1(x)| ≤ λ1+α for all x ∈ Ω2 ∩Bλ.

Moreover, ∇′P1 = ∇′Q1 and (P1)xn − (Q1)xn = 1.

Proof. Fix 0 < θ, δ, ε < λ < 1/2 to be chosen later. Consider the solutions

v = v+χB3/4∩T+
−θε

+ v−χB3/4∩T−
−θε
,

v̄ = v̄+χB3/4∩T+
θε
+ v̄−χB3/4∩T−

θε
,
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to the flat transmission problems given in Theorem 2.4.2, and Remark 2.4.3,

respectively. By Corollary 2.3.2 with k = 2,

∥v+∥C2,α(B1/2∩T+
−θε)

+ ∥v̄−∥C2,α(B1/2∩T−
θε)

≤ C
(
1 + ∥u∥L∞(B1)

)
≤ C0,

for some C0 = C0(n, α) > 0. In particular,

|v(0)|+ |∇v(0)|+ |v̄(0)|+ |∇v̄(0)| ≤ C0.

Let h be the harmonic function in B3/4 such that h = u on ∂B3/4. Define

P1(x) = v(0) +∇v(0) · x+
[
1
2
− vxn(0) + hxn(0)

]
xn,

Q1(x) = v̄(0) +∇v̄(0) · x+
[
− 1

2
− v̄xn(0) + hxn(0)

]
xn.

Then P1 and Q1 are small perturbations of the linear parts of v and v̄ at the

origin, respectively. To see this, first note that the functions v(x′, xn)−h(x′, xn)

and v̄(x′,−xn)−h(x′,−xn) satisfy the same transmission problem on T−θε with

zero data on ∂B3/4. By uniqueness,

v(x′, xn)− h(x′, xn) = v̄(x′,−xn)− h(x′,−xn) for all x ∈ B3/4.

In particular, v(x′, 0) = v̄(x′, 0), ∇′v(x′, 0) = ∇′v̄(x′, 0), and thus, P1(0) =

Q1(0), and ∇′P1 = ∇′v(0) = ∇′v̄(0) = ∇′Q1. Clearly, (P1)xn − (Q1)xn = 1.

Moreover,

vxn(x
′, 0)− hxn(x

′, 0) = −v̄xn(x′, 0) + hxn(x
′, 0),

and thus,
∣∣1
2
− vxn(0) + hxn(0)

∣∣ = ∣∣− 1
2
− v̄xn(0) + hxn(0)

∣∣. Let us show that

∣∣1
2
− vxn(0) + hxn(0)

∣∣ ≤ D(θε)γ, (2.5.1)
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for someD = D(n) > 0. Recall that by the construction of v in Corollary 2.3.2,

we can write v = w − H, where w ∈ C∞(B4,−θε \ T−θε) ∩ C0,γ(B4,−θε) is the

harmonic function in B4,−θε such that w = 0 on ∂B4,−θε, and H is the harmonic

function in B1, with H = w − u on ∂B3/4. Then∣∣1
2
− vxn(0) + hxn(0)

∣∣ ≤ ∣∣wxn(0)− 1
2

∣∣+ |(H + h)xn(0)|.

In particular, wxn(0) = w+
xn(0), where w+ is the harmonic function in B+

4,−θε

such that w = 0 on ∂B+
4,−θε \ T−θε, and w+

xn = 1
2

on T−θε. By the mean value

theorem,

wxn(0)− 1
2
= w+

xn(0
′, 0)− w+

xn(0
′,−θε) = w+

xnxn(0
′, ξ)θε,

for some −θε ≤ ξ ≤ 0. Moreover, by Theorem 2.3.1, ∥w+∥
C2,α(B+

2,−θε)
≤ D0,

for some constant D0 = D0(n) > 0. Hence,

|wxn(0)− 1
2
| ≤ D0θε.

Next, note that H + h is harmonic in B1, and H + h = w on ∂B3/4. Consider

the harmonic function ϕ in B3/4−θε,−θε such that ϕ = w on B3/4−θε,−θε. Observe

that B3/4−θε,−θε ⊂ B3/4. Since w is symmetric with respect to the plane T−θε,

it follows that ϕxn(x′,−θε) = 0 for any (x′,−θε) ∈ B3/4−θε,−θε. Therefore,

|ϕxn(0)| ≤ D0θε. By interior estimates, the maximum principle, and the facts

that w ∈ C0,γ(B3/4) and dist(∂B3/4, ∂B3/4−θε,−θε) ≤ 2θε,

|(H + h)xn(0)− ϕxn(0)| ≤ D1∥(H + h)− w∥L∞(∂B3/4−θε,−θε) ≤ D1(θε)
γ,

for some D1 = D1(n) > 0, and thus,

|(H + h)xn(0)| ≤ D1(θε)
γ + |ϕxn(0)| ≤ D1(θε)

γ +D0θε ≤ D(θε)γ,
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for some D = D(n) > 0. Therefore, (2.5.1) holds.

If x ∈ Ω1 ∩ B1/2, by Theorem 2.4.2 and (2.5.1), there are constants

C,D > 0, depending only on n, such that

|u1(x)− P1(x)| ≤ |u(x)− v(x)|+ |v(x)− P1(x)|

≤ |u(x)− v(x)|+ |v(x)− v(0)−∇v(0)|

+
∣∣1
2
− vxn(0) + hxn(0)

∣∣|xn|
≤ C(θ + δ + εγ) + ∥D2v∥L∞(Ω1∩B1/2)|x|

2 +D(θε)γ|xn|

≤ C(θ + δ + εγ) + C0|x|2 +D(θε)γ|xn|.

Similarly, if x ∈ Ω2 ∩B1/2,

|u2(x)−Q1(x)| ≤ C(θ + δ + εγ) + C0|x|2 +D(θε)γ|xn|.

First, choose 0 < λ < 1/2 such that

C0|x|2 ≤
λ1+α

2
for all x ∈ Bλ.

Then, choose 0 < θ, δ, ε < λ such that

C(θ + δ + εγ) +D(θε)γλ ≤ λ1+α

2
.

Lemma 2.5.2. Let Γ = {(y′, ψ(y′)) : y′ ∈ B′
1}, where ψ is a Lipschitz function.

Given 0 < α < 1, there exist C0 > 0, 0 < λ < 1/2, and 0 < δ < 1, depending

only on n and α, such that for a distributional solution u ∈ C(B1) to
∆u = g dHn−1

∣∣
Γ

in B1

|u| ≤ 1 in B1

|g| ≤ δ on Γ ∩B3/4,
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there is a linear polynomial P (x) = A · x + B, with A ∈ Rn, B ∈ R and

|A|+ |B| ≤ C0, such that

|u(x)− P (x)| ≤ λ1+α for all x ∈ Bλ.

Proof. Fix λ, δ > 0 to be determined. Let v be the harmonic function in B3/4

such that v = u on ∂B3/4. Then, the difference w = u− v is the distributional

solution to {
∆w = g dHn−1

∣∣
Γ

in B3/4

w = 0 on ∂B3/4.

Moreover, ∥w∥L∞(B3/4) ≤ C∥g∥L∞(Γ∩B3/4) ≤ Cδ, where C = C(n,Γ) > 0.

Define P (x) = v(0) + ∇v(0) · x. By interior estimates and the maximum

principle, we have

∥Djv∥L∞(B1/2) ≤ C0∥v∥L∞(B3/4) ≤ C0 for all j ≥ 0,

where C0 = C0(n, j) > 0. Hence, for x ∈ Bλ, with 0 < λ < 1/2, we get

|u(x)− P (x)| ≤ |u(x)− v(x)|+ |v(x)− P (x)|

≤ Cδ + ∥D2v∥L∞(B1/2)|x|
2

≤ Cδ + C0λ
2.

First, choose 0 < λ < 1/2, such that C0λ
2 ≤ λ1+α/2. Then choose 0 < δ < 1

such that Cδ ≤ λ1+α/2.

2.5.2 Proof of Theorem 2.1.2

Fix 0 < α, γ < 1. Let C0, λ, θ, ε, δ > 0 be the minimum of the constants

given in Lemma 2.5.1 and Lemma 2.5.2. Let 0 < δ0 < min
{
δ, θε, λ

1+α

2

}
. First,
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we normalize the problem. Recall that we are assuming that 0 ∈ Γ, that is,

ψ(0′) = 0.

(i) By rotation, we can assume that ν(0) = en. In particular, ∇′ψ(0′) = 0′.

(ii) If g(0) ̸= 0, we can suppose that g(0) = 1. Indeed, we consider v =

u/g(0). The case g(0) = 0 will be addressed at the end.

(iii) Assume that ∥u∥L∞(B1) ≤ 1, and that

[g]C0,α(0) = sup
x∈Γ∩B1, x ̸=0

|g(x)− g(0)|
|x|α

≤ δ0.

Indeed, one can consider

v = δ0
u

∥u∥L∞(B1) + [g]C0,α(0)

.

(iv) Also, we let [ψ]C1,α(0) ≤ [ψ]C1,α(B′
1)
≤ δ0. Recall that

[ψ]C1,α(0) = sup
x′∈B′

1, x
′ ̸=0′

|∇′ψ(x′)−∇′ψ(0′)|
|x′|α

= sup
x′∈B′

1, x
′ ̸=0′

|∇′ψ(x′)|
|x′|α

.

Then, for this normalization one can take

ϕ = δ0
ψ

[ψ]C1,α(B′
1)

.

We make an abuse of notation and call the solution, the interface, the

parametrization and the right hand side as in the statement, namely, u, Γ, ψ,

and g, respectively.

It is enough to prove the following.
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Claim. For all k ≥ 1, there exist linear polynomials Pk = Ak · x + Bk and

Qk = Ck · x+Bk such that

λk|Ak+1 − Ak|+ λk|Ck+1 − Ck|+ |Bk+1 −Bk| ≤ C0λ
k(1+α),

where C0 = C0(n, α) > 0, and such that

|u1(x)− Pk(x)| ≤ λk(1+α) for all x ∈ Ω1 ∩Bλk ,

|u2(x)−Qk(x)| ≤ λk(1+α) for all x ∈ Ω2 ∩Bλk .

Moreover, ∇′Pk = ∇′Qk and (Pk)xn − (Qk)xn = 1.

We prove the claim by induction. Let us start with the case k = 1.

By the normalization, u, Γ and g satisfy the assumptions on Lemma 2.5.1.

Indeed, by (i) and (iv), for any (x′, xn) ∈ Γ,

|xn| = |ψ(x′)| = |ψ(x′)− ψ(0′)−∇′ψ(0′) · x′| ≤ [ψ]C1,α(0) ≤ δ0 ≤ θε.

Also, 1 ≤ (1 + |∇′ψ(x′)|2)1/2 ≤ (1 + δ20)
1/2 ≤ (1− ε)−1. Moreover, by (iii),

|g(x)− 1| = |g(x)− g(0)| ≤ [g]C0,α(0)|x|α ≤ δ0 ≤ δ for any x ∈ Γ.

Hence, by Lemma 2.5.1, there are linear polynomials P1(x) = A1 · x+B1, and

Q1(x) = C1 · x + B1, with A1, C1 ∈ Rn, B1 ∈ R, and |A1| + |B1| + |C1| ≤ C0,

such that

|u1(x)− P1(x)| ≤ λ1+α for all x ∈ Ω1 ∩Bλ,

|u2(x)−Q1(x)| ≤ λ1+α for all x ∈ Ω2 ∩Bλ.
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Moreover, ∇′P1 = ∇′Q1, and (P1)xn − (Q1)xn = 1.

For the induction step, assume that the claim holds for some k ≥ 1,

and let Pk and Qk be such polynomials. Denote by

Ωi,λk = {x ∈ B1 : λ
kx ∈ Ωi} for i = 1, 2,

Γλk = {x ∈ B1 : λ
kx ∈ Γ}.

Note that if ψλk is a parametrization of Γλk in B′
1, then ψλk(x′) = λ−kψ(λkx′).

In particular, ∇′ψλk(x
′) = ∇′ψ(λkx), and thus, for x ∈ Γλk , if νλk(x) is the

normal vector on x pointing at Ωλk,1, then νλk(x) = ν(λkx). Define Pk =

PkχΩ1 +QkχΩ2 . Consider the rescaled function

w(x) =
u(λkx)− Pk(λ

kx)

λk(1+α)
for x ∈ B1. (2.5.2)

By the induction hypothesis, ∥w∥L∞(B1) ≤ 1. Notice that w is a piecewise

continuous function with a jump discontinuity on Γλk . In fact, if

w1 = w
∣∣
Ω

1,λk
, w2 = w

∣∣
Ω

2,λk
,

then for x ∈ Γλk , by the normalization (iv), and the induction hypothesis, we

have

|(w1 − w2)(x)| =
|Qk(λ

kx)− Pk(λ
kx)|

λk(1+α)
= λ−kα|xn| (2.5.3)

≤ λ−kα sup
x∈Γ

λk

|xn|

≤ sup
x′∈B′

1

|ψλk(x′)|
λkα

≤ [ψ]C1,α(0) ≤ δ0.
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Let v = v1χΩ
1,λk

+ v2χΩ
2,λk

, where v1 and v2 are the solutions to
∆vi = 0 in Ωi,λk

vi = wi on ∂Ωi,λk \ Γλk
vi =

w1+w2

2
on Γλk ,

for i = 1, 2. Then v ∈ C(B1) and, by the maximum principle, ∥v∥L∞(B1) ≤

∥w∥L∞(B1) ≤ 1. Moreover,
∆(vi − wi) = 0 in Ωi,λk

vi − wi = 0 on ∂Ωi,λk \ Γλk
vi − wi = (−1)i w1−w2

2
on Γλk .

(2.5.4)

By the maximum principle and (2.5.3) it follows that

∥v − w∥L∞(B1) ≤ ∥v1 − w1∥L∞(Ω
1,λk

) + ∥v2 − w2∥L∞(Ω
2,λk

)

= ∥w1 − w2∥L∞(Γ
λk

) ≤ δ0.
(2.5.5)

We compute the distributional Laplacian of v and estimate its size. For

any φ ∈ C∞
c (B1),

∆v(φ) =

ˆ
B1

v(x)∆φ(x) dx

=

ˆ
Ω

1,λk

v1(x)∆φ(x) dx+

ˆ
Ω

2,λk

v2(x)∆φ(x) dx

=

ˆ
Ω

1,λk

(v1 − w1)(x)∆φ(x) dx+

ˆ
Ω

2,λk

(v2 − w2)(x)∆φ(x) dx

+

ˆ
B1

w(x)∆φ(x) dx

≡ I1 + I2 + I3.
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For i = 1, 2, by Green’s formula,

Ii =
1

2

ˆ
Γ
λk

(w1 − w2)(x)φν
λk
(x) dHn−1

+ (−1)i+1

ˆ
Γ
λk

(vi − wi)ν
λk
(x)φ(x) dHn−1,

where we recall that νλk is the unit normal vector on Γλk pointing at Ω1,λk .

Note that

I3 = ∆w(φ) = ∆

(
u(λkx)

λk(1+α)

)
(φ)−∆

(
Pk(λ

kx)

λk(1+α)

)
(φ).

Since u is a distributional solution, by doing a change of variables, we get

∆(u(λkx))(φ) =

ˆ
B1

u(λkx)∆φ(x) dx

= λk(2−n)
ˆ
B

λk

u(y)∆yφ(λ
−ky) dy

= λk(2−n)
ˆ
Γ∩B

λk

g(y)φ(λ−ky) dHn−1
y

= λk
ˆ
Γ
λk

g(λkx)φ(x) dHn−1.

Also, by Green’s formula, the induction hypothesis and (2.5.3),

∆(Pk(λ
kx))(φ) = λk

ˆ
Γ
λk

[
∇Pk(λkx)−∇Qk(λ

kx)
]
· νλk(x)φ(x) dHn−1

+

ˆ
Γ
λk

[
Qk(λ

kx)− Pk(λ
kx)

]
φν

λk
(x) dHn−1

= λk
ˆ
Γ
λk

νn(λ
kx)φ(x) dHn−1

+ λk(1+α)
ˆ
Γ
λk

(w1 − w2)(x)φν
λk
(x) dHn−1.
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Then

I3 =

ˆ
Γ
λk

g̃(x)φ(x) dHn−1 −
ˆ
Γ
λk

(w1 − w2)(x)φν
λk
(x) dHn−1,

where

g̃(x) =
g(λkx)− νn(λ

kx)

λkα
.

Therefore, for any φ ∈ C∞
c (B1),

∆v(φ) =

ˆ
Γ
λk

[
(v1 − w1)ν

λk
(x)− (v2 − w2)ν

λk
(x) + g̃(x)

]
φ(x) dHn−1

≡
ˆ
Γ
λk

ĝφ dHn−1.

By C1,α boundary estimates for harmonic functions applied to (2.5.4) and, by

taking into account (2.5.5) and the first line of (2.5.3), we get

∥vi − wi∥C1,α(Ω
i,λk

∩B3/4)
≤ C∥w2 − w1∥C1,α(Γ

λk
) = Cλ−kα∥ψλk∥C1,α(B′

1)
.

Using the normalization of ψ, we find that

λ−kα∥ψλk∥L∞(B′
1)
= sup

x′∈B′
1

|ψ(λkx′)|
λk(1+α)

≤ [ψ]C1,α(0) ≤ δ0,

λ−kα∥∇′ψλk∥L∞(B′
1)
= sup

x′∈B′
1

|∇′ψ(λkx′)|
λkα

≤ [ψ]C1,α(0) ≤ δ0,

and

λ−kα[∇′ψλk ]C0,α(B′
1)
= sup

x′,y′∈B′
1

x′ ̸=y′

|∇′ψ(λkx′)−∇′ψ(λky′)|
λkα|x′ − y′|α

≤ [ψ]C1,α(B′
1)
≤ δ0.

In particular, it follows that

∥(vi − wi)ν
λk
∥L∞(Γ

λk
∩B3/4) ≤ Cδ0.
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Moreover, for x ∈ Γλk ,

|g̃(x)| ≤ |g(λkx)− 1|
λkα

+
|1− νn(λ

kx)|
λkα

≤ [g]C0,α(0) + [νn]C0,α(0) ≤ δ0 + δ0 = 2δ0.

Hence, choosing δ0 sufficiently small, we see that

∥ĝ∥L∞(Γ
λk

∩B3/4) ≤ ∥(v1 − w1)ν
λk
∥L∞(Γ

λk
∩B3/4) + ∥(v2 − w2)ν

λk
∥L∞(Γ

λk
∩B3/4)

+ ∥g̃∥L∞(Γ
λk

) ≤ Cδ0 + Cδ0 + 2δ0 = 2(C + 1)δ0 ≤ δ.

We have proved that v ∈ C(B1) satisfies
∆v = ĝ dHn−1

∣∣
Γ
λk

in B1

|v| ≤ 1 in B1

|ĝ| ≤ δ on Γλk ∩B3/4.

Therefore, we can apply Lemma 2.5.2 to v to find a linear polynomial P (x) =

A · x+B, with A ∈ Rn, B ∈ R and |A|+ |B| ≤ C0, such that

|v(x)− P (x)| ≤ λ1+α

2
for all x ∈ Bλ.

Hence, for any x ∈ Bλ, by the estimate above and (2.5.5),

|w(x)− P (x)| ≤ |w(x)− v(x)|+ |v(x)− P (x)| ≤ δ0 +
λ1+α

2
≤ λ1+α,

since δ0 ≤ λ1+α/2. According to (2.5.2),∣∣∣∣u(λkx)− Pk(λ
kx)

λk(1+α)
− P (x)

∣∣∣∣ ≤ λ1+α for all x ∈ Bλ,

or equivalently, for y = λkx,

|u(y)− Pk(y)− λk(1+α)P (y/λk)| ≤ λ(k+1)(1+α) for all y ∈ Bλk+1 .
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Define the polynomials Pk+1 and Qk+1 as

Pk+1(y) = Pk(y) + λk(1+α)P (y/λk), Qk+1(y) = Qk(y) + λk(1+α)P (y/λk).

From the previous estimate, it follows that

|u1(y)− Pk+1(y)| ≤ λ(k+1)(1+α) for all y ∈ Ω1 ∩Bλk+1 ,

|u2(y)−Qk+1(y)| ≤ λ(k+1)(1+α) for all y ∈ Ω2 ∩Bλk+1 .

Moreover, since Pk(0) = Qk(0), and ∇′Pk = ∇′Qk, it is clear that Pk+1(0) =

Qk+1(0), and ∇′Pk+1 = ∇′Qk+1. Also, (Pk+1)xn−(Qk+1)xn = (Pk)xn−(Qk)xn =

1. If Pk+1(y) = Ak+1 · y +Bk+1 and Qk+1(y) = Ck+1 · y +Bk+1 then

Ak+1 = Ak + λkαA, Bk+1 = Bk + λk(1+α)B, Ck+1 = Ck + λkαA.

By the estimate |A|+ |B| ≤ C0, we conclude

λk|Ak+1 − Ak|+ λk|Ck+1 − Ck|+ |Bk+1 −Bk| ≤ C0λ
k(1+α).

The proof of the claim is completed.

Finally, we consider the case g(0) = 0. As before, it is enough to prove

the following.

Claim. For all k ≥ 1, there exists a linear polynomial Pk = Ak · x+ Bk such

that

λk|Ak+1 − Ak|+ |Bk+1 −Bk| ≤ C0λ
k(1+α),
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where C0 = C0(n, α) > 0, and such that

|u(x)− Pk(x)| ≤ λk(1+α) for all x ∈ Ω ∩Bλk .

The proof is by induction. For k = 1, since ∥u∥L∞(B1) ≤ 1, and

∥g∥L∞(Γ) = sup
x∈Γ

|g(x)− g(0)| ≤ δ0,

we can apply Lemma 2.5.2 to u. Then we find a linear polynomial P1(x) =

A1 · x+B1, with A1 ∈ Rn, B1 ∈ R, and |A1|+ |B1| ≤ C0, such that

|u(x)− P1(x)| ≤ λ1+α for all x ∈ Bλ.

Assume the claim holds for k ≥ 1. Define

w(x) =
u(λkx)− Pk(λ

kx)

λk(1+α)
for x ∈ B1.

Then, for any φ ∈ C∞
c (B1),

∆w(φ) =
∆(u(λkx))(φ)

λk(1+α)
=

ˆ
Γ
λk

g(λkx)

λkα
φ(x) dHn−1.

Also, for any x ∈ Γλk ,

|g(λkx)|
λkα

=
|g(λkx)− g(0)|

λkα
≤ [g]C0,α(0) ≤ δ0.

Then the claim follows for k + 1 by applying again Lemma 2.5.2.

2.6 Proof of main result: Theorem 2.1.1

To prove Theorem 2.1.1 we need Campanato’s characterization of C1,α

spaces [19] and a technical result that patches the interior and boundary es-

timates together. We believe that the latter belongs to the folklore (see, for

example, [45]) but, for the sake of completeness, we will give a proof.
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Theorem 2.6.1 (Campanato). Let u be a measurable function defined on a

bounded C1,α domain Ω. Then u ∈ C1,α(Ω) if and only if there exists C0 > 0

such that for any x ∈ Ω, there exists a linear polynomial Qx(z) such that

|u(z)−Qx(z)| ≤ C0|x− z|1+α,

for all z ∈ B1(x)∩Ω. In this case, if C∗ denotes the least constant C0 > 0 for

which the property above holds, then

∥u∥C1,α(Ω) ∼ C∗ + sup
x∈Ω

|Qx|,

where |Qx| denotes the sum of the coefficients of the polynomial Qx(z).

Proposition 2.6.2. Let S be a collection of measurable functions defined on

a bounded C1,α domain Ω. For x ∈ Ω, we let dx = dist(x, ∂Ω). Fix u ∈ S, and

suppose the following hold.

(i) (Interior estimates). There exist A,C,D > 0 such that for any x ∈ Ω

there exists a linear polynomial Px(z) such that

∥Px∥L∞(B) + dx∥∇Px∥L∞(B) ≤ C∥u∥L∞(B)

and

|u(z)− Px(z)| ≤
(
A
∥u∥L∞(B)

d1+αx

+D

)
|z − x|1+α

for all z ∈ B ≡ Bdx/2(x).
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(ii) (Boundary estimates). There exists E > 0 such that for any y ∈ ∂Ω,

there is a linear polynomial Py(z) such that

∥Py∥L∞(Ω) + ∥∇Py∥L∞(Ω) ≤ E

and

|u(z)− Py(z)| ≤ E|z − y|1+α,

for all z ∈ Ω.

(iii) (Invariance property). For any u ∈ S, and any y ∈ ∂Ω, with correspond-

ing linear polynomial Py as in (ii), the function v = u−Py also satisfies

the estimates of (i).

Then S ⊂ C1,α(Ω) and there exists M > 0, depending only on A,C,D,E such

that

∥u∥C1,α(Ω) ≤M∥u∥L∞(Ω).

Proof. We need to show that any u ∈ S satisfies the Campanato characteri-

zation from Theorem 2.6.1. Let us pick any point x ∈ Ω. If x ∈ ∂Ω then the

polynomial Qx(z) ≡ Px(z), where Px(z) is as in assumption (ii), satisfies the

Campanato condition with C0 = E.

Suppose next that x ∈ Ω. Let y ∈ ∂Ω be a boundary point that realizes

the distance from x to the boundary, namely, dx = |x − y|. Let Py(z) be the

linear polynomial that satisfies (ii). Consider the function v(z) = u(z)−Py(z).

By (iii), there is a linear polynomial Px(z) such that the conditions in (i) are
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met for v in place of u. We claim that the polynomial Qx for the Campanato

condition is

Qx(z) ≡ Py(z) + Px(z).

To show this, we split the argument into two cases.

Case 1. Suppose that |z − x| < dx/2. This is the case when we can apply (i)

for v − Px:

|u(z)−Qx(z)| = |u(z)− Py(z)− Px(z)| = |v(z)− Px(z)|

≤
(
A
∥v∥L∞(Bdx/2(x))

d1+αx

+D

)
|z − x|1+α

=

(
A
∥u− Py∥L∞(Bdx/2(x))

d1+αx

+D

)
|z − x|1+α.

Now, we notice that, by (ii), by the choice of y, and the fact that |z−x| < dx/2,

|u(z)− Py(z)| ≤ E|z − y|1+α ≤ E(3/2dx)
1+α ≤ 21+αEd1+αx .

Hence,

|u(z)−Qx(z)| ≤ (21+αAE +D)|z − x|1+α

and C0 = 21+αAE +D.

Case 2. Suppose that |z−x| ≥ dx/2. By the estimate in (i) for Px(z), we get

|Px(z)| = |Px(x) +∇Px(x) · (z − x)|

≤ C∥u− Py∥L∞(B) + Cd−1
x ∥u− Py∥L∞(B)|z − x|.

Also, by the boundary estimate in (ii),

∥u− Py∥L∞(B) ≤ (3/2)1+αEd1+αx .
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Hence,

|u(z)−Qx(z)| ≤ |u(z)− Py(z)|+ |Px(z)|

≤ E|z − y|1+α + C∥u− Py∥L∞(B)

+ Cd−1
x ∥u− Py∥L∞(B)|z − x|

≤ 31+αE|z − x|1+α + 31+αCEd1+αx

+ Cd−1
x (3/2)1+αEd1+αx |z − x|

≤ 31+αE(1 + 2C)|z − x|1+α.

Thus, in this case, the Campanato constant is C0 = 31+αE(1 + 2C).

Proof of Theorem 2.1.1. Let u ∈ LogLip(Ω) be the solution given by Theo-

rem 2.2.2. We will show the statement for the function u2 : Ω2 → R, and we

can argue similarly for u1 : Ω1 → R. The following holds.

(i) (Interior estimates). For any x ∈ Ω2, there exists a linear polynomial

Px(z) such that

∥Px∥L∞(B) + dx∥∇Px∥L∞(B) ≤ (1 + 2n)∥u2∥L∞(B)

and

|u2(z)− Px(z)| ≤ 2α−1n
∥u∥L∞(B)

d1+αx

|z − x|1+α,

for all z ∈ B ≡ Bdx/2(x).

Indeed, fix x ∈ Ω2. Since u2 is harmonic, it is smooth in Ω2, so we can

define

Px(z) = u2(x) +∇u2(x) · (z − x).
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Then, by classical interior estimates for harmonic functions,

∥Px∥L∞(B) + dx∥∇Px∥L∞(B) ≤ ∥u2∥L∞(B) + dx∥∇u2∥L∞(B)

+ dx∥∇u2∥L∞(B)

≤ ∥u2∥L∞(B) + 2n∥u2∥L∞(B)

≤ (1 + 2n)∥∇u2∥L∞(B).

Moreover,

|u2(z)− Px(z)| ≤ ∥D2u2∥L∞(B)|z − x|2

≤ n
∥u2∥L∞(B)

d2x
|z − x|2

≤ 2α−1n
∥u2∥L∞(B)

d1+αx

|z − x|1+α.

(ii) (Boundary estimates). Consider ∂Ω2 = Γ ∪ ∂Ω.

If y ∈ Γ, by Theorem 2.1.2, there exists a linear polynomial Py(z) such

that

∥Py∥L∞(Ω2) + ∥∇Py∥L∞(Ω2) ≤ E

and

|u2(z)− Py(z)| ≤ E|z − y|1+α,

for all z ∈ Ω2, with E ≤ C0∥ψ∥C1,α(B′
1)
∥g∥C0,α(Γ), and C0 = C0(n, α) > 0.

If y ∈ ∂Ω ∈ C∞, since u2 = 0, then, by classical boundary regularity for

harmonic functions, u2 ∈ C1,α(B ∩ Ω), with B ≡ Br(y), for some r > 0

sufficiently small. By Theorem 2.6.1, there exists a linear polynomial
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Py(z) such that

|u2(z)− Py(z)| ≤ C0|z − y|1+α,

for all z ∈ Ω2, for some C0(n, α) > 0.

(iii) (Invariance property). Fix y ∈ ∂Ω2, and let Py be the corresponding

linear polynomial given in (ii). Clearly, the function v = u2 − Py is

harmonic in Ω2, so it satisfies the interior estimates in (i).

Therefore, by Theorem 2.6.2, we have u2 ∈ C1,α(Ω2), and there exists

a constant C > 0, depending only on n, α and Γ such that

∥u2∥C1,α(Ω2)
≤ C∥g∥C0,α(Γ).

2.7 Appendix

A special Lipschitz domain Ω in Rn is a set of the form

Ω = {(x′, xn) ∈ Rn : x′ ∈ Rn−1, xn > ψ(x′)}

where ψ ∈ Lip(Rn−1), that is, there exists M > 0 such that

|ψ(x′)− ψ(y′)| ≤M |x′ − y′| for all x′, y′ ∈ Rn−1.

In other words, Ω is the set of points lying above the graph of a Lipschitz func-

tion ψ. Then, by Rademacher’s Theorem, ψ is Fréchet differentiable almost

everywhere with ∥∇ψ∥L∞(Rn−1) ≤M . On ∂Ω we thus have

dHn−1
∣∣
∂Ω

=
√
1 + |∇ψ(x′)|2 dx′ and ν(x′, ψ(x′)) =

(∇ψ(x′),−1)√
1 + |∇ψ(x′)|2

,
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where x = (x′, ψ(x′)) ∈ ∂Ω. For a measurable function f on ∂Ω, we have
ˆ
∂Ω

f(x) dHn−1 =

ˆ
Rn−1

f(x′, ψ(x′))
√

1 + |∇ψ(x′)|2 dx′.

For more details see [23,41].

A bounded Lipschitz domain in Rn is a bounded domain Ω such that the

boundary ∂Ω can be covered by finitely many open balls Bj in Rn, j = 1, . . . , J ,

centered at ∂Ω, such that

Bj ∩ Ω = Bj ∩ Ωj, j = 1, . . . , J,

where Ωj are rotations of suitable special Lipschitz domains given by Lipschitz

functions ψj. One may then assume that ∂Ω ∩ Bj can be represented in

local coordinates by xn = ψj(x
′), where ψj is a Lipschitz function on Rn−1

with ψj(0
′) = 0. Recall also that if ψ is a Lipschitz function defined on an

set A ⊂ Rn−1, with Lipschitz constant M , then there exists an extension

ψ : Rn−1 → R of ψ such that ψ = ψ on A and the Lipschitz constant of ψ does

not exceed M , see [23].

Let Ω0 = Ω ∩
(⋃J

j=1Bj

)c. A partition of unity {ξj}Jj=0 subordinated

to {Ω0, B1, . . . , BJ} is a family of nonnegative smooth functions ξj on Rn such

that ξ0 ∈ C∞
c (Ω0), ξj ∈ C∞

c (Bj) for all j = 1, . . . , J , and
J∑
j=0

ξj(x) = 1 for all x ∈ Ω.

It follows that 0 ≤ ξj ≤ 1, j = 0, 1, . . . , J . Obviously the family {ξj}Jj=1 is

a partition of unity subordinated to the open cover {B1, . . . , BJ} of ∂Ω and∑J
j=1 ξj(x) = 1 for every x ∈ ∂Ω.
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Let f : Γ → R be a measurable function, where Γ = ∂Ω is the boundary

of a bounded Lipschitz domain Ω. Consider the balls Bj, j = 1, . . . , J , that

cover Γ as above, and the corresponding Lipschitz functions ψj : Rn−1 → R.

Let {ξj}Jj=1 be a smooth partition of unity subordinated to the open cover

{Bj}Jj=1 of Γ. Then

ˆ
Γ

f dHn−1 =
J∑
j=1

ˆ
Γ

ξjf dH
n−1 =

J∑
j=1

ˆ
Bj∩Γ

ξjf dH
n−1.

Let us consider each one of the terms in the sum above separately. We study

the following situation: let B be a ball and let f̄ : B ∩ Γ → R of compact

support in B ∩ Γ. Let ψ : Rn−1 → R be a Lipschitz function such that

ψ(B′
1) = B ∩ Γ. Then, by extending trivially f̄ to the rest of the graph of ψ

and using the coarea formula [23,41],

ˆ
B∩Γ

f̄ dHn−1 =

ˆ
ψ(B′

1)

f̄ dHn−1 =

ˆ
ψ(Rn−1)

f̄ dHn−1

=

ˆ
Rn−1

f̄(y′, ψ(y′))
√

1 + |∇ψ(y′)|2 dy′

=

ˆ
B′

1

f̄(y′, ψ(y′))
√
1 + |∇ψ(y′)|2 dy′.
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Chapter 3

Transmission problems for fully nonlinear
equations and flat interfaces

3.1 Introduction

We study the following fully nonlinear transmission problem in B1:
F+(D2u+) = f+ in B+

1 = B1 ∩ {xn > 0}
F−(D2u−) = f− in B−

1 = B1 ∩ {xn < 0}
u+xn − u−xn = g on T = B1 ∩ {xn = 0},

(3.1.1)

where D2u± denotes the Hessian of u± and u±xn denotes the normal derivative

of u±. We assume that F± : Sn → R are fully nonlinear uniformly elliptic

operators, with ellipticity constants 0 < λ ≤ Λ, and F±(0) = 0. That is, for

every M,N ∈ Sn, with N ≥ 0, we have

λ∥N∥ ≤ F±(M +N)− F±(M) ≤ Λ∥N∥.

We denote by Sn the set of square n × n symmetric matrices and by E(λ,Λ)

this class of uniformly elliptic fully nonlinear operators.

Transmission problems of the form (3.1.1) may be understood as two

Neumann problems that have been attached at the flat interface T . Indeed,

if we know the function u−xn on T a priori, then the transmission condition in
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(3.1.1) becomes a Neumann condition for u+ (and viceversa). In [45], E. Mi-

lakis and L. Silvestre consider the Neumann problem,{
F (D2u) = f in B+

1

uxn = g on T,

where F ∈ E(λ,Λ), and prove that if f ∈ Lp, with p > n, and g ∈ C0,α, then

viscosity solutions are C1,α up to the flat boundary in B+
1/2.

A similar problem to (3.1.1) was considered by D. De Silva, F. Ferrari,

and S. Salsa in [58], where the transmission condition is replaced by u+xn −

µu−xn = 0, for some µ > 0. In fact, these transmission problems play a key role

in the regularity theory of solutions to two-phase free boundary problems with

distributed sources, studied by the same authors in [55–57]. In their paper,

they assume that the functions f± are Lipschitz continuous, and they show

that u+ and u− are C1,α up to the flat interface in B1/2. Their approach is to

consider incremental quotients in the x′-direction and prove that they belong

to a Pucci class of functions (see Definition 3.1.3), which are known to be

Hölder continuous in the interior. In particular, tangential derivatives will be

Hölder continuous, and thus, the C1,α boundary regularity of solutions follows

by the well-known results for the Dirichlet problem. We point out that the

existence and uniqueness of viscosity solutions is left as an open problem. In

fact, the proof of this result is one of the main novelties of our work.

This chapter is organized as follows. First, we introduce the notion

of viscosity solution of (3.1.1) and present the main results. In Section 3.2,

we prove a new ABP estimate (Theorem 3.2.1) for viscosity supersolutions of
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(3.1.1) and obtain the maximum principle as an immediate consequence. Using

this tool, we show an oscillation decay lemma in Section 3.3, which implies the

C0,α regularity of viscosity solutions across the interface T (Theorem 3.1.8).

In Section 3.4, we define a family of regularizations in the x′-direction, also

known as ε-envelopes, that play the same role as the Jensen’s approximations

in the classical theory, and derive some properties that will be useful in future

proofs. We prove existence and uniqueness of viscosity solutions to (3.1.1) with

prescribed boundary values in Section 3.5 (Theorem 3.1.7). For this, we show

that the comparison principle for viscosity subsolutions and supersolutions

holds (Theorem 3.5.6), and we carry out the usual procedure for Perron’s

method. Finally, in Section 3.6, we derive C1,α estimates for u+ and u− up to

the interface (Theorem 3.1.9). The latter follows by a standard perturbation

argument, using the results in [58].

3.1.1 Preliminaries

Definition 3.1.1. We say that a continuous function φ touches u by above

at x0 in B1 if there exists δ > 0 such that the following holds:

φ(x0) = u(x0)

φ(x) ≥ u(x) for all x ∈ Bδ(x0) ⊂ B1.

Similarly, we say that φ touches u from below at x0 in B1 if the same conditions

hold with the inequality reversed.

We denote by USC(B1) the space of upper semicontinuous functions
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on B1. Similarly, LSC(B1) is the space of lower semicontinuous functions on

B1. In the sequel, we write F±(D2u) = f± to denote both interior equations

in (3.1.1). It is clear that u± = u|
B±

1

.

Definition 3.1.2. For M ∈ Sn, we define the Pucci’s extremal operators as

M−
λ,Λ(M) = λ tr(M+)− Λ tr(M−) and M+

λ,Λ(M) = Λ tr(M+)− λ tr(M−),

where M =M+ −M− and M+,M− ≥ 0.

Definition 3.1.3. We denote by Sλ,Λ(f±) the class of upper semicontinuous

functions on B1 such that M+
λ,Λ(D

2u) ≥ f± in B±
1 in the viscosity sense.

Analogously, we denote by Sλ,Λ(f±) the class of lower semicontinuous functions

u on B1 such that M−
λ,Λ(D

2u) ≤ f± in B±
1 in the viscosity sense. We define

Sλ,Λ(f
±) = Sλ,Λ(f

±) ∩ Sλ,Λ(f±) and S∗
λ,Λ(f

±) = Sλ,Λ(−|f±|) ∩ Sλ,Λ(|f±|).

Definition 3.1.4. We say that a function u ∈ USC(B1) is a viscosity subsolu-

tion of (3.1.1) in B1 if for any φ touching u by above at x0 in B1, the following

holds:

(i) If x0 ∈ B±
1 and φ ∈ C2(Bδ(x0)), then

F±(D2φ(x0)) ≥ f±(x0).

(ii) If x0 ∈ T and φ ∈ C2(B+
δ (x0)) ∩ C2(B−

δ (x0)), then

φ+
xn(x0)− φ−

xn(x0) ≥ g(x0),

where φ± = φ|
B±

δ (x0)
.
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Similarly, a function u ∈ LSC(B1) is a viscosity supersolution of (3.1.1) in B1

if whenever a test function φ touches u from below at x0 in B1, then it satisfies

conditions (i) and (ii), where all inequalities are reversed. Finally, a function

u ∈ C0(B1) is a viscosity solution of (3.1.1) in B1 if it is a viscosity subsolution

and a viscosity supersolution.

Remark 3.1.5. The following condition given in [58] is equivalent to (ii):

(ii′) Let x0 ∈ T and let

φ(x) = P (x′) + p+x+n − p−x−n

where P is a quadratic polynomial, p± ∈ R, x+n = max{0, xn}, and

x−n = −min{0, xn}. If φ touches u by above at x0, then

p+ − p− ≥ g(x0).

Indeed, we may suppose that x0 = 0. If φ ∈ C2(B+
δ )∩C2(B−

δ ) touches u from

above at 0, then by the Taylor’s expansion, we have that

φ(0) + A′ · x′ + φ+
xn(0)x

+
n − φ−

xn(0)x
−
n +B|x′|2 +Bx2n

touches u from above at 0, possibly in a smaller neighborhood Bδ′ , where

∥∇′φ∥L∞(Bδ′ )
≤ A′ and supy∈Bδ′∩{yn ̸=0} ∥D2φ(y)∥ ≤ 2B. Let p± = φ±

xn(0).

Then for ε > 0 small, we get

φ(0) + A′ · x′ + (p+ + ε)x+n − (p− − ε)x−n
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also touches u from above at 0 in B′
δ, provided we choose δ′ > 0 small enough

so that ε|xn| −Bx2n ≥ 0, for any x ∈ Bδ′ . By (ii′), it follows that

(p+ + ε)− (p− − ε) ≥ g(0).

Letting ε→ 0, we conclude the desired inequality.

Lemma 3.1.6. Definition 3.1.4 is equivalent to replacing (ii) by the following

statement: if x0 ∈ T and φ ∈ C2(B+
δ (x0))∩C2(B−

δ (x0)) touches u by above at

x0, then either

F±(D2φ±(x0)) ≥ f±(x0) or φ+
xn(x0)− φ−

xn(x0) ≥ g(x0).

Proof. If u is a viscosity subsolution of (3.1.1), then it is clear that the state-

ment is true. To prove the converse, let x0 ∈ T and assume that φ ∈

C2(B+
δ (x0)) ∩ C2(B−

δ (x0)) touches u by above at x0. Suppose by means of

contradiction that

φ+
xn(x0)− φ−

xn(x0) < g(x0). (3.1.2)

Define the function

ψ(x) = φ(x) + η|xn| − C|xn|2 for x ∈ Bτ ,

where η, τ, C > 0 are constants to be determined.

For η small, and C large fixed, we choose τ < r such that

η|xn| − C|xn|2 ≥ 0 in Bτ .
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In particular, ψ ∈ C2(B+
τ (x0)) ∩ C2(B−

τ (x0)) and{
ψ(x0) = φ(x0) = u(x0)

ψ(x) ≥ φ(x) ≥ u(x) for x ∈ Bτ (x0).

Then ψ is a test function touching u by above at x0, and thus, either

F±(D2ψ(x0)) ≥ f±(x0) or ψ+
xn(x0)− ψ−

xn(x0) ≥ g(x0). (3.1.3)

We will see that both of these conditions cannot happen, hence reaching a

contradiction. Indeed, by (3.1.2), and choosing η sufficiently small, we get

ψ+
xn(x0)− ψ−

xn(x0) = φ+
xn(x0)− φ−

xn(x0) + 2η < g(x0).

Therefore, the first inequality in (3.1.3) must hold. Call En = ene
T
n ∈ Sn.

Then

M+
λ/n,Λ(D

2ψ(x0)) = M+
λ/n,Λ(D

2φ(x0)− 2CEn)

≤ M+
λ/n,Λ(D

2φ(x0))− 2Cλ/n

< f+(x0),

choosing C sufficiently large. This is a contradiction since by uniform elliptic-

ity, we have

f+(x0) ≤ F+(D2ψ(x0)) ≤ Λ∥[D2ψ(x0)]
+∥ − λ∥[D2ψ(x0)]

−∥

≤ M+
λ/n,Λ(D

2ψ(x0)).

We conclude that

φ+
xn(x0)− φ−

xn(x0) ≥ g(x0).
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3.1.2 Main results

Our main theorems are the following.

Theorem 3.1.7 (Existence and uniqueness). Let f± ∈ C0(B±
1 ∪ T ), g ∈

C0(T ), and ϕ ∈ C0(∂B1). Then there exists a unique viscosity solution u ∈

C0(B1) of (3.1.1) in B1 with u = ϕ on ∂B1.

Theorem 3.1.8 (C0,α regularity). Let u satisfy{
u ∈ S∗

λ,Λ(f
±) in B1

u+xn − u−xn = g on T,

with f± ∈ C0(B±
1 ) ∩ L∞(B±

1 ) and g ∈ L∞(T ). Then u ∈ C0,α1(B1/2) with

∥u∥C0,α1 (B1/2)
≤ C

(
∥u∥L∞(B1) + ∥g∥L∞(T ) + ∥f−∥Ln(B−

1 ) + ∥f+∥Ln(B+
1 )

)
,

where 0 < α1 < 1 and C > 0 depend only on n, λ, and Λ.

Theorem 3.1.9 (C1,α regularity). Let 0 < α < ᾱ, where ᾱ < 1 is given in

Theorem 3.6.1. Assume that g ∈ C0,α(T ) and f± ∈ C0(B±
1 ∪ T ) satisfies( 

Br(x0)∩B±
1

|f±|n dx
)1/n

≤ Cf±r
α−1, (3.1.4)

for all x0 ∈ B±
1 ∪T and r < 1. Let u be a bounded viscosity solution of (3.1.1)

in B1. Then

u± ∈ C1,α(B±
1/2),

and the following estimate holds:

∥u±∥
C1,α(B±

1/2
)
≤ C

(
∥u∥L∞(B1) + ∥g∥C0,α(T ) + Cf− + Cf+

)
, (3.1.5)

where C > 0 depends only on n, λ, Λ, and α.
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Remark 3.1.10. Note that the condition given in (3.1.4) is weaker than asking

Hölder continuity. For instance, (3.1.4) holds if f ∈ Lp(B1) with p > n and

0 < α ≤ 1 − n/p. Indeed, for any Br(x0) ⊂ B1, by Hölder’s inequality with

1/p′ = n/p and 1/q′ = 1− n/p, we get(  
Br(x0)

|f |n dx
)1/n

=
1

|Br|1/n
(ˆ

Br(x0)

|f |n dx
)1/n

≤ C

r

(
∥|f |n∥Lp′ (Br(x0))

|Br|1/q
′
)1/n

=
C

r
∥f∥Lp(Br(x0))r

1−n/p

≤ C∥f∥Lp(B1)r
α−1

where C > 0 depends only on n.

Remark 3.1.11. L. Caffarelli and X. Cabré prove in [15, Theorem 8.3] that

if u is a viscosity solution of F (D2u) = f in B1, where F ∈ E(λ,Λ) and f

satisfies (3.1.4), then u ∈ C1,ᾱ
loc (B1), for some ᾱ < 1 depending only on n,

λ, and Λ. Hence, to prove Theorem 3.1.9, it is enough to derive pointwise

C1,α estimates at the interface. Furthermore, (3.1.5) follows by a standard

argument of patching the interior and boundary estimates.

3.2 ABP estimate

A key tool in the regularity theory of viscosity solutions is the Alexan-

droff – Bakelman–Pucci estimate, also known as the ABP estimate. In par-

ticular, for any supersolution u in B1, we give a bound for the infimum of u

in B1, in terms of the infimum of u on ∂B1, the supremum of g on T and the

Ln-norm of f±. More precisely:
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Theorem 3.2.1 (ABP estimate). Let u satisfy{
u ∈ Sλ,Λ(f

±) in B±
1

u+xn − u−xn ≤ g on T
(3.2.1)

with f± ∈ C0(B±
1 ) ∩ L∞(B±

1 ) and g ∈ L∞(T ). Then

sup
B1

u− ≤ sup
∂B1

u− + C
(
max
T

g+ + ∥f−
+∥Ln(B−

1 ∩{u=Γu}) + ∥f+
+∥Ln(B+

1 ∩{u=Γu})
)

where C > 0 depends only on n, λ, and Λ. We denote by u− = −min{0, u},

g+ = max{0, g}, f±
+ = max{0, f±}, and Γu is the convex envelope of −u− on

B2 with u ≡ 0 on B2 \B1.

Remark 3.2.2. To prove Theorem 3.2.1, we will proceed similarly as in the

classical approach (see [15, Chapter 3]). A key step in that proof is to show

that the convex envelope is C1,1 at the contact points. In general, this is

not the case for functions satisfying (3.2.1) since the transmission condition

u+xn − u−xn ≤ g prescribes an angle on the graph of u on T . Now, the convex

envelope may touch u at T , and thus, it will be singular at those points. To

overcome this difficulty, we consider an auxiliary function that makes the angle

concave, in some sense. Hence, the convex envelope will not touch this function

on T and, in particular, it will be C1,1. We show this in the next proof.

First, we state a couple of lemmas from [15, Chapter 3].

Lemma 3.2.3. Let u ∈ Sλ,Λ(f) in Bδ. Assume that f is bounded and φ is a

convex function such that 0 ≤ φ ≤ u in Bδ and φ(0) = u(0) = 0. Then

φ(x) ≤ C
(
sup
Bδ

f+

)
|x|2 for all x ∈ Bγδ,

where 0 < γ < 1 and C > 0 are constants.
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Lemma 3.2.4. Let u ∈ LSC(B1) such that u ≥ 0 on ∂B1 and let Γu be defined

as in Theorem 3.2.1. Let K > 0 and 0 < r ≤ 1 be constants. Assume that

for any x0 ∈ B1 ∩ {u = Γu}, there exists a convex paraboloid of opening K

that touches Γu by above at x0 in Br(x0). Then Γu ∈ C1,1(B1), and thus, there

exists a set E ⊂ B1 such that |B1\E| = 0, and Γu is second order differentiable

at any x ∈ E. Moreover,

sup
B1

u− ≤ C
(ˆ

E∩{u=Γu}
detD2Γu(x) dx

)1/n

,

where C > 0 is a constant depending only on n.

Proof of Theorem 3.2.1. Fix ε > 0 small and consider in B1 the function

v = u− 1
2

(
max
T

g+ + ε
)
|xn|.

By [15, Lemma 2.12], we have that v ∈ Sλ,Λ(f
±) in B±

1 . Also,

v+xn − v−xn ≤ g −
(
max
T

g+ + ε
)
≤ g+ −max

T
g+ − ε ≤ −ε on T,

in the viscosity sense. Without loss of generality, we may assume that v ≥ 0

on ∂B1. Otherwise, we consider v − inf∂B1 v. Assume that v− ̸≡ 0, and let

Γv be the convex envelope of −v− on B2, where we have extended v by zero

outside of B1. Clearly, by definition of Γv, we have that ∂B1 ∩ {v = Γv} = ∅.

Also, we claim that T ∩ {v = Γv} = ∅. Indeed, if A · x + b touches v from

below at x0 ∈ T , for some A ∈ Rn and b ∈ R, then

−ε ≥ A · en − A · en = 0,
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which is a contradiction. Moreover, there exists δ > 0 such that for any x0 ∈ T ,

we have Bδ(x0)∩{v = Γv} = ∅. If not, for any k ≥ 1, there exist xk ∈ T such

that there is some yk ∈ B1/k(xk) ∩ {v = Γv}. Then, up to a subsequence, it

follows that xk, yk → y0 for some y0 ∈ T ∩ {v = Γv}, which is a contradiction.

Next, we show that Γv ∈ C1,1(B1). By Lemma 3.2.4, it is enough

to see that there are constants K > 0 and 0 < r ≤ 1 such that for any

x0 ∈ B1 ∩ {v = Γv}, there exists a convex paraboloid of opening K that

touches Γv by above at x0 in Br(x0). Namely,

Γv(x) ≤ l(x) + K
2
|x− x0|2 for all x ∈ Br(x0), (3.2.2)

for some K, r > 0 (independent of x0) and some linear function l such that

l(x0) = Γv(x0). Indeed, fix x0 ∈ B1 ∩ {v = Γv}. Since x0 /∈ ∂B1 ∪ T , we may

assume that x0 ∈ B+
1 ∩ {v = Γv}. Furthermore, Bδ(x0) ⊂ B+

1 , for δ small

enough. Let l be a supporting plane of Γv at x0. Then 0 ≤ Γv− l ≤ −v−− l in

Bδ(x0) and Γv(x0)− l(x0) = −v−(x0)− l(x0) = 0. By [15, Proposition 2.8], we

know that −v− − l ∈ Sλ,Λ(f
+). Applying Lemma 3.2.3 to −v− − l in Bδ(x0)

and φ = Γv − l, we get

Γv(x) ≤ l(x) + C+
(

sup
Bδ(x0)

f+
+

)
|x− x0|2 for all x ∈ Bδγ+(x0) (3.2.3)

where γ+ < 1 and C+ are universal constants. If x0 ∈ B−
1 ∩ {v = Γv}, the

proof is analogous. Hence, choosing K = 2max{C+∥f+
+∥∞, C−∥f−

+∥∞} and

r = δmin{γ+, γ−}, we get (3.2.2).

By Lemma 3.2.4, there exists a set E ⊂ B1 such that |B1 \E| = 0, and
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Γv is second order differentiable at any x ∈ E. Moreover, we have that

sup
B1

v− ≤ C
(ˆ

E∩{v=Γv}
detD2Γv(x) dx

)1/n

,

where C > 0 is a constant depending only on n. Since f+ ∈ C0(B+
1 ), then

letting δ → 0 in (3.2.3), we see that detD2Γv(x0) ≤ Cf+
+ (x0)

n for almost every

x0 ∈ B+
1 ∩ {v = Γv}. Therefore,

ˆ
E∩{v=Γv}

detD2Γv(x) dx ≤
ˆ
B−

1 ∩{v=Γv}
f−
+ (x)

n dx+

ˆ
B+

1 ∩{v=Γv}
f+
+ (x)

n dx.

Combining the two previous estimates, it follows that

sup
B1

v− ≤ sup
∂B1

v− + C
(
∥f−

+∥Ln(B−
1 ∩{v=Γv}) + ∥f+

+∥Ln(B+
1 ∩{v=Γv})

)
.

From the definition of v, we have that

sup
B1

u− ≤ sup
B1

v− and sup
∂B1

v− ≤ sup
∂B1

u− + 1
2

(
max
T

g+ + ε
)
|xn|.

Hence, letting ε→ 0, we get

sup
B1

u− ≤ sup
∂B1

u− + C
(
max
T

g+ + ∥f−
+∥Ln(B−

1 ∩{u=Γu}) + ∥f+
+∥Ln(B+

1 ∩{u=Γu})
)
,

where C > 0 depends only on n, λ, and Λ. Note that {v = Γv} ⊆ {u = Γu},

since Γv+
1
2

(
maxT g++ ε

)
|xn| is convex, and Γu is the largest convex function

that lies below u.

An immediate consequence of the ABP estimate is the maximum prin-

ciple.
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Corollary 3.2.5 (Maximum principle). Let u satisfy{
u ∈ Sλ,Λ(0) in B±

1

u+xn − u−xn ≥ 0 on T.

If u ≥ 0 on ∂B1, then u ≥ 0 in B1.

Remark 3.2.6. Replacing u by −u, we get the maximum principle for sub-

solutions.

3.3 Hölder regularity across interface

In this section, we prove Hölder regularity of viscosity solutions across

T . In particular, Theorem 3.1.8 follows by a standard argument (e.g., see [26,

Lemma 8.23]) from the next oscillation lemma, which gives a geometric decay

of the oscillation.

Lemma 3.3.1 (Oscillation lemma). Let u satisfy{
u ∈ S∗

λ,Λ(f
±) in B1

u+xn − u−xn = g on T,

with f± ∈ C0(B±
1 ) ∩ L∞(B±

1 ) and g ∈ L∞(T ). Then

osc
B1/3

u ≤ µ osc
B1

u+ C
(
∥g∥L∞(T ) + ∥f−∥Ln(B−

1 ) + ∥f+∥Ln(B+
1 )

)
,

where 0 < µ < 1 and C depend only on n, λ, and Λ.

The oscillation lemma will be a consequence of the next result. The

ideas are inspired by [58].
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Lemma 3.3.2. Let u, f±, and g be as in Lemma 3.3.1. Assume further that

∥u∥L∞(B1) ≤ 1 and u(x̄) ≥ 0 with x̄ = 1
5
en. There exist 0 < ε0, c < 1 depending

on n, λ, and Λ such that if ∥g∥L∞(T ) + ∥f−∥Ln(B−
1 ) + ∥f+∥Ln(B+

1 ) ≤ ε0, then

inf
B1/3

u ≥ −1 + c.

Proof. Since u+ 1 ≥ 0, by the Harnack inequality in B1/20(x̄) (see [15, Theo-

rem 4.3]), we get

sup
B1/20(x̄)

(u+ 1) ≤ C
(

inf
B1/20(x̄)

(u+ 1) + ∥f+∥Ln(B+
1 )

)
,

where C ≥ 1 is a universal constant. Then

1 ≤ u(x̄) + 1 ≤ sup
B1/20(x̄)

(u+ 1) ≤ C
(
u(x) + 1 + ε0

)
for any x ∈ B1/20(x̄), and thus,

u ≥ −1 + c̃ in B1/20(x̄), (3.3.1)

with c̃ = 1/C − ε0 and ε0 < 1/C. For x ∈ D = B3/4(x̄) \B1/20(x̄), we define

v(x) = ηϕ(r) + ε0|xn|, ϕ(r) = r−γ − (2/3)−γ, r = |x− x̄|,

where γ > max
{
0, Λ

λ
(n− 1)− 1

}
and η > 0 to be chosen later. We have

∂ijϕ(x) = γ(γ + 2)r−γ−4(xi − x̄i)(xj − x̄j) if i ̸= j

∂iiϕ(x) = γr−γ−2
(
(γ + 2)r−2(xi − x̄i)

2 − 1
)
.
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If 1/20 ≤ r ≤ 3/4, then at the point x = re1 + x̄,

∂ijϕ(x) = 0 if i ̸= j

∂11ϕ(x) = γ(γ + 1)r−γ−2

∂iiϕ(x) = −γr−γ−2 if i > 1.

By rotational symmetry, for any x ∈ D± we get

M−
λ,Λ(D

2v±(x)) = ηM−
λ,Λ(D

2ϕ(x)) = ηγr−γ−2
(
λ(γ + 1)− Λ(n− 1)

)
> 0

by the choice of γ. For x ∈ T ∩D, it follows that

v+xn(x)− v−xn(x) = 2ε0 ≥ ∥g∥L∞(T ) ≥ g(x).

We will choose η and ε0 so that v ≤ c̃ on ∂B1/20(x̄) and v ≤ 0 on ∂B3/4(x̄).

Note that ϕ(r) ≥ 0 if 0 < r ≤ 2/3, and ϕ(r) ≤ 0 if r ≥ 2/3. First, choose η

such that η ≤ c̃
2ϕ(1/20)

. Then choose ε0 such that ε0 ≤ min
{
c̃/2,−ηϕ(3/4)

}
.

By (3.3.1) we obtain that

v ≤ u+ 1 on ∂D.

Since u + 1 ∈ Sλ,Λ(|f±|) in D, v± ∈ C2(D±), and M−
λ,Λ(D

2v±) ≥ 0 in D±,

by [15, Lemma 2.12], we have that u+ 1− v ∈ Sλ,Λ(|f±|) in D. Also,

(u+ 1− v)+xn − (u+ 1− v)−xn ≤ g − (v+xn − v−xn) ≤ g − g = 0 on T ∩D,

in the viscosity sense. Hence, applying the ABP estimate (Theorem 3.2.1) to

u+ 1− v in D, with g ≡ 0, we see that

sup
D

(u+ 1− v)− ≤ sup
∂D

(u+ 1− v)− + C
(
∥f−∥Ln(B−

1 ) + ∥f+∥Ln(B+
1 )

)
≤ Cε0,
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where C > 0 depends only on n, λ, and Λ. Therefore, u ≥ −1 + v − Cε0 in

D. Moreover, for any x ∈ B1/3(0) \B1/20(x̄), we have that

v(x) ≥ ηϕ(23/60) = c1

and c1 > 0 depends only on n, λ, and Λ. Choosing ε0 such that ε0 ≤ c1
2C

, we

get u ≥ −1 + c1
2

in B1/3(0) \B1/20(x̄). Therefore,

inf
B1/3

u ≥ −1 + c,

with c = min{c̃, c1
2
}.

Proof of Lemma 3.3.1. Let M = ∥g∥L∞(T ) + ∥f−∥Ln(B−
1 ) + ∥f+∥Ln(B+

1 ) and let

ε0 be as in Lemma 3.3.2. Consider the rescaled function:

ũ =
2u− (infB1 u+ supB1

u
)

osc B1 u+ 2M/ε0
∈ S∗

λ,Λ(f̃
±),

with f̃± = 2f±(osc B1 u + 2M/ε0)
−1. Also, (ũ+)xn − (ũ−)xn ≤ g̃ on T , in the

viscosity sense, with g̃ = 2g(osc B1 u + 2M/ε0)
−1. Note that ∥ũ∥L∞(B1) ≤ 1,

and

∥g̃∥L∞(T ) + ∥f̃−∥Ln(B−
1 ) + ∥f̃+∥Ln(B+

1 ) ≤ ε0.

If ũ(x̄) ≥ 0, then by Lemma 3.3.2, it follows that infB1/3
ũ ≥ −1+c. Otherwise,

ũ(x̄) < 0, and applying the lemma to −ũ, we see that supB1/3
ũ ≤ 1 − c. In

both cases, we get

osc
B1/3

ũ = sup
B1/3

ũ− inf
B1/3

ũ =
2osc B1/3

u

osc B1 u+ 2M/ε0
≤ 2− c.
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Therefore,

osc
B1/3

u ≤ µ osc
B1

u+ C
(
∥g∥L∞(T ) + ∥f−∥Ln(B−

1 ) + ∥f+∥Ln(B+
1 )

)
,

with µ = 2−c
2
< 1 and C = 2−c

ε0
.

When f± ≡ 0 and g has compact support on T , we obtain the following

global Hölder estimate.

Proposition 3.3.3. Assume u ∈ C0(B1) satisfies
u ∈ Sλ,Λ(0) in B±

1

u+xn − u−xn = g on T

u = φ on ∂B1,

where g ∈ L∞(T ), supp g ⊂ T ∩ B1−2ρ, for some 0 < ρ < 1/4, and φ ∈

C0,α(∂B1), with 0 < α < 1. Then u ∈ C0,β(B1), with 0 < β ≤ min{α1, α/2},

and

∥u∥C0,β(B1)
≤ C

ργ
(
∥φ∥C0,α(∂B1) + ∥g∥L∞(T )

)
,

where 0 < α1 < 1 is given in Theorem 3.1.8, γ = max{α1, α}, and C depends

only on n, λ, and Λ.

This result follows from the interior Hölder regularity (Theorem 3.1.8)

and the following boundary pointwise Hölder estimate.

Lemma 3.3.4. Assume we are under the same conditions of Proposition 3.3.3.

Then u ∈ C0,α/2(x0) for any x0 ∈ ∂B1, with

sup
x∈Bρ(x0)∩B1

|u(x)− u(x0)|
|x− x0|α/2

≤ 2α/2

ρα
(
∥φ∥L∞(∂B1) + [φ]C0,α(x0) + C∥g∥L∞(T )

)
,

where C > 0 depends only on n, λ, Λ, and α.
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Proof. After a translation and rotation, we can assume that B1 ≡ B1(en),

x0 = 0, and φ(x0) = 0. LetM = 2α/2ρ−α
(
∥φ∥L∞(∂B1)+[φ]C0,α(x0)+C∥g∥L∞(T )

)
.

Note that if x ∈ ∂B1, then |x|2 = 2xn. Therefore, for any x ∈ ∂B1, we have

u(x) = φ(x) ≤ [φ]C0,α(0)|x|α = 2α/2[φ]C0,α(0)x
α/2
n ≤Mxα/2n . (3.3.2)

From the ABP estimate (Theorem 3.2.1), for any x ∈ ∂Bρ(0) ∩B1, we get

u(x) ≤ ∥u∥L∞(B1) ≤ ∥φ∥L∞(∂B1) + C∥g∥L∞(T ) ≤M2−α/2ρα ≤Mxα/2n , (3.3.3)

where C depends only on n, λ, and Λ.

Define h(x) = Mx
α/2
n , for x ∈ Bρ(0) ∩B1. By (3.3.2) and (3.3.3), we

have that u− h ≤ 0 on ∂(Bρ(0) ∩B1). Moreover, for any x ∈ Bρ(0) ∩B1,

M+(D2h(x)) = λM
α

2

(α
2
− 1

)
xα/2−2
n < 0.

Also, since h is smooth, h+xn − h−xn = 0 on T ∩Bρ(0). It follows that
u− h ∈ Sλ,Λ(0) in Bρ(0) ∩B1

(u− h)+xn − (u− h)−xn = 0 on T ∩Bρ(0)

u− h ≤ 0 on ∂(Bρ(0) ∩B1).

From the maximum principle (Corollary 3.2.5), we get

u(x) ≤ h(x) =Mxα/2n ≤M |x|α/2 for any x ∈ Bρ(0) ∩B1.

Applying this result to −u, and taking the supremum over all x ∈ Bρ(0)∩B1,

we get

sup
x∈Bρ(0)∩B1

|u(x)|
|x|α/2

≤ 2α/2

ρα
(
∥φ∥L∞(∂B1) + [φ]C0,α(0) + C∥g∥L∞(T )

)
.
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The following proof is in the same spirit as [15, Proposition 4.13].

Proof of Proposition 3.3.3. We need to estimate ∥u∥C0,β(B1)
= ∥u∥L∞(B1) +

[u]C0,β(B1)
. From the ABP estimate (Theorem 3.2.1), we have that

∥u∥L∞(B1) ≤ C
(
∥φ∥L∞(∂B1) + ∥g∥L∞(T )

)
,

where C depends only on n, λ, and Λ. Hence, it remains to control [u]C0,β(B1)
.

Fix any x, y ∈ B1. Let dx = dist(x, ∂B1), dy = dist(y, ∂B1), and assume

without loss of generality that dy ≤ dx. Take x0, y0 ∈ ∂B1 such that |x−x0| =

dx and |y − y0| = dy.

We study three cases. First, assume that dx ≥ dy ≥ ρ/2. Then since

0 < β ≤ α1, by Theorem 3.1.8 (rescaled), it follows that

|u(x)− u(y)|
|x− y|β

≤ [u]C0,α1 (B1−ρ/2)
≤ C

ρα1

(
∥φ∥L∞(∂B1) + ∥g∥L∞(T )

)
.

Second, assume that dy ≤ dx ≤ ρ/2. If |x− y| ≤ dx/2, then

y ∈ Bdx/2(x) ⊂ Bdx(x) ⊂ Bρ(x0) ∩B1.

Applying Theorem 3.1.8 (rescaled) to u− u(x0) in Bdx(x), we get

dβx
|u(x)− u(y)|

|x− y|β
≤ dα1

x

|u(x)− u(y)|
|x− y|α1

≤ C sup
z∈Bdx (x)

|u(z)− u(x0)|.

By Lemma 3.3.4, we get

sup
z∈Bdx (x)

|u(z)− u(x0)| ≤ dβx
2α/2

ρα
(
∥φ∥L∞(∂B1) + [φ]C0,α(x0) + C∥g∥L∞(T )

)
.
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Combining both inequalities, we see that

|u(x)− u(y)|
|x− y|β

≤ C

ρα
(
∥φ∥C0,α(∂B1) + ∥g∥L∞(T )

)
.

If |x− y| > dx/2, in particular, dy ≤ dx ≤ 2|x− y|, and thus, by Lemma 3.3.4,

|u(x)− u(y)| ≤ |u(x)− u(x0)|+ |u(x0)− u(y0)|+ |u(y0)− u(y)|

≤ 2α/2

ρα
(∥φ∥C0,α(∂B1) + C∥g∥L∞(T )

)(
dα/2x + |x0 − y0|α + dα/2y

)
≤ C

ρα
(∥φ∥C0,α(∂B1) + ∥g∥L∞(T )

)
|x− y|β,

since |x0 − y0| ≤ dx + |x− y|+ dy ≤ 5|x− y|.

Third, assume that dy ≤ ρ/2 ≤ dx. Let z be on the intersection between

∂B1−ρ/2 and the segment that joins the points x and y. Then |x−z| ≤ |x−y|,

|z − y| ≤ |x− y|, and dz = ρ/2. Hence, we can use the first case for x and z,

and the second case for y and z. We see that

|u(x)− u(y)| ≤ |u(x)− u(z)|+ |u(z)− u(y)|

≤ C

ργ
(
∥φ∥L∞(∂B1) + ∥g∥L∞(T )

)(
|x− z|β + |y − z|β

)
≤ C

ργ
(
∥φ∥L∞(∂B1) + ∥g∥L∞(T )

)
|x− y|β,

where γ = max{α1, α}, and the last inequality follows by concavity.

3.4 Lower and upper ε-envelopes

This section is devoted to the study of a family of regularizations in the

x′-direction, which play the same role as the Jensen’s approximations (see [15,

Chapter 5]). The following definition was introduced in [58].
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Definition 3.4.1. Given u ∈ USC(B1), for any ε > 0, we define the upper

ε-envelope of u in the x′-direction as

uε(y′, yn) = sup
x∈Bρ∩{xn=yn}

{
u(x′, yn)− 1

ε
|x′ − y′|2

}
for y = (y′, yn) ∈ Bρ ⊂ B1. Similarly, given u ∈ LSC(B1), we define the lower

ε-envelope of u in the x′-direction as

uε(y
′, yn) = inf

x∈Bρ∩{xn=yn}

{
u(x′, yn) +

1
ε
|x′ − y′|2

}
for y = (y′, yn) ∈ Bρ ⊂ B1.

Remark 3.4.2. Note that since u ∈ USC(B1), then the supremum in the

definition of uε is attained. Namely, for every y ∈ Bρ, there exists yε ∈

Bρ ∩ {xn = yn} such that

uε(y) = u(yε)− 1
ε
|y′ε − y′|2. (3.4.1)

Moreover, if u is bounded in B1, from the previous identity, it follows that

|y′ε − y′| ≤
(
2ε∥u∥∞

)1/2
.

Similarly for the lower ε-envelope uε.

Lemma 3.4.3. The following properties hold:

(i) uε ≥ u in Bρ and lim supε→0 u
ε = u.

(ii) uε ∈ C0,1
y′ (Bρ), with [uε]C0,1

y′ (Bρ)
≤ 6ρ/ε.

77



(iii) uε ∈ C1,1
y′ by below in Bρ. Hence, uε is punctually second order differen-

tiable in the x′-direction almost everywhere in Bρ.

Proof. (i) Clearly, uε ≥ u in Bρ.For any y ∈ Bρ, using (3.4.1) we have

0 ≤ uε(y)− u(y) = u(yε)− 1
ε
|y′ε − y′|2 − u(y) ≤ u(yε)− u(y) (3.4.2)

with yε → y as ε→ 0. Since u ∈ USC(B1),

lim sup
ε→0

u(yε) ≤ u(y).

Therefore, taking the lim sup as ε→ 0 in (3.4.2), we obtain the result.

(ii) Let y0, y1 ∈ Bρ ⊂ B1 such that (y0)n = (y1)n. Take any y ∈

Bρ ∩ {xn = (y0)n}. Then

uε(y0) ≥ u(y)− 1
ε
|y′ − y′0|2

≥ u(y)− 1
ε
|y′ − y′1|2 − 1

ε
|y′1 − y′0|2 − 2

ε
|y′1 − y′||y′1 − y′0|

≥ u(y)− 1
ε
|y′1 − y′|2 − 6ρ

ε
|y′1 − y′0|.

Taking the supremum over all y ∈ Bρ ∩ {xn = (y1)n} we get

|uε(y1)− uε(y0)| ≤ 6ρ
ε
|y′1 − y′0|.

(iii) Let y0 ∈ Bρ. Then uε(y0) = u(yε)− 1
ε
|y′ε − y′0|2. In particular,

P (y′) = u(yε)− 1
ε
|y′ε − y′|2 ≤ uε(y) for all y ∈ Bρ ∩ {xn = (y0)n}

and equality holds at y0. Hence, P touches uε by below at y0 in the y′-direction.

Note that

uε(y′, yn) +
1
ε
|y′|2 = sup

x∈Bρ∩{xn=yn}

{
u(x′, yn)− 1

ε
|x′|2 + 2

ε
x′ · y′

}
.
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Hence, uε(y′, yn)+ 1
ε
|y′|2 is convex, since it is the supremum of affine functions.

By Alexandrov theorem (see [15, Proposition 1.5]), we see that uε is punctually

second order differentiable in the x′-direction almost everywhere in Bρ.

Given a uniformly continuous function h, we define its modulus of con-

tinuity, ωh, as

wh(r) = sup
|x−y|≤r

|h(x)− h(y)| for r > 0.

Proposition 3.4.4. Let f± ∈ C0(B±
1 ) and g ∈ C0(T ). If u is a bounded

viscosity subsolution of (3.1.1), then for any ε > 0 small, it holds that uε is a

viscosity subsolution of{
F±(D2uε) = f±

ε in B±
r

(uε)+xn − (uε)−xn = gε on Tr = Br ∩ {xn = 0},

with r ≤ ρ− rε, rε = (2ε∥u∥∞)1/2, f±
ε = f − ωf±(rε), and gε = g − ωg(rε).

Remark 3.4.5. If u is a bounded viscosity supersolution of (3.1.1), then uε

is a viscosity supersolution of the previous problem.

Proof. First, we show that

F±(D2uε) ≥ f±
ε in B±

r

in the viscosity sense. Let y0 ∈ B+
r and let δ > 0 be small enough such that

Bδ(y0) ⊂ B+
r . Assume that φ ∈ C2(Bδ(y0)) touches uε from above at y0. By

(3.4.1), we have

uε(y0) = u(yε)− 1
ε
|y′ε − y′0|2,
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with |yε − y0| = |y′ε − y′0| ≤ rε. Consider the function

ϕ(y) = φ(y + y0 − yε) +
1
ε
|y′ε − y′0|2 for y ∈ B+

r ∩Bδ(yε).

Then ϕ(yε) = u(yε). Note that y + y0 − yε ∈ B+
ρ since

|y + y0 − yε| ≤ |y|+ |y0 − yε| ≤ r + rε ≤ ρ,

and thus, by definition of uε, we get

u(y) ≤ uε(y + y0 − yε) +
1
ε
|y′ε − y′0|2.

Moreover, using that φ(y) ≥ uε(y) for all y ∈ Bδ(y0), and that y + y0 − yε ∈

Bδ(y0), the previous estimate yields

u(y) ≤ φ(y + y0 − yε) +
1
ε
|y′ε − y′0|2 = ϕ(y).

Therefore, ϕ touches u from above at yε. Since u is a subsolution of (3.1.1),

we see that

F+(D2φ(y0)) = F+(D2ϕ(yε)) ≥ f+(yε) ≥ f+(y0)− ωf+(rε) = f+
ε (y0).

It remains to show the transmission condition,

(uε)+xn − (uε)−xn ≥ gε on Tr

in the viscosity sense. Let y0 = (y′0, 0) ∈ Tr and assume that

φ(y) = P (y′) + p+y+n − p−y−n ,
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with P a quadratic polynomial, touches uε by above at y0. Arguing as before,

it follows that

ϕ(y) = P (y′ + y′0 − y′ε) +
1
ε
|y′ε − y′0|2 + p+y+n − p−y−n

touches u at yε from above. Therefore,

p+ − p− = (ϕ+
xn − ϕ−

xn)(yε) ≥ g(yε) ≥ g(y0)− ωg(rε) = gε(y0).

3.5 Existence and uniqueness

To prove existence and uniqueness of viscosity solutions (Theorem 3.1.7),

we will follow the usual greatest subsolution approach, also known as Perron’s

method. One of the main ingredients of this method is the comparison princi-

ple (Theorem 3.5.6). This theorem will be a consequence of a Jensen’s unique-

ness type result (Theorem 3.5.4) and the ABP estimate (Theorem 3.2.1).

3.5.1 Half-relaxed limits

We introduce the notion of half-relaxed limits and some of its properties

that will be useful for the proof. For more details, see [21].

Definition 3.5.1. Let {uk}∞k=1 be a sequence of functions. For x ∈ B1, we

define

lim sup∗ uk(x) = lim
j→∞

sup
{
uk(y) : k ≥ j, y ∈ B1, and |y − x| ≤ 1

j

}
.
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Similarly, for x ∈ B1, we define

lim inf∗ uk(x) = lim
j→∞

inf
{
uk(y) : k ≥ j, y ∈ B1, and |y − x| ≤ 1

j

}
.

Remark 3.5.2. Observe that lim sup∗ uk ∈ USC(B1). Indeed, it is enough to

show that O =
{
x ∈ B1 : lim sup∗ uk(x) < r

}
is open, for any r ∈ R. For

simplicity, given x ∈ B1, call

Aj(x) =
{
uk(y) : k ≥ j, y ∈ B1, and |y − x| ≤ 1

j

}
.

Notice that Aj+1(x) ⊆ Aj(x), and thus, supAj+1(x) ≤ supAj(x). Fix x0 ∈ O.

Then lim sup∗ uk(x0) < r and, by monotonicity, there exists j0 ≥ 1 such that

supAj(x0) < r, for all j ≥ j0. Furthermore, there exists ε > 0 small such that

supAj(x0) < r − ε for all j ≥ j0.

In particular uk(y) < r− ε, for all k ≥ j0 and |y− x0| ≤ 1/j0. Let ρ < 1
2j0

and

j1 ≥ 2j0. Then for any x ∈ Bρ(x0), we have that

uk(y) < r − ε for all k ≥ j1 and |y − x| ≤ 1
j1
,

since |y − x0| ≤ 1/j0. Therefore,

supAj(x) ≤ r − ε < r for all j ≥ j1.

We conclude that Bρ(x0) ⊂ O, and thus, O is open.

Similarly, lim inf∗ uk ∈ LSC(B1).
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Lemma 3.5.3. Let {uk}∞k=1 ⊆ USC(B1) and u = lim sup* uk. Fix x0 ∈ B1. If

φ ∈ C0 touches u from above at x0, then there exist indexes kj → ∞, points

xj ∈ B1, and functions φj ∈ C0 such that φj touches ukj from above at xj,

xj → x0 and ukj(xj) → u(x0), as j → ∞.

Moreover, φj(x) = φ(x) − φ(xj) + ukj(xj) + δ(|x − x0|2 − |xj − x0|2), for an

arbitrary δ > 0.

Proof. Fix x0 ∈ B1. Assume that φ ∈ C0 touches u from above at x0. Then

u(x0) = φ(x0) and u(x) ≤ φ(x) for all x ∈ Br(x0).

Since uk ∈ USC(B1), by the definition of u, there exist indexes kj → ∞ and

points yj ∈ B1 such that

yj → x0 and ukj(yj) → u(x0), as j → ∞.

Fix δ > 0 small. For j ≥ 1, let xj ∈ B1 be a maximum point of

ukj(x)− φ(x)− δ|x− x0|2 on Br(x0).

Then for all x ∈ Br(x0), we have that

ukj(x) ≤ ukj(xj) + φ(x)− φ(xj) + δ(|x− x0|2 − |xj − x0|2).

By compactness, up to a subsequence, xj → y ∈ Br(x0). Using the previous

estimate, with x = yj, and passing to the limit, we get that

u(x0) = lim inf
j→∞

ukj(yj) ≤ lim inf
j→∞

ukj(xj) + φ(x0)− φ(y)− δ|y − x0|2

≤ u(y) + φ(x0)− φ(y)− δ|y − x0|2

≤ φ(x0)− δ|y − x0|2,
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since u(y) ≤ φ(y). Therefore, y = x0, since u(x0) = φ(x0), and thus, xj → x0

as j → ∞. Moreover, we see that

lim sup
j→∞

ukj(xj) ≤ u(x0) ≤ lim inf
j→∞

ukj(xj).

Hence, ukj(xj) → u(x0), as j → ∞. Define

φj(x) = ukj(xj) + φ(x)− φ(xj) + δ(|x− x0|2 − |xj − x0|2).

Then φj touches ukj from above at xj since

φj(xj) = ukj(xj) and φj(x) ≥ ukj(x) for all x ∈ Br(x0).

3.5.2 Comparison principle and uniqueness

The next theorem will be key to prove the comparison principle. As a

consequence, we show uniqueness of viscosity solutions (Corollary 3.5.5). Our

proof is inspired by [58, Lemma 4.2].

Theorem 3.5.4 (Jensen’s uniqueness type result). Let f±
1 , f

±
2 ∈ C0(B±

1 ) and

g1, g2 ∈ C0(T ). Assume that u ∈ USC(B1) and v ∈ LSC(B1) are bounded

functions satisfying{
F±(D2u) ≥ f±

1 in B±
1

u+xn − u−xn ≥ g1 on T
and

{
F±(D2v) ≤ f±

2 in B±
1

v+xn − v−xn ≤ g2 on T,

in the viscosity sense. Then the function w = u− v satisfies{
w ∈ Sλ/n,Λ(f

±
1 − f±

2 ) in B±
1

w+
xn − w−

xn ≥ g1 − g2 on T,

in the viscosity sense.
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Proof. Let u and v be as in the statement. Consider w = u − v. By [34,

Theorem 3.1], we know that w ∈ Sλ/n,Λ(f
±
1 − f±

2 ) in B±
1 . Hence, we only need

to show the transmission condition. Let x0 = (x′0, 0) ∈ T and assume that

P (x′) + p+x+n − p−x−n

touches w by above at x0, where P is a quadratic polynomial and p± ∈ R.

We need to show that

p+ − p− ≥ g1(x0)− g2(x0). (3.5.1)

Fix τ > 0 and C > 0 large to be chosen. Then

φ(x) = P (x′) + (p+ + τ)x+n − (p− − τ)x−n − Cx2n

touches w strictly by above at x0, possibly in a smaller neighborhood where

τ |xn| − Cx2n ≥ 0.

For ε > 0, consider wε = uε − vε, where uε and vε are the upper and

lower ε-envelopes of u and v, respectively, given in Definition 3.4.1. By (i)

in Lemma 3.4.3, we have that lim supε→0wε = w. By Lemma 3.5.3, up to a

subsequence, there exist points xε ∈ B1, with xε → x0, and functions φε given

by

φε(x) = φ(x)− φ(xε) + wε(xε) + |x− x0|2 − |xε − x0|2

such that φε touches wε strictly by above at xε. In particular, given δ > 0

small, there exists η > 0 such that

φε − wε ≥ η > 0 on ∂Bδ(xε).
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By Proposition 3.4.4, Remark 3.4.5, and [34, Theorem 3.1], we have

M+
λ/n,Λ(D

2wε) ≥ (f±
1 )ε − (f±

2 )ε in B±
ρ , (3.5.2)

in the viscosity sense, for some 0 < ρ < 1 such that Bδ(xε) ⊂ Bρ.

Choose C large enough so that

M+
λ/n,Λ(D

2φε) ≤ Λ∥D2
x′P∥+ 2Λ− 2λ(C − 1) (3.5.3)

< inf
B±

ρ

{
(f±

1 )ε − (f±
2 )ε

}
in B±

ρ .

Since φε touches wε by above at xε, it immediately follows that xε ∈ T .

Otherwise,

M+
λ/n,Λ(D

2φε(xε)) < (f±
1 )ε(xε)− (f±

2 )ε(xε),

which contradicts (3.5.2). Define

ψ = φε − wε − η/2. (3.5.4)

Then ψ ≥ η/2 > 0 on ∂Bδ(xε) and ψ(xε) = −η/2 < 0. Let Γψ be the convex

envelope of −ψ− in B′
2δ(xε) = B2δ(xε) ∩ {xn = 0}, where we have extended

−ψ− ≡ 0 outside of B′
δ(xε). By (iii) in Lemma 3.4.3, we know that ψ ∈ C1,1

x′ by

above inBρ. Hence, for any x′0 ∈ B′
δ(xε), there exists a convex paraboloid P (x′)

with uniform opening that touches ψ(x′, 0) by above at x′0. Using [15, Lemma

3.5], we see that Γψ ∈ C1,1
x′ (B

′
δ(xε)), and for γ > 0 sufficiently small,

|Dγ| ≡
∣∣{x′ ∈ B′

δ(xε) : Γψ(x
′) = ψ(x′, 0) and |∇′Γψ(x

′)| ≤ γ
}∣∣ > 0,

since Γψ(x
′
ε) = ψ(x′ε, 0) and 0′ ∈ ∇′Γψ(x

′
ε). Hence, choosing γ ≤ η

4δ
, there ex-

ists y′ε ∈ Dγ such that both uε and vε are punctually second order differentiable
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at yε = (y′ε, 0) in the x′-direction, and such that

l(x′) = ∇′Γψ(y
′
ε) · (x′ − y′ε) + ψ(yε)

touches ψ from below at yε on Bδ(xε). Indeed, l(x′) ≤ ψ(x′, 0), for all x′ ∈

B′
δ(xε), and

l(x′) ≤ |∇′Γψ(y
′
ε)||x′ − y′ε| ≤

η
4δ
(2δ) = η/2 ≤ ψ(x) for all x ∈ ∂Bδ(xε).

Therefore, l ≤ ψ on ∂B±
δ (xε). In particular, by (3.5.4), we see that

wε ≤ φε − l − η/2 on ∂B±
δ (xε).

Moreover, in view of (3.5.2) and (3.5.3), we get

M+
λ/n,Λ(D

2wε) >M+
λ/n,Λ(D

2(φε − l − η/2)) in B±
δ (xε).

Hence, by the comparison principle, it follows that wε ≤ φε−l−η/2 on Bδ(xε).

Define

φ̄ = φε − l − η/2.

Consider the viscosity solutions ūε and v̄ε to the Dirichlet problems,{
F±(D2ūε) = (f±

1 )ε in B±
δ (xε)

ūε = uε on ∂B±
δ (xε)

and {
F±(D2v̄ε) = (f±

2 )ε in B±
δ (xε)

v̄ε = vε on ∂B±
δ (xε).

By the comparison principle, ūε ≥ uε and v̄ε ≤ vε in Bδ(xε), and thus,

(ūε)+xn − (ūε)−xn ≥ (g1)ε and (v̄ε)
+
xn − (v̄ε)

−
xn ≤ (g2)ε (3.5.5)
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on Bδ(xε) ∩ {xn = 0}, in the viscosity sense, where (g1)ε and (g2)ε are given

in Proposition 3.4.4. More precisely,

(g1)ε = g1 − ωg1
(
(2ε∥u∥∞)1/2

)
and (g2)ε = g2 − ωg2

(
(2ε∥v∥∞)1/2

)
.

Recall that uε, vε ∈ C1,α
x′ (yε), and thus, by pointwise C1,α-estimates (see [38,

Theorem 1.6]), there exists r0 > 0 and linear polynomials l±u and l±v such that

∥ū±ε − l±u ∥L∞(B±
r (yε))

≤ Cr1+α for all 0 < r < r0.

For simplicity, call p±u = ∇l±u ·en and p±v = ∇l±v ·en. Then by similar arguments

as in [58, Lemma 4.3], we see that (3.5.5) holds pointwise at yε. Namely,

p+u − p−u ≥ (g1)ε(yε) and p+v − p−v ≤ (g2)ε(yε). (3.5.6)

Let w̄ε = ūε − v̄ε. Then by previous computations, w̄ε satisfies

M+
λ/n,Λ(D

2w̄ε) ≥ M+
λ/n,Λ(D

2φ̄) in B±
δ (xε) and φ̄ ≥ w̄ε on ∂B±

δ (xε).

It follows that φ̄ ≥ w̄ε in Bδ(xε) and φ̄(yε) = w̄ε(yε). Since w̄ε ∈ C1,α(yε), we

have that

p+ + τ = φ̄+
xn(yε) ≥ (w̄ε)

+
xn(yε) = p+u − p+v ,

p− − τ = φ̄−
xn(yε) ≤ (w̄ε)

−
xn(yε) = p−u − p−v .

Therefore, combining the previous estimates with (3.5.6), we get

p+ − p− + 2τ ≥ (g1)ε(yε)− (g2)ε(yε)

= (g1 − g2)(yε) + ωg1
(
(2ε∥u∥∞)1/2

)
− ωg2

(
(2ε∥v∥∞)1/2

)
.

Recall that yε ∈ Bδ(xε) and xε → x0, as ε → 0. Hence, letting τ → 0, then

δ → 0, so that yε → xε, and finally, ε→ 0, we obtain (3.5.1).
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Corollary 3.5.5 (Uniqueness). The transmission problem
F±(D2u±) = f± in B±

1

u+xn − u−xn = g on T

u = ϕ on ∂B1

(3.5.7)

has at most one viscosity solution.

Proof. Assume by contradiction that there are two distinct solutions u and v.

Then, by Theorem 3.5.4, w = u− v satisfies
w ∈ Sλ/n,Λ(0) in B±

1

w+
xn − w−

xn = 0 on T
w = 0 on ∂B1,

in the viscosity sense. By the maximum principle (Corollary 3.2.5), it follows

that w ≡ 0 in B1. This is a contradiction with u ̸= v. Therefore, there exists

at most one viscosity solution to the transmission problem (3.5.7).

Theorem 3.5.6 (Comparison principle). Let u, v : B1 → R be a bounded vis-

cosity subsolution and a bounded viscosity supersolution of (3.1.1), respectively.

If u ≤ v on ∂B1, then

u ≤ v in B1.

Proof. Let w = u− v. By Theorem 3.5.4, w satisfies{
w ∈ Sλ/n,Λ(0) in B±

1

w+
xn − w−

xn ≥ 0 on T.

From the ABP estimate (Theorem 3.2.1), it follows that

0 ≤ sup
B1

w− ≤ sup
∂B1

w− = 0.

Therefore, w ≥ 0 in B1, which implies the result.
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Lemma 3.5.7 (Barriers). There exist functions u, u ∈ C2(B1 \ T ) ∩ C0(B1)

such that u is a viscosity subsolution and u is a viscosity supersolution of

(3.1.1), respectively, with

u ≤ u in B1 and u = u = ϕ on ∂B1.

Proof. Let f = f+χB+
1
+ f−χB−

1
. Consider the Dirichlet problems{

M−
λ,Λ(D

2ψ) = ∥f∥∞ in B1

ψ = ϕ− 1
2
∥g∥∞|xn| on ∂B1

and {
M+

λ,Λ(D
2ψ) = −∥f∥∞ in B1

ψ = ϕ+ 1
2
∥g∥∞|xn| on ∂B1.

By [15, Proposition 9.8], there exist unique solutions ψ, ψ ∈ C2(B1)∩C0(B1).

Define the functions u, u ∈ C2(B1 \ T ) ∩ C0(B1) as

u = ψ + 1
2
∥g∥∞|xn| and u = ψ − 1

2
∥g∥∞|xn|.

Then u = u = ϕ on ∂B1. By construction, we have that{
F±(D2u) ≥ M−

λ,Λ(D
2ψ) = ∥f∥∞ ≥ f± in B±

1

(u+)xn − (u−)xn = ∥g∥∞ ≥ g on T.

Hence, u is a subsolution of (3.1.1). Arguing similarly, we see that u is a

supersolution of (3.1.1). By the comparison principle (Theorem 3.5.6), we

conclude that u ≤ u in B1.
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3.5.3 Existence via Perron’s method

Define the set of admissible subsolutions as

A =
{
v ∈ USC(B1) : u ≤ v ≤ u and v viscosity subsolution of (3.1.1)

}
.

Note that u ∈ A, so A ̸= ∅. Set

u(x) = sup
v∈A

v(x).

For x ∈ B1, we define the lower and upper semicontinuous envelopes of u as

u∗(x) = lim
r→0

inf
{
u(y) : y ∈ B1 and |y − x| ≤ r

}
u∗(x) = lim

r→0
sup

{
u(y) : y ∈ B1 and |y − x| ≤ r

}
.

Remark 3.5.8. Observe that u∗ ∈ LSC(B1) and u∗ ∈ USC(B1). Clearly,

u∗ ≤ u ≤ u∗.

Lemma 3.5.9. If {vk}∞k=1 ⊂ A, then v = lim sup* vk ∈ A.

Proof. Let {vk}∞k=1 ⊂ A and v = lim sup* vk. It is clear that u ≤ v ≤ u.

Hence, we only need to show that v is a subsolution of (3.1.1). Fix x0 ∈ B1

and assume that φ ∈ C2 touches v by above at x0. Then by Lemma 3.5.3,

there exist indexes kj → ∞, points xj ∈ B1, and functions φj ∈ C2 such that

D2φj = D2φ+ 2δI, φj touches vkj from above at xj, and

xj → x0 and vkj(xj) → v(x0), as j → ∞.

If x0 ∈ B±
1 , then for j sufficiently large we may assume that xj ∈ B±

1 .

Since vkj ∈ A, and φ touches vkj by above at xj, it follows that

F±(D2φ(xj) + 2δI) = F±(D2φj(xj)) ≥ f±(xj).
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Letting j → ∞ and δ → 0, by continuity of F,D2φ, and f±, we obtain the

result.

If x0 ∈ T , then either there exists j0 ≥ 1 such that for all j ≥ j0, we

have xj ∈ B±
1 , or for all j0 ≥ 1, there exists j ≥ j0 such that xj ∈ T . In the

first case, by the previous argument, we get

F±(D2φ(x0)) ≥ f±(x0).

In the second case, we have that

(φ+
j )xn(xj)− (φ−

j )xn(xj) ≥ g(xj).

Passing to the limit, we obtain the desired estimate.

Therefore, by Lemma 3.1.6, we conclude that v is a viscosity subsolution

of (3.1.1).

We divide the proof of Theorem 3.1.7 into two steps.

Lemma 3.5.10 (Step 1). The function u∗ is a subsolution of (3.1.1). In

particular, u∗ ∈ A.

Proof. Let x0 ∈ B1. By the construction of u∗, there exist points {xk}∞k=1 and

functions {vk}∞k=1 ⊂ A such that xk → x0, and

u∗(x0) = lim
k→∞

vk(xk).
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Hence, lim sup* vk(x0) ≥ u∗(x0). On the other hand, for all x ∈ B1, we have

u∗(x) ≥ lim sup* vj(x)

for any {vj}∞j=1 ⊂ A. Therefore, lim sup* vk(x0) = u∗(x0). In particular, if

φ ∈ C2 touches u∗ by above at x0, then the same holds for lim sup* vk. Using

Lemma 3.5.9, we know that lim sup* vk ∈ A, which implies that u∗ ∈ A.

Remark 3.5.11. By the previous lemma, it follows that u∗ ≤ u, but by

definition, u∗ ≥ u. Therefore, u∗ = u on B1, and thus, u ∈ A.

Lemma 3.5.12 (Step 2). The function u∗ is a supersolution of (3.1.1).

Proof. Assume by means of contradiction that there exists x0 ∈ B1 and some

test function φ that touches u∗ from below at x0 such that the following holds:

(i) If x0 ∈ B±
1 , then

F±(D2φ(x0)) > f±(x0).

(ii) If x0 ∈ T , then

φ+
xn(x0)− φ−

xn(x0) > g(x0).

Without loss of generality, we may assume that φ touches u∗ strictly from

below. Otherwise, take φ − ε|x − x0|2, for some ε > 0 small. By continuity,

the strict inequalities in (i) and (ii) hold in a neighborhood of x0. Indeed, let

x0 ∈ B+
1 . For δ > 0 sufficiently small, it holds that

F+(D2φ(x0))− δ > f+(x0).
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Since f+ ∈ C0(B+
1 ∪ T ), there exists r > 0, depending on δ, such that

f+(x0) > f+(x)− 2δ for all x ∈ Br(x0).

We choose r sufficiently small so that Br(x0) ⊂ B+
1 , and

∥D2φ(x)−D2φ(x0)∥ ≤ δ/(2Λ) for all x ∈ Br(x0).

This is possible since φ ∈ C2 in a neighborhood of x0. By the uniform ellipticity

of F+,

F+(D2φ(x0)) ≤ F+(D2φ(x)) + Λ∥D2φ(x)−D2φ(x0)∥.

Therefore, combining the previous estimates, we get

F+(D2φ(x)) > f+(x) for all x ∈ Br(x0).

The proof is analogous for x ∈ B−
1 . If x0 ∈ T , then possibly taking δ smaller,

we see that

φ+
xn(x0)− φ−

xn(x0)− 3δ > g(x0).

Since g ∈ C0(T ) and φ ∈ C2(B−
r (x0)) ∩ C2(B+

r (x0)), we get

φ+
xn(x0)− δ < φ+

xn(x), φ−
xn(x0) + δ > φ−

xn(x), and g(x0) > g(x)− δ

for all x ∈ T ∩Br(x0). Hence, φ is a classical strict subsolution in Br(x0).

Consider φδ = φ− δ|x− x0|2 + δr2/2. Then

φδ(x0) > u∗(x0) and φδ < u∗ ≤ u on ∂Br(x0).
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Hence, there exists some x1 ∈ Br(x0) such that u(x1) < φδ(x1). Define

ū =

{
max{u, φδ} in Br(x0)

u on B1 \Br(x0).

Then ū ∈ A, since u ∈ A and φδ is a subsolution. This is a contradiction with

u(x1) = sup
v∈A

v(x1) ≥ ū(x1) = φ(x1) > u(x1).

Therefore, u∗ is a supersolution of (3.1.1).

Remark 3.5.13. By definition, u∗ ≤ u. Since u∗ is a supersolution and u is

a subsolution of (3.1.1), and u∗ = u on ∂B1, then by the comparison principle

(Theorem 3.5.6), we get u∗ = u on B1. Furthermore, by Remark 3.5.11, we

conclude that

u∗ = u = u∗ on B1.

In particular, by Corollary 3.5.5, u ∈ C0(B1) is the unique viscosity solution

of (3.1.1) with u = ϕ on ∂B1. This concludes the proof of Theorem 3.1.7.

3.6 Pointwise C1,α estimates up to the interface

In this section, we derive C1,α estimates for viscosity solutions of{
F±(D2u) = f± in B±

1

u+xn − u−xn = g on T.
(3.6.1)

Our main goal is to show Theorem 3.1.9.

3.6.1 Homogeneous problem

For the homogeneous problem, we can use the results in [58]. In par-

ticular, solutions will be differentiable across T .
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Theorem 3.6.1. Suppose that v is a bounded viscosity solution of (3.6.1) with

f± ≡ g ≡ 0. Then v ∈ C1,ᾱ(B1/2), with

∥v∥C1,ᾱ(B1/2)
≤ C∥v∥L∞(B1)

where 0 < ᾱ < 1 and C > 0 are constants depending only on n, λ, and Λ.

Proof. We apply [58, Theorem 1.2] with a = b = 1. Then v± ∈ C1,ᾱ(B±
1/2),

and the following estimate holds:

∥v±∥
C1,ᾱ(B±

1/2
)
≤ C∥v∥L∞(B1).

In particular, v satisfies the transmission condition in the classical sense, and

thus, v is differentiable in B1/2, and the estimate holds for v in all of B1/2.

Corollary 3.6.2. Let 0 < r ≤ 1. Suppose that v is a bounded viscosity solution

of {
F±(D2v) = 0 in B±

r

v+xn − v−xn = 0 on Br ∩ {xn = 0}.

Then for any 0 < ρ ≤ r/2, we have that v ∈ C1,ᾱ(Bρ), with

osc
Bρ

(
v −∇v(0) · x

)
≤ C

(ρ
r

)1+ᾱ

osc
Br

v,

|∇v(0)| ≤ C
1

r
osc
Br

v,

where ᾱ is given by Theorem 3.6.1 and C > 0 is a constant depending only on

n, λ, and Λ.
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Proof. Fix ρ ≤ r/2. Applying Theorem 3.6.1 to v(rx), for x ∈ B1, it follows

that v ∈ C1,ᾱ(Bρ). Moreover, since v −∇v(0) · x is a continuous function on

Bρ, it follows that it attains its maximum and minimum values at some points

x1 and x2 on Bρ, respectively. By the mean value theorem, we have that

osc
Bρ

(
v −∇v(0) · x

)
=

(
v(x1)−∇v(0) · x1

)
−

(
v(x2)−∇v(0) · x2

)
≤ |∇v(x3)−∇v(0)||x1 − x2| ≤ [∇v]C0,ᾱ(Bρ)

|x1 − x2|1+ᾱ

≤ (2ρ)1+ᾱ[∇v]C0,ᾱ(Bρ)

for some x3 that belongs to the segment joining x1 and x2. To estimate

[∇v]C0,ᾱ(Bρ)
, we consider w(x) = v(rx)− v(0), for x ∈ B1. By Theorem 3.6.1,

we get

∥w∥C1,ᾱ(B1/2)
≤ C∥w∥L∞(B1).

Since ρ/r ≤ 1/2, using the previous estimate, we see that

r1+ᾱ[∇v]C0,ᾱ(Bρ)
= [∇w]C0,ᾱ(Bρ/r)

≤ C∥w∥L∞(B1)

= C∥v − v(0)∥L∞(Br) ≤ Cosc
Br

v.

Therefore, the first estimate follows. Moreover,

r|∇v(0)| = |∇w(0)| ≤ ∥∇w∥L∞(B1/2) ≤ C∥w∥L∞(B1) ≤ Cosc
Br

v.

3.6.2 Nonhomogeneous problem

The proof of Theorem 3.1.9 is based on a perturbation of the homoge-

neous case. The ideas are motivated by [45].
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Proof of Theorem 3.1.9. By interior estimates, it is enough to prove (3.1.5) for

the points on T ∩B1/2. In fact, it is enough to get a universal estimate at the

origin, and then apply it to rescalings and translations of u. Without loss of

generality we assume that u(0) = 0 and g(0) = 0. Otherwise, we may consider

u− u(0)− g(0)
2
|xn|. Let M = ∥u∥L∞(B1) + ∥g∥C0,α(T ) + Cf− + Cf+ .

We will show that there exist 0 < γ < 1 and C0, C1 > 0, depending

only on n, λ, Λ, and α, and a sequence of vectors {Ak}∞k=0 such that

osc
B

γk

(u− Ak · x) ≤ C0Mγk(1+α), (3.6.2)

|Ak − Ak−1| ≤ C1Mγ(k−1)α, (3.6.3)

for any k ≥ 0, where A−1 = 0. If this holds, then Ak → A∞, as k → ∞, and

osc
B

γk

(u− A∞ · x) ≤ osc
B

γk

(u(x)− Ak · x) + 2γk|Ak − A∞|

≤ C0Mγk(1+α) + 2C1Mγk
∞∑
j=k

γjα

≤ C0Mγk(1+α) + 2C1Mγk
γkα

1− γα
≤ CMγk(1+α).

By a standard argument, we see that u ∈ C1,α(0), and the following estimate

holds:

|u(x)− A∞ · x| ≤ CM |x|1+α.

Therefore, it remains to show (3.6.2) and (3.6.3). We prove it by induction.

For k = 0, we set A0 = 0, and choose C0 ≥ 2 universal such that

osc
B1

u ≤ 2∥u∥L∞(B1) ≤ C0M.
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Assume that the estimates hold for some k ≥ 0. We will prove that they also

hold for k + 1. Let r = γk and B = Ak. Let v ∈ C0(Br) be the viscosity

solution to the following problem:
F±(D2v) = 0 in B±

r

v+xn − v−xn = 0 on T ∩Br

v = u−B · x on ∂Br.

The existence is guaranteed by Theorem 3.1.7. From the ABP estimate (The-

orem 3.2.1),

osc
Br

v ≤ osc
Br

(u−B · x). (3.6.4)

Fix ρ ≤ r/2 to be determined. By Corollary 3.6.2, we have v ∈ C1,ᾱ(Bρ) with

osc
Bρ

(v − A · x) ≤ C
(ρ
r

)1+ᾱ

osc
Br

v, (3.6.5)

|A| ≤ C
1

r
osc
Br

v, (3.6.6)

where A = ∇v(0). Let ρ = γr and ε = ᾱ − α > 0. Choose γ ≤ 1/2 small

enough so that Cγε ≤ 1/2. Combining (3.6.4), (3.6.5), and the induction

hypothesis, we see that

osc
Bρ

(v − A · x) ≤ C
(ρ
r

)1+ᾱ

osc
Br

(u−B · x)

≤ Cγ1+α+εC0Mγk(1+α)

≤ 1
2
C0Mγ(k+1)(1+α). (3.6.7)

Let w = u−B · x− v. By Theorem 3.5.4 and the fact that B · x+ v is

differentiable, we have 
w ∈ Sλ/n,Λ(f

±) in B±
r

w+
xn − w−

xn = g on T ∩Br

w = 0 on ∂Br.
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Using the rescaled ABP estimate, and the assumptions on g and f±, we get

∥w∥L∞(Bρ) ≤ Cρ
(
∥g∥L∞(T∩Bρ) + ∥f−∥Ln(B−

ρ ) + ∥f+∥Ln(B+
ρ )

)
≤ Cρ1+α

(
∥g∥C0,α(T∩Bρ) + Cf− + Cf+

)
≤ CMρ1+α.

Choose C0 ≥ 4C. In view of (3.6.7) and the previous estimate, we have

osc
B

γk+1

(u− (A+B) · x) = osc
Bρ

(u− (A+B) · x) ≤ osc
Bρ

w + osc
Bρ

(v − A · x)

≤ 2CMρ1+α + 1
2
C0Mγ(k+1)(1+α) ≤ C0Mγ(k+1)(1+α).

Hence, the estimate in (3.6.2) holds for k + 1 with Ak+1 = A + B. To prove

(3.6.3), we use (3.6.6), (3.6.4), and the induction hypothesis to get

|Ak+1 − Ak| = |A| ≤ C1Mγkα,

where C1 = CC0. This concludes the proof.
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Chapter 4

Transmission problems for fully nonlinear
equations and C1,α interfaces

4.1 Introduction and main results

We study the following fully nonlinear transmission problem in B1:
F+(D2u+) = f+ in Ω+ = B1 ∩ {xn > ψ(x′)}
F−(D2u−) = f− in Ω− = B1 ∩ {xn < ψ(x′)}
u+ν − u−ν = g on Γ = B1 ∩ {xn = ψ(x′)},

(4.1.1)

where ψ : Rn−1 → R is a given function, D2u± denotes the Hessian of u±, ν is

the normal vector pointing at Ω+, and u±ν denotes the normal derivative of u±.

Furthermore, F± : Sn → R are fully nonlinear uniformly elliptic operators,

with ellipticity constants 0 < λ ≤ Λ, and F±(0) = 0. That is, for every

M,N ∈ Sn, with N ≥ 0, we have

λ∥N∥ ≤ F±(M +N)− F±(M) ≤ Λ∥N∥.

Our main assumption is that ψ is a C1,α function, for some 0 < α < 1.

Under this assumption, we say that Γ is a C1,α interface. As we will see, this

regularity condition presents several difficulties, given that the operators are

of second order. For instance, the closedness lemma given in Section 4.4.1 is

not available and it is not clear how to use compactness methods.
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For the classical Dirichlet and Neumann problems with C1,α boundaries,

pointwise Hölder estimates at the boundary have been developed by Y. Lian

and K. Zhang [38] and D. Li and K. Zhang [34], respectively. See also [59]. We

point out that in our work, Γ is known a priori (ψ is given). This is in contrast

to the so-called free transmission problems, where Γ is a free boundary, in the

sense that it depends on the solution itself. For instance, E. Pimentel and

M. Santos consider in [50] the model,

F+(D2u)χ{u>0} + F−(D2u)χ{u<0} = f.

In this case, the interface is the 0-level set of u, and the transmission condition

arises naturally from the equation. For related works see [1,25,29,51] and the

references therein.

The theory of viscosity solutions of (4.1.1) when ψ ≡ 0 (flat interface)

has been established in Chapter 3. The main purpose of this chapter is to

generalize the regularity results to the case where Γ is a C1,α interface. Recall

that in Chapter 2, we studied a similar problem for F± = ∆ and f± = 0. Our

approach for the fully nonlinear case builds on similar ideas. In particular, we

prove a stability result that will be a key tool in the study of optimal regularity

of solutions of (4.1.1). The existence and regularity results from Chapter 3

will be fundamental to develop the theory for the nonflat interface problem.

Throughout this chapter, we will use the same notation as in Chapter 3.

In particular, we denote by USC(B1) the space of upper semicontinuous func-

tions in B1, and LSC(B1) the space of lower semicontinuous functions in B1.
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The notion of viscosity solution is the following.

Definition 4.1.1. Assume that Γ ∈ C1. We say that a function u ∈ USC(B1)

is a viscosity subsolution of (4.1.1) in B1 if for any φ touching u by above at

x0 in B1, the following holds:

(i) If x0 ∈ Ω± and φ ∈ C2(Bδ(x0) ∩ Ω±), then

F±(D2φ(x0)) ≥ f±(x0).

(ii) If x0 ∈ Γ and φ ∈ C1(Bδ(x0) ∩ Ω−) ∩ C1(Bδ(x0) ∩ Ω+), then

φ+
ν (x0)− φ−

ν (x0) ≥ g(x0),

where φ± = φ
∣∣
Bδ(x0)∩Ω± .

Similarly, a function u ∈ LSC(B1) is a viscosity supersolution of (4.1.1) in B1

if whenever a test function φ touches u from below at x0 in B1, then it satisfies

conditions (i) and (ii), where all inequalities are reversed. Finally, a function

u ∈ C0(B1) is a viscosity solution of (4.1.1) in B1 if it is a viscosity subsolution

and a viscosity supersolution.

Next we state our main results of this chapter.

Theorem 4.1.2 (C0,α regularity). Let Γ = B1 ∩ {xn = ψ(x′)}. Let u satisfy{
u ∈ S∗

λ,Λ(f
±) in B1

u+ν − u−ν = g on Γ
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with f± ∈ C0(Ω±) ∩ L∞(B±
1 ), g ∈ L∞(Γ), and ψ ∈ C1,α(B′

1). Then u ∈

C0,α1(B1/2) with

∥u∥C0,α1 (B1/2)
≤ C

(
∥u∥L∞(B1) + ∥g∥L∞(Γ) + ∥f−∥Ln(Ω−) + ∥f+∥Ln(Ω+)

)
where 0 < α1 < 1 and C > 0 depend only on n, λ, Λ, α, and ∥ψ∥C1,α(B′

1)
.

Theorem 4.1.3 (C1,α regularity). Fix 0 < α < ᾱ, with ᾱ < 1 depending only

on n, λ, and Λ. Let Γ = B1 ∩ {xn = ψ(x′)}, where ψ ∈ C1,α(B′
1). Assume

that g ∈ C0,α(Γ) and f± satisfy( 
Br(x0)∩Ω±

|f±|n dx
)1/n

≤ Cf±r
α−1

for all r > 0 and x0 ∈ B±
1 ∪ Γ. We assume further that

sup
M∈Sn\{0}

∥F+(M)− F−(M)∥
∥M∥

≤ θ (4.1.2)

for some 0 < θ << 1 depending only on n, λ, Λ and α. Suppose that u is

a bounded viscosity solution of (4.1.1) in B1. Let Ω±
1/2 = Ω± ∩ B1/2. Then

u± ∈ C1,α(Ω±
1/2) and the following estimate holds:

∥u±∥
C1,α(Ω±

1/2
)
≤ C∥ψ∥C1,α(B′

1)

(
∥u∥L∞(B1) + ∥g∥C0,α(Γ) + Cf− + Cf+

)
where C > 0 depends only on n, λ, Λ, and α. In particular, the transmission

condition is satisfied in the classical sense.

Remark 4.1.4. The condition given in (4.1.2) may be understood as a close-

ness condition between the operators F+ and F−. For example, the linear op-

erators given by F±(M) = tr(A±M) for some A± ∈ Sn, with λI ≤ A± ≤ ΛI
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and ∥A+ − A−∥ ≤ θ, satisfy (4.1.2). This assumption is motivated by the

following observation: if g ≈ 0, then u+ν ≈ u−ν on Γ. Hence, as we will see

in Subsection 4.5.1, if the operators are close enough in the sense of (4.1.2),

then we can approximate u by functions that are differentiable across Γ (see

Lemma 4.5.1).

This chapter is organized as follows. In Section 4.2, we prove the ABP

estimate (Theorem 4.2.1) for viscosity supersolutions of (4.1.1). For this, we

construct an auxiliary function using Hopf’s lemma (Lemma 4.2.6). This bar-

rier will also be a key tool in the proof of C0,α regularity across the interface

Γ (Theorem 4.1.2) that we develop in Section 4.3. Our arguments are similar

to those in Chapter 3. Section 4.4 shows that a family of viscosity solutions

to transmission problems with C2 interfaces is closed under uniform limits

(Lemma 4.4.1). This result will be useful in the next section. In Section 4.5,

we consider flat interface problems and discuss several approximating lemmas,

including the stability result (Lemma 4.5.6). We derive the C1,α estimates

(Theorem 4.6.1) for u+ and u− at the intraface in Section 4.6. Our main the-

orem (Theorem 4.1.3) follows by a standard argument of patching the interior

and boundary estimates.

4.2 ABP estimate

As we have seen in Chapter 3, the ABP estimate is a fundamental tool

in the regularity theory of viscosity solutions. This result for C1,α interfaces

reads as follows.
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Theorem 4.2.1 (ABP estimate). Let Γ = B1 ∩ {xn = ψ(x′)}. Let u satisfy{
u ∈ Sλ,Λ(f

±) in Ω±

u+ν − u−ν ≤ g on Γ,
(4.2.1)

with f± ∈ C0(Ω±) ∩ L∞(B1), g ∈ L∞(Γ), and ψ ∈ C1,α(B′
1). Then

sup
B1

u− ≤ sup
∂B1

u− + C
(
max

Γ
g+ + ∥f−

+∥Ln(Ω−) + ∥f+
+∥Ln(Ω+)

)
,

where C > 0 depends only on n, λ, Λ, α, and [ψ]C1,α. We denote by u− =

−min{0, u}, g+ = max{0, g}, f±
+ = max{0, f±}, and Γu is the convex envelope

of −u− on B2 with u ≡ 0 on B2 \B1.

Remark 4.2.2. The proof of Theorem 4.2.1 is similar to the one given in

Theorem 3.2.1. As we discussed in Remark 3.2.2, the main difficulty that we

encounter on this types of problems is that functions satisfying (4.2.1) may be

singular on Γ. To avoid that, we construct an auxiliary function that removes

g from the transmission condition. In the flat interface case, this function is

simply a multiple of |xn|. In the nonflat case, we will construct this auxiliary

function with the help of a Hopf’s type lemma.

First, we introduce some preliminaries.

Definition 4.2.3 (Dini function). A function ω : [0,+∞) → [0,+∞) is called

a Dini function if ω is a nonnegative nondecreasing function and satisfies the

following Dini condition for some r0 > 0,

ˆ r0

0

ω(r)

r
dr < +∞.
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Definition 4.2.4 (Interior C1,Dini condition). We say that Ω satisfies the in-

terior C1,Dini condition at x0 ∈ ∂Ω if there exists r0 > 0 and a system of

coordinates {x1, . . . , xn} such that x0 = 0 in this system, and

Br0 ∩
{
xn ≥ |x′|ω(|x′|)

}
⊂ Br0 ∩ Ω,

where ω is a Dini function.

The following lemma is proved in [37].

Lemma 4.2.5 (Hopf’s lemma). Suppose that Ω satisfies the interior C1,Dini

condition at 0 ∈ ∂Ω. Let w ∈ Sλ,Λ(0) in Ω ∩ B1, with w(0) = 0 and w ≥ 0 in

Ω ∩B1. Then for any l ∈ Rn, with |l| = 1 and ln = l · en > 0, we have that

w(rl) ≥ clnw(en/2)r,

for all 0 < r < r1, where c > 0, and r1 depend only on n, λ,Λ, and ω.

Lemma 4.2.6 (Barrier). Let Ω be a C1,α domain, with 0 < α < 1. Assume

that 0 ∈ ∂Ω. Let w be the viscosity solution to
M−

λ,Λ(D
2w) = 0 in Ω ∩B2

w = 0 on Γ = ∂Ω ∩B2

w = 1 on ∂B2 ∩ Ω.

(4.2.2)

Then w is a classical solution in Ω ∩B1, with 0 ≤ w ≤ 1, and

wν ≥ c0 > 0 on Γ ∩B1, (4.2.3)

where ν is the interior normal to Ω, and c0 depends on n, λ, Λ, α, and [Γ]C1,α.
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Proof. The existence and uniqueness of a viscosity solution w of (4.2.2) follows

from the classical theory for fully nonlinear equations. Moreover, since M−
λ,Λ

is a concave operator, by [15, Theorem 6.6], we have that w ∈ C2,ᾱ(Ω0), for

any Ω0 ⊂⊂ Ω ∩ B2, and some 0 < ᾱ < 1 depending only on n, λ, and Λ.

Also, from [38, Theorem 1.6], it follows that w ∈ C1,α(Γ ∩ B1). Hence, from

the interior and pointwise boundary regularity, we get that w is a classical

solution in Ω ∩ B1. Applying the classical ABP to w and 1 − w, it is easy to

see that 0 ≤ w ≤ 1. Therefore, we only need to show (4.2.3).

Fix x0 ∈ Γ∩B1. Without loss of generality, we may assume that x0 = 0,

and Ω∩B1 = B1∩{xn > ψ(x′)} for some ψ ∈ C1,α(B′
1) with ∇′ψ(0) = 0, after

a possible rotation. Also, we rescale ψ so that [ψ]C1,α(0) ≤ 1/4. We claim that

Ω ∩B1 satisfies the interior C1,Dini condition at 0 with ωα(t) = tα/2. Indeed,

B1 ∩
{
xn ≥ |x′|ωα(|x′|)

}
⊆ B1 ∩

{
xn > ψ(x′)

}
= B1 ∩ Ω,

since |ψ(x′)| ≤ [ψ]C1,α(0)|x′|1+α < |x′|ωα(|x′|). Also, w satisfies the assumptions

from Lemma 4.2.5. Hence, setting l = ν(0), we get

w(rν(0)) ≥ cw(en/2)r for all 0 < r < r1

where c and r1 depend only on n, λ,Λ, and ωα. Since w is differentiable at 0,

we see that

wν(0) = lim
r→0+

w(0 + rν(0))− w(0)

r
≥ cw(en/2).

By the interior Harnack inequality, we have

1− w(en/2) ≤ sup
B1/8(en/2)

(1− w) ≤ c1 inf
B1/8(en/2)

(1− w) ≤ c1,
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where c1 is a universal constant. We conclude that

wν(0) ≥ c0 > 0,

with c0 = c(1− c1).

We are now ready to give the proof of the ABP estimate.

Proof of Theorem 4.2.1. Let w ∈ C0(B2) satisfy
M−

λ,Λ(D
2w±) = 0 in Ω± ∩B2

w = 0 on Γ

w = 1 on ∂B2.

By Lemma 4.2.6, we have that 0 ≤ w ≤ 1, and

w+
ν ≥ c+ > 0, w−

ν ≤ −c− < 0 on Γ ∩B1,

where ν is the interior normal to Ω+, and c+, c− depend only on n, λ, Λ, α,

and [ψ]C1,α . Fix ε > 0 small and consider in B1 the function

v = u− 1

c0

(
max

Γ
g+ + ε

)
w,

where c0 = c+ + c−. By [15, Lemma 2.12], we have that v ∈ Sλ,Λ(f
±) in B±

1 .

Moreover,

v+ν − v−ν ≤ g − 1

c0

(
max

Γ
g+ − ε

)(
w+
ν − w−

ν

)
≤ g+ −max

Γ
g+ − ε ≤ −ε

on Γ, in the viscosity sense. Without loss of generality, we may assume that

v ≥ 0 on ∂B1. Otherwise, we consider v − inf∂B1 v. Assume that v− ̸≡ 0, and

let Γv be the convex envelope of −v− in B2, where we have extended v by zero
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outside of B1. Clearly, by definition of Γv, we have that ∂B1 ∩ {v = Γv} = ∅.

Also, we claim that Γ ∩ {v = Γv} = ∅. Indeed, if A · x + b touches v from

below at x0 ∈ Γ, for some A ∈ Rn and b ∈ R, then

−ε ≥ A · ν(x0)− A · ν(x0) = 0,

which is a contradiction. Moreover, there exists δ > 0 such that for any x0 ∈ Γ,

we have Bδ(x0)∩ {v = Γv} = ∅. If not, for any k ≥ 1, there exist xk ∈ Γ such

that there is some yk ∈ B1/k(xk) ∩ {v = Γv}. Then, up to a subsequence, it

follows that xk, yk → y0 for some y0 ∈ Γ ∩ {v = Γv}, which is a contradiction.

Next, we show that Γv ∈ C1,1(B1). By [15, Lemma 3.5], it is enough to

see that there are K > 0 and 0 < r ≤ 1 such that for any x0 ∈ B1 ∩ {v = Γv}

there exists a convex paraboloid of opening K that touches Γv by above at x0

in Br(x0). Indeed, fix x0 ∈ B1∩{v = Γv}. Since x0 /∈ ∂B1∪Γ, we may assume

that x0 ∈ Ω+ ∩ {v = Γv}. Furthermore, Bδ(x0) ⊂ Ω+, for δ small enough. Let

l be a supporting plane of Γv at x0. Then 0 ≤ Γv − l ≤ −v− − l in Bδ(x0)

and Γv(x0)− l(x0) = −v−(x0)− l(x0) = 0. By [15, Proposition 2.8], we know

that −v− − l ∈ Sλ,Λ(f
+). Applying [15, Lemma 3.3] to −v− − l in Bδ(x0) and

φ = Γv − l, we get

Γv(x) ≤ l(x) + C+
(

sup
Bδ(x0)

f+
+

)
|x− x0|2 for all x ∈ Bδγ+(x0), (4.2.4)

where γ+ < 1 and C+ are universal constants. If x0 ∈ Ω− ∩ {v = Γv}, the

proof is analogous. Hence, we take K = 2max{C+∥f+
+∥∞, C−∥f−

+∥∞} and

r = δmin{γ+, γ−}.
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By [15, Lemma 3.5], there exists a set E ⊂ B1 such that |B1 \ E| = 0

and Γv is second order differentiable at any x ∈ E. Moreover, we have that

sup
B1

v− ≤ C
(ˆ

E∩{v=Γv}
detD2Γv(x) dx

)1/n

,

where C > 0 is a constant depending only on n. Moreover, since f+ ∈ C0(B+
1 ),

letting δ → 0 in (4.2.4), we see that detD2Γv(x0) ≤ Cf+
+ (x0)

n for a.e. x0 ∈

B+
1 ∩ {v = Γv}, and thus,
ˆ
E∩{v=Γv}

detD2Γv(x) dx ≤
ˆ
Ω−∩{v=Γv}

f−
+ (x)

n dx+

ˆ
Ω+∩{v=Γv}

f+
+ (x)

n dx.

Therefore,

sup
B1

v− ≤ sup
∂B1

v− + C
(
∥f−

+∥Ln(Ω−∩{v=Γv}) + ∥f+
+∥Ln(Ω+∩{v=Γv})

)
.

From the definition of v, we have that

sup
B1

u− ≤ sup
B1

v− and sup
∂B1

v− ≤ sup
∂B1

u− +
1

c0

(
max

Γ
g+ + ε

)
.

Hence, letting ε→ 0, we see that

sup
B1

u− ≤ sup
∂B1

u− + C
(
max

Γ
g+ + ∥f−

+∥Ln(Ω−) + ∥f+
+∥Ln(Ω+)

)
,

where C depends only on n, λ, Λ, α, and [ψ]C1,α .

Remark 4.2.7. In the previous proof, it is not clear how to relate the con-

tact sets {v = Γv} and {u = Γu} given that not much is known about the

barrier w. Hence, the latter set does not appear in the estimate. This is in

contrast to the flat interface problem where w is a convex explicit function

(see Theorem 3.2.1).
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An immediate consequence of the ABP estimate is the maximum prin-

ciple.

Corollary 4.2.8 (Maximum principle). Let u satisfy{
u ∈ Sλ,Λ(0) in Ω±

u+ν − u−ν ≥ 0 on Γ.

If u ≥ 0 on ∂B1, then u ≥ 0 in B1.

Remark 4.2.9. Replacing u by −u, we get the maximum principle for sub-

solutions.

4.3 Hölder regularity across interface

Our main goal of this section is to prove Theorem 4.1.2, that is, Hölder

regularity of viscosity solutions across Γ. By [26, Lemma 8.23], it is enough to

show the following oscillation lemma.

Lemma 4.3.1. Let Γ = B1 ∩ {xn = ψ(x′)}. Let u satisfy{
u ∈ S∗

λ,Λ(f
±) in B1

u+ν − u−ν = g on Γ

with f± ∈ C0(Ω±) ∩ L∞(Ω±), g ∈ L∞(Γ), and ψ ∈ C1,α(B′
1). Then

osc
B1/3

u ≤ µ osc
B1

u+ C
(
∥g∥L∞(Γ) + ∥f−∥Ln(Ω−) + ∥f+∥Ln(Ω+)

)
where 0 < µ, α1 < 1 and C > 0 depend only on n, λ, Λ, α, and ∥ψ∥C1,α(B′

1)
.

The oscillation lemma will be a consequence of the following result.
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Lemma 4.3.2. Let u, f±, g, and ψ be as in Lemma 4.3.1. Assume further

that ∥u∥L∞(B1) ≤ 1, u(x̄) ≥ 0 with x̄ = 1
5
en, and B1/20(x̄) ⊂ Ω+. There

exist 0 < ε0, c < 1 depending on n, λ,Λ, and [ψ]C1,α such that if ∥g∥L∞(Γ) +

∥f−∥Ln(Ω−) + ∥f+∥Ln(Ω+) ≤ ε0, then

inf
B1/3

u ≥ −1 + c.

The proof is very similar to the one given in Lemma 3.3.2, so we will

omit here some of the details.

Proof. By the Harnack inequality in B1/20(x̄), we get

1 ≤ u(x̄) + 1 ≤ sup
B1/20(x̄)

(u+ 1) ≤ C
(
u(x) + 1 + ε0

)
,

for some universal C ≥ 1. Hence,

u ≥ −1 + c̃ in B1/20(x̄), (4.3.1)

with c̃ = 1/C − ε0 and ε0 < 1/C. For x ∈ D = B3/4(x̄) \B1/20(x̄), we define

v(x) = ηϕ(r) +
ε0
c0
w(x), ϕ(r) = r−γ − (2/3)−γ, r = |x− x̄|,

where w and c0 are as in the proof of Theorem 4.2.1, γ > max
{
0, Λ

λ
(n−1)−1

}
,

and η > 0 to be chosen later. For any x ∈ D± = Ω± ∩D, we have

M−
λ,Λ(D

2v±(x)) ≥ ηM−
λ,Λ(D

2ϕ(x)) +
ε0
c0
M−

λ,Λ(D
2w±(x))

= ηγr−γ−2
(
λ(γ + 1)− Λ(n− 1)

)
> 0,
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by the choice of γ. For x ∈ Γ ∩D, it follows that

v+ν (x)− v−ν (x) =
ε0
c0

(
w+
ν (x)− w−

ν (x)
)
≥ 2ε0 > ∥g∥L∞(Γ) ≥ g(x).

First, choose η ≤ c̃
2ϕ(1/20)

. Then choose ε0 ≤ 1
c0
min

{
c̃/2,−ηϕ(3/4)

}
. By

(4.3.1), we obtain that

v ≤ u+ 1 on ∂D.

Since u + 1 ∈ Sλ,Λ(|f±|) in D, v± ∈ C2(D±), and M−
λ,Λ(D

2v±) ≥ 0 in D±,

by [15, Lemma 2.12], we have that u+ 1− v ∈ Sλ,Λ(|f±|) in D. Also,

(u+ 1− v)+ν − (u+ 1− v)−ν ≤ g − (v+ν − v−ν ) ≤ g − g = 0 on Γ ∩D

in the viscosity sense. Hence, applying Theorem 4.2.1 to u+ 1− v in D, with

g ≡ 0, we see that

sup
D

(u+ 1− v)− ≤ sup
∂D

(u+ 1− v)− + C
(
∥f−∥Ln(Ω−) + ∥f+∥Ln(Ω+)

)
≤ Cε0,

where C depends only on n, λ, Λ, α, and [ψ]C1,α . Therefore, u ≥ −1+v−Cε0

in D. Moreover, for any x ∈ B1/3(0) \B1/20(x̄), we have that

v(x) ≥ ηϕ(23/60) = c1

and c1 > 0 depends only on n, λ, and Λ. Choosing ε0 such that ε0 ≤ c1
2C

, we

get u ≥ −1 + c1
2

in B1/3(0) \B1/20(x̄). Therefore,

inf
B1/3

u ≥ −1 + c,

with c = min{c̃, c1
2
}.
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Proof of Lemma 4.3.1. By choosing an appropriate system of coordinates, we

assume that

ψ(0) = 0, ∇′ψ(0) = 0, and |ψ(x′)| ≤ |x′|.

Then B1/20(x̄) ⊂ Ω+, with x̄ = 1
5
en. Let M = ∥g∥L∞(Γ) + ∥f−∥Ln(Ω−) +

∥f+∥Ln(Ω+), and let ε0 be as in Lemma 4.3.2. Consider the rescaled function:

ũ =
2u− (infB1 u+ supB1

u
)

osc B1 u+ 2M/ε0
∈ S∗

λ,Λ(f̃
±)

with f̃± = 2f±(osc B1 u + 2M/ε0)
−1. Also, (ũ+)ν − (ũ−)ν ≤ g̃ on Γ, in the

viscosity sense, with g̃ = 2g(osc B1 u + 2M/ε0)
−1. Note that ∥ũ∥L∞(B1) ≤ 1,

and

max
Γ

g̃ + ∥f̃−∥Ln(Ω−) + ∥f̃+∥Ln(Ω+) ≤ ε0.

If ũ(x̄) ≥ 0, then by Lemma 4.3.2, it follows that infB1/3
ũ ≥ −1+c. Otherwise,

ũ(x̄) < 0, and applying the lemma to −ũ, we see that supB1/3
ũ ≤ 1 − c. In

both cases, we get

osc
B1/3

ũ = sup
B1/3

ũ− inf
B1/3

ũ =
2osc B1/3

u

osc B1 u+ 2M/ε0
≤ 2− c.

Therefore,

osc
B1/3

u ≤ µ osc
B1

u+ C
(
∥g∥L∞(Γ) + ∥f−∥Ln(Ω−) + ∥f+∥Ln(Ω+)

)
,

with µ = 2−c
2
< 1, and C = 2−c

ε0
.

When f± ≡ 0 and g has compact support on Γ, we obtain the following

global Hölder continuity result. We omit the proof in this case since it is

analogous to the one given in Proposition 4.3.3.
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Proposition 4.3.3. Assume u ∈ C0(B1) satisfies
u ∈ Sλ,Λ(0) in Ω±

u+ν − u−ν = g on Γ

u = φ on ∂B1,

where g ∈ L∞(Γ), with supp g ⊂ Γ ∩ B1−2ρ, for some 0 < ρ < 1/4, and φ ∈

C0,α(∂B1), with 0 < α < 1. Then u ∈ C0,β(B1), with 0 < β ≤ min{α1, α/2},

and

∥u∥C0,β(B1)
≤ C

ργ
(
∥φ∥C0,α(∂B1) + ∥g∥L∞(Γ)

)
,

where 0 < α1 < 1 is given in Theorem 4.1.2, γ = max{α1, α}, and C > 0

depends only on n, λ, Λ, α, [Γ]C1,α.

4.4 Closedness lemma

Next, we prove that a family of viscosity solutions to transmission prob-

lems with C2 interfaces is closed under uniform limits. This result will be useful

in the next section.

Lemma 4.4.1 (Closedness). For all k ≥ 1, assume that uk ∈ C0(B1) satisfies{
F±
k (D

2uk) = f±
k in Ω±

k

(u+k )ν − (u−k )ν = gk on Γk,

in the viscosity sense, where Γk = B1 ∩ {xn = ψk(x
′)}, for some ψk ∈ C2(B′

1),

f±
k ∈ C0(Ω±

k ), and gk ∈ C0(Γk). Suppose that:

(i) Fk → F uniformly on compact subsets of Sn.

(ii) uk → u uniformly on compact subsets of B1.
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(iii) ∥f±
k ∥L∞(Ω±

k ) → 0.

(iv) ∥gk − g∥L∞(Γk) = supx′∈B′
1
|gk(x′, ψk(x′))− g(x′, 0)| → 0.

(v) Γk → T in C2, that is, ∥ψk∥C2(B′
1)
→ 0.

Then u ∈ C0(B1) is a viscosity solution of{
F±(D2u) = 0 in B±

1

u+xn − u−xn = g on T.

Proof. To prove that u is a viscosity solution, we need to show that it is both a

subsolution and a supersolution. Since the arguments are analogous, it suffices

to see that u is a viscosity subsolution. First, we show that

F±(D2u) ≥ 0 in B±
1 .

Suppose by contradiction that this fails. Then there is a point x0 ∈ B±
1 and a

test function φ ∈ C2(B±
1 ) such that φ touches u from above at x0, and

F±(D2φ(x0)) < 0.

Without loss of generality, we can assume that x0 ∈ B+
1 , and that φ touches

u strictly from above. Otherwise, we can replace φ by φ + ε|x − x0|2, with ε

small. Then since uk → u uniformly on compact sets, there exists εk > 0 such

that φ+ εk ≥ uk in Br(x0) ⊂ B+
1 , for k large and some r small. Define

dk = inf
Brk

(x0)
(φ+ εk − uk) ≥ 0,
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with 0 < rk < r and rk ↘ 0. Since Γk → T , we can choose rk such that

Brk(x0) ⊂ Ω+
k , for k large. Let xk ∈ Ω+

k be a point where the infimum is

attained, that is,

dk = φ(xk) + εk − uk(xk),

and define ck = εk − dk. Then xk → x0, ck → 0, and φ + ck touches uk from

above at xk ∈ Ωk, for k large. Hence, since F+
k (D

2uk(xk)) ≥ f+
k in Ω+

k , we

must have

F+
k (D

2φ(xk)) ≥ f+
k (xk).

Passing to the limit as k → ∞, we get

F+(D2φ(x0)) ≥ 0,

which is a contradiction. Indeed, since F+
k → F+ uniformly, and F+ ∈ E(λ,Λ),

∣∣F+
k (D

2φ(xk))− F+(D2φ(x0))
∣∣

≤
∣∣F+

k (D
2φ(xk))− F+(D2φ(xk))

∣∣+ ∣∣F+(D2φ(xk))− F+(D2φ(x0))
∣∣

≤ sup
M∈Sn
∥M∥≤K

|F+
k (M)− F+(M)|+ Λ∥D2φ(xk)−D2φ(x0)∥ → 0

where we used that supk ∥D2φ(xk)∥ ≤ K. Also, |f+
k (xk)| ≤ ∥f+

k ∥L∞(Ω+
k ) → 0.

It remains to show that the transmission condition holds. If not, there

exists x0 ∈ T , r > 0 small, and φ ∈ C2(B±
r (x0)) such that φ touches u from

above at x0, and

φ+
xn(x0)− φ−

xn(x0) < g(x0). (4.4.1)
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We can assume that φ touches u strictly from above at x0, and that

F±(D2φ(x0)) < 0. (4.4.2)

If not, we can replace φ by

φ(x) + η|xn| − C|xn|2,

with η small and C large such that η|xn|−C|xn|2 ≥ 0 in a small neighborhood

of x0. Arguing as before, there exist ck, rk, xk such that ϕ(x) = φ(x′, xn −

ψk(x
′))+ ck touches uk from above at xk ∈ Brk(x0), with ck → 0, xk → x0 and

rk → 0. Then either there exists k0 ≥ 1 such that for every k ≥ k0 we have

xk ∈ Ω±
k , and thus,

F±
k (D

2ϕ(xk)) ≥ f±
k (xk),

or for every k0 ≥ 1 there exists k ≥ k0 such that xk ∈ Γk. Hence,

ϕ+
xnk

(xk)− ϕ−
xnk

(xk) ≥ gk(xk).

Passing to the limit, we get a contradiction in both cases. Indeed, let x∗k =

xk − enψk(x
′
k), and compute the partial derivatives of ϕ at xk:

ϕxi(xk) = φxi(x
∗
k)− φxn(x

∗
k)(ψk)xi(x

′
k), i < n

ϕxn(xk) = φxn(x
∗
k)

ϕxixj(xk) = φxixj(x
∗
k)− φxixn(x

∗
k)(ψk)xj(x

′
k)

− [
(
φxnxj(x

∗
k)− φxnxn(x

∗
k)(ψk)xj(x

′
k)
)
(ψk)xi(x

′
k)

+ φxn(x
∗
k)(ψk)xixj(x

′
k)], i, j < n

ϕxnxj(xk) = φxnxj(x
∗
k)− φxnxn(x

∗
k)(ψk)xj(x

′
k), j < n

ϕxnxn(xk) = φxnxn(x
∗
k).
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Suppose first that xk ∈ Γk. To get a contradiction with (4.4.1), it suffices to

show that ϕ+
xnk

(xk) → φ+
xn(x0). By analogy, we will also have that ϕ−

xnk
(xk) →

φ−
xn(x0). Moreover,

|gk(xk)− g(x0)| ≤ |gk(xk)− g(x′k, 0)|+ |g(x′k, 0)− g(x0)| → 0.

Recall that xnk(xk) =
(−∇′ψk(x

′
k),1)

(1+|∇′ψk(x
′
k)|2)1/2

. Then:

ϕ+
xnk

(xk) = − ∇′φ(x∗k) · ∇′ψk(x
′
k)

(1 + |∇′ψk(x′k)|2)1/2
+
φxn(x

∗
k)|∇′ψk(x

′
k)|2

(1 + |∇′ψk(x′k)|2)1/2

+
φxn(x

∗
k)

(1 + |∇′ψk(x′k)|2)1/2
.

Since ∥ψk∥C2(B′
1)
→ 0, it follows that ∥∇′ψk∥L∞(B′

1)
→ 0. In particular, x∗k →

x0. Therefore,

∣∣ϕ+
xnk

(xk)− φ+
xn(x0)

∣∣ ≤ |∇′φ(x∗k) · ∇′ψk(x
′
k)|

(1 + |∇′ψk(x′k)|2)1/2
+

|φxn(x∗k)||∇′ψk(x
′
k)|2

(1 + |∇′ψk(x′k)|2)1/2

+

∣∣∣∣ φxn(x
∗
k)

(1 + |∇′ψk(x′k)|2)1/2
− φxn(x0)

∣∣∣∣ ≡ I + II + II.

Since φ is twice differentiable on B±
r (x0), we get

I + II ≤ ∥∇′φ∥L∞(Br(x0)\T )∥∇′ψk∥L∞(B′
1)

+ ∥φxn∥L∞(Br(x0)\T )∥∇′ψk∥L∞(B′
1)
→ 0.

Also,

III ≤ |φxn(x∗k)− φxn(x0)|+ |(1 + |∇′ψk(x
′
k)|2)1/2 − 1||φxn(x0)| → 0.

Suppose now that xk ∈ Ω±
k . To get a contradiction with (4.4.2), it

suffices to show that D2ϕ(xk) → D2φ(x0). From the previous computations,
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D2ϕ(xk) = D2φ(x∗k)−Mk, with

(Mk)i,j = φxixn(x
∗
k)(ψk)xj(x

′
k) + [

(
φxnxj(x

∗
k)− φxnxn(x

∗
k)(ψk)xj(x

′
k)
)
(ψk)xi(x

′
k)

+ φxn(x
∗
k)(ψk)xixj(x

′
k)], i, j < n

(Mk)n,j = φxnxn(x
∗
k)(ψk)xj(x

′
k), j < n

(Mk)n,n = 0.

Reasoning as before, it is clear that ∥Mk∥∞ = sup |(Mk)i,j| → 0. Therefore,

∥D2ϕ(xk)−D2φ(x0)∥∞ ≤ ∥D2φ(x∗k)−D2φ(x0)∥∞ + ∥Mk∥∞ → 0.

4.5 Approximating lemmas

Consider the nonflat interface problems given by{
F±(D2u) = f± in Ω±

u+ν − u−ν = g on Γ.
(4.5.1)

In this section, we will prove some approximating lemmas for viscosity solu-

tions of (4.5.1) that will be useful to derive C1,α estimates in the following

section.

From the transmission condition in (4.5.1), we see that we need to

distinguish two cases. If g is close to 0, then we will approximate u with a

function that is differentiable across Γ (see Lemma 4.5.1). To prove this, it

is sufficient that the operators F+ and F− satisfy a closeness condition. Our

ideas are inspired by [51]. The most challenging case happens when g is away
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from 0, since u is singular at the interface. In this case, we will approximate

u with solutions to flat interface problems (see Chapter 3). This is known as

the stability result (see Lemma 4.5.6). We point out that, for this case, we do

not require that the operators are close.

4.5.1 Case g close to 0

Lemma 4.5.1. Let 0 < α < ᾱ, 0 < τ < 3/4, and 0 < δ < 1. Suppose that

sup
M∈Sn\{0}

∥F+(M)− F−(M)∥
∥M∥

≤ θ, (4.5.2)

for some 0 < θ << 1 depending only on n, λ, and Λ. Assume that u ∈

C0(B1) is a viscosity solution to (4.5.1), with ∥u∥L∞(B1) ≤ 1 and ∥g∥L∞(Γ) +

∥f−∥Ln(Ω−) + ∥f+∥Ln(Ω+) ≤ δ. Then there exists v ∈ C1,α
loc (B3/4) ∩ C0,β(B3/4)

such that

∥u− v∥L∞(B3/4−τ ) ≤ C(τβ + δ),

for some C > 0 and 0 < β < 1.

Proof. Fix 0 < ρ < 1/2 and 0 < δ < 1 to be determined. Given ε > 0 small,

for x ∈ B1, we define

Fε(M,x) = hε(x)F
+(M) + ((1− hε(x))F

−(M),

where hε ∈ C∞(B1), 0 ≤ hε ≤ 1, and

hε(x) =

{
1 if x ∈ {xn > ψ(x′) + ε} ∩B1

0 if x ∈ {xn < ψ(x′)− ε} ∩B1.
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Note that Fε ∈ E(λ,Λ) and Fε(0, x) ≡ 0. Moreover, Fε → F± uniformly on

compact subsets of Sn × Ω±. Indeed, let M ∈ BR ⊂ Sn and x ∈ K ⊂ Ω+, for

some R > 0 and K compact. Then

|Fε(M,x)− F+(M)| ≤ (1− hε(x))|F+(M)− F−(M)|

≤ sup
x∈K

(1− hε(x))θR → 0,

as ε → 0, where we used (4.5.2) in the last inequality. The argument is

analogous for F−.

Let vε be the viscosity solution of{
Fε(D

2vε, x) = 0 in B3/4

vε = u on ∂B3/4.

For x ∈ B1, define

βε(x) = sup
M∈Sn\{0}

|Fε(M,x)− Fε(M, 0)|
∥M∥

.

By the previous estimate and the fact that 0 ≤ hε ≤ 1, we have

βε(x) ≤ (1− hε(x))θ + (1− hε(0))θ ≤ 2θ,

for all x ∈ B1, where θ only depends on n, λ, and Λ. Hence, for any 0 < r ≤ 1,

it follows that ( 
Br

βnε dx
)1/n

≤ 2θ.

Choose 0 < θ ≤ θ0/2, where θ0 > 0 (independent of ε) is given in [15, Theorem

8.3]. Then vε ∈ C1,ᾱ
loc (B3/4) and, for any 0 < ρ < 3/4, the following estimate

holds:

∥vε∥C1,ᾱ(Bρ)
≤ C0∥u∥L∞(B1) ≤ C0.
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By compactness, vε → v in C1,α
loc (B3/4) as ε→ 0, for any 0 < α < ᾱ. Moreover,

by the closedness of viscosity solutions under uniform limits (see [15, Proposi-

tion 2.9]), v satisfies

F±(D2v) = 0 in Ω± ∩B3/4, (4.5.3)

in the viscosity sense. By Theorem 4.1.2, we have that u ∈ C0,α1(B3/4), and

∥u∥C0,α1 (B3/4)
≤ C(1 + δ) ≤ 2C,

for some 0 < α1 < 1 and C depending only on n, λ, Λ, α, and ∥Γ∥C1,α .

By [15, Proposition 4.13], it follows that vε ∈ C0,β(B3/4), with β = α1

2
, and

∥vε∥C0,β(B3/4)
≤ C∥u∥C0,α1 (∂B3/4)

≤ C1.

Let w = u − v. Then w ∈ C0,β(B3/4), with w = 0 on ∂B3/4, and for any

0 < τ < 1/4, we have

∥w∥L∞(∂B3/4−τ ) ≤ [w]C0,β(B3/4)
τβ ≤ C2τ

β,

where C2 = 2C + C1. Since u and v satisfy (4.5.1) and (4.5.3), respectively,

then {
w ∈ Sλ/n,Λ(f

±) in Ω± ∩B3/4−τ

w+
ν − w−

ν = g on Γ ∩B3/4−τ .

From the ABP estimate, and the assumptions on g and f±, we get

∥w∥L∞(B3/4−τ ) ≤ ∥w∥L∞(∂B3/4−τ ) + C
(
∥g∥L∞(Γ) + ∥f−∥Ln(Ω−) + ∥f+∥Ln(Ω+)

)
≤ ∥w∥L∞(∂B3/4−τ ) + C

(
∥g∥L∞(Γ) + Cf− + Cf+

)
≤ C2τ

β + Cδ.

Therefore, ∥u− v∥L∞(B3/4−τ ) ≤ C(τβ + δ).

124



4.5.2 Case g away from 0

Our strategy to approximate u is similar to the one in Chapter 2. For

|a| < 1/2, define Ta = B1 ∩ {xn = a}. We consider the flat interface transmis-

sion problem, {
F±(D2v) = 0 in B1 \ Ta
v+xn − v−xn = ga on Ta,

(4.5.4)

where ga is a mollification of χTa , with supp ga ⊂ B3/4 ∩ Ta. For convenience,

when a = 0, we call the solution v0 and the interface T . Since ga has compact

support, we can apply Proposition 4.3.3, with ρ = 1/8, to obtain global Hölder

continuity of solutions to these flat interface problems.

Corollary 4.5.2. Let v be a solution to (4.5.4) in B1, with φ = v|∂B1 ∈

C0,α(∂B1). Then v ∈ C0,β(B1), with 0 < β ≤ min{α1, α/2}, and

∥v∥C0,β(B1)
≤ C

(
1 + ∥φ∥C0,α(∂B1)

)
,

where 0 < α1 < 1 is given in Theorem 4.1.2, and C > 0 depends only on n, λ,

Λ, and α.

Lemma 4.5.3. For any ε > 0, there exists 0 < δ < min{ε, 1/2} such that

if v satisfies (4.5.4), with a = δ, v = v0 on ∂B1, sup∂B1
|v0| ≤ C0, and

∥gδ(·, δ)− g0(·, 0)∥L∞(B′
1)
≤ δ, then

∥v − v0∥L∞(B1) ≤ ε.

Fix 0 < r < 1. In addition, if [gδ(·, δ)− g0(·, 0)]C0,α(B′
1)
≤ δ, then

∥∇′v −∇′v0∥C0,ᾱ(Br)
+ ∥(v+0 )xn − v−xn − 1∥L∞(Dδ,r) ≤ (1− r)−(1+α)ε,

where 0 < ᾱ < α, and Dδ,r = Br ∩ {0 < xn < δ}.
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Proof. We will prove it by contradiction. Assume there exist ε0, vk, gk such

that 
F±(D2vk) = 0 in B1 \ T1/k
v+xn − v−xn = gk on T1/k
vk = v0 on ∂B1,

with ∥gk(·, 1/k)− g0(·, 0)∥C0,α(B′
1)
≤ 1/k, and

∥vk − v0∥L∞(B1) > ε0, (4.5.5)

∥∇′vk −∇′v0∥C0,ᾱ(Br)
> (1− r)−(1+α)ε0, (4.5.6)

∥(v+0 )xn − (v−k )xn − 1∥L∞(D1/k,r) > (1− r)−(1+α)ε0, (4.5.7)

for all k ≥ 1. From the ABP estimate (Theorem 4.2.1), we get

∥vk∥L∞(B1) ≤ sup
∂B1

|v0|+ C∥gk∥L∞(T1/k) ≤ C0 + 2C.

Hence, from the global Hölder estimate in Corollary 4.5.2, we have that

∥vk∥C0,α(B1)
≤ C

(
∥vk∥L∞(B1) + ∥gk∥L∞(T1/k)

)
≤ C1.

By compactness, it follows that, up to a subsequence, vk → v uniformly in B1.

Moreover, by Lemma 4.4.1, v satisfies
F±(D2v) = 0 in B±

1

v+xn − v−xn = g0 on T
v = v0 on ∂B1.

By uniqueness of viscosity solutions (Corollary 3.5.5), we see that v = v0 on B1.

This contradicts (4.5.5) for k sufficiently large. Moreover, by Theorem 3.1.9

(rescaled) we have that vk ∈ C1,α in the x′-direction in Br, with

∥∇′vk∥C0,α(Br)
≤ C

(1− r)1+α
(
∥vk∥L∞(B1) + ∥gk∥C0,α(T1/k)

)
≤ C2

(1− r)1+α
.
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By compactness, it follows that, up to a subsequence, ∇′vk → w in C0,ᾱ(Br),

with 0 < ᾱ < α. By uniqueness of distributional limits, we have that w = ∇′v0.

This contradicts (4.5.6) for k sufficiently large. Furthermore, from the C1,α

estimate of Theorem 3.1.9, we have

∥(v−k )xn∥C0,α
(
Br∩{xn≤1/k}

) ≤ C

(1− r)1+α
(
∥vk∥L∞(B1) + ∥gk∥C0,α(T1/k)

)
≤ C3

(1− r)1+α
.

By the previous argument, up to a subsequence, it follows that (v−k )xn →

(v−0 )xn uniformly in B−
r . Let x ∈ D1/k,r, and denote x̄ = (x′, 0) ∈ T . Note

that |x− x̄| < 1/k. Then

|(v+0 )xn(x)− (v−k )xn(x)− 1| ≤ |(v+0 )xn(x)− (v+0 )xn(x̄)|

+ |(v+0 )xn(x̄)− (v−0 )xn(x̄)− 1|

+ |(v−0 )xn(x̄)− (v−k )xn(x̄)|

+ |(v−k )xn(x̄)− (v−k )xn(x)|

≡ I + II + III + IV.

By construction of v0, II = 0. Moreover, III → 0 as k → +∞, by uniform

convergence, and

I ≤ [(v+0 )xn ]C0,α(B+
r )
|x− x̄|α ≤ C

(1− r)1+α
1

kα
→ 0 (r is fixed)

IV ≤ [(v−k )xn ]C0,α
(
Br∩{xn≤1/k}

)|x− x̄|α ≤ C3

(1− r)1+α
1

kα
→ 0.

This contradicts (4.5.7) for k sufficiently large.
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Remark 4.5.4. An analogous argument shows that the result holds when

a = −δ.

Corollary 4.5.5. Fix ε > 0. Let v, v ∈ C0(B1) be as in Lemma 4.5.3, with

a = δ, and a = −δ, respectively, where δ is the minimum between the two

given. Fix 0 < r < 1. Then

∥v − v∥L∞(B1) ≤ ε

∥∇′v −∇′v∥C0,ᾱ(Br)
≤ (1− r)−(1+α)ε

∥(v)+xn − (v)−xn − 1∥L∞(Dδ,r) ≤ (1− r)−(1+α)ε

where 0 < ᾱ < 1, and Dδ,r = Br ∩ {|xn| < δ}.

We denote by Ω±
r = Ω± ∩Br and Γr = Γ ∩Br, for 0 < r < 1.

Lemma 4.5.6 (Stability). Let ε > 0 be given. Assume that u, g, f±, and Γ

satisfy the assumptions from Lemma 4.6.3. Let v = vχΩ− +vχΩ+, where v and

v are given in Corollary 4.5.5, replacing B1 by B3/4. If v = u on ∂B3/4, then

∥u− v∥L∞(B1/2) ≤ Cε1/2,

where C > 0 depends only on n, λ, Λ, and α.

Proof. By Theorem 4.1.2, and the assumptions of u, g, f±, we have u ∈

C0,α(B3/4), with

∥u∥C0,α(B3/4)
≤ C

(
∥u∥L∞(B1) + ∥g∥L∞(Γ) + ∥f−∥Ln(Ω−) + ∥f+∥Ln(Ω+)

)
≤ C1.
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Moreover, since v = u on ∂B3/4, by Corollary 4.5.2 it follows that v ∈

C0,β(Ω±
3/4), with 0 < β ≤ min{α1, α/2}, and

∥v∥
C0,β(Ω±

3/4
)
≤ C

(
1 + ∥u∥C0,α(∂B3/4)

)
for some C > 0 depending only on n, λ, Λ, and α. Hence,

∥v∥
C0,β(Ω±

3/4
)
≤ C(1 + C1).

Note that v is not continuous across Γ3/4 since v−v ̸= 0 on Γ3/4. Let w satisfy
F±(D2w±) = 0 in Ω±

3/4

w = 1
2
(v+ + v−) on Γ3/4

w = v on ∂B3/4.

By Theorem 3.1.9 (rescaled), we know that v± ∈ C1,ᾱ
loc (Ω

±
3/4), and for any

0 < η < 3/4,

η∥∇v±∥L∞(Ω±
3/4−η

) + η1+ᾱ[∇v±]
C0,ᾱ(Ω±

3/4−η
)
≤ C3. (4.5.8)

Then from [38, Theorem 1.6], we have w± ∈ C1,α(Ω±
3/4−η), and we will see that

w+
ν − w−

ν ≈ 1 on Γ3/4−η.

Indeed, for any x ∈ Γ3/4−η, we have

w+
ν (x)− w−

ν (x)− 1 =
(
(w − v)+ν (x)

)
−
(
(w − v)−ν (x)

)
+
(
v+ν (x)− v−ν (x)− 1

)
≡ g1 + g2 + g3.

We will show that g1, g2, and g3 are small in terms of ε and δ. For g3, we have

|g3(x)| ≤ |v+ν (x)− v+xn(x)|+ |v+xn(x)− v−xn(x)− 1|+ |v−xn(x)− v−ν (x)|

≡ I + II + III.
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By Corollary 4.5.5, it follows that II ≤ η−(1+α)ε. Also, since ∥∇′ψ∥L∞(B′
1)
≤ δ,

I ≤ |∇v+(x)||ν(x)− en| ≤ C∥∇v+∥L∞(Ω+
3/4−η

)|∇
′ψ(x′)| ≤ C3

η
δ.

Similarly for III. For g1 and g2 we consider w − v. Since w± − v± ∈ Sλ/n,Λ(0)

in Ω±
3/4, by the classical ABP, and Corollary 4.5.5, we get

∥w± − v±∥L∞(Ω±
3/4

) ≤ ∥w± − v±∥L∞(Γ3/4) = ∥v − v∥L∞(Γ3/4) ≤ ε.

Hence, ∥w − v∥L∞(B3/4) ≤ ε. Moreover, from [38, Theorem 1.6], we have

|g1(x)| ≤
C

η

(
∥w+ − v+∥L∞(Ω+

3/4
) + ∥v − v∥C1,ᾱ(Γ3/4−η)

)
,

where ∥v∥C1,ᾱ(Γ3/4−η)
= ∥v∥L∞(Γ3/4−η) + ∥∇′v + vxn∇′ψ∥C0,ᾱ(Γ3/4−η)

. By Corol-

lary 4.5.5, and estimate (4.5.8), it follows that

∥v − v∥C1,ᾱ(Γ3/4−η)
≤ ∥v − v∥L∞(B3/4) + ∥∇′v −∇′v∥C0,ᾱ(B3/4−η)

+ ∥(vxn − vxn)∇
′ψ∥C0,ᾱ(Γ3/4−η)

≤ ε+ η−(1+α)ε+ 2∥vxn − vxn∥C0,ᾱ(Γ3/4−η)
∥∇′ψ∥C0,ᾱ(B′

1)

≤ ε+ η−(1+α)ε+ 4C3η
−(1+α)δ.

Therefore, |g1(x)| ≤ Cη−1(ε+ η−(1+α)(ε+ δ)) ≤ Cη−(2+α)ε. Similarly for g2.

Next, the function u− w satisfies
u− w ∈ Sλ/n,Λ(f

±) in Ω±
3/4

(u− w)+ν − (u− w)−ν = (g − 1)− (g1 + g2 + g3) on Γ3/4−η

u− w = 0 on ∂B3/4.
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Therefore, by Theorem 4.2.1 applied to u− w in B3/4−η, we have

∥u− w∥L∞(B3/4−η) ≤ ∥u− v∥L∞(∂B3/4−η) + ∥v − w∥L∞(∂B3/4−η)

+ C
(
∥g − 1∥L∞(Γ3/4) + ∥f−∥Ln(Ω−

3/4
) + ∥f+∥Ln(Ω+

3/4
)

+ ∥g1∥L∞(Γ3/4−η) + ∥g2∥L∞(Γ3/4−η) + ∥g3∥L∞(Γ3/4−η)

)
≤ [u− v]C0,β(B3/4)

ηβ + ∥v − w∥L∞(B3/4)

+ Cδ + 2Cη−(2+α)ε+ Cη−1δ

≤ (C1 + C2)η
β + ε+ C̃η−(2+α)ε.

Choose 0 < η < 1/4 such that η < min{ε
1

2(2+α) , ε
1
2β }. We conclude that

∥u− v∥L∞(B1/2) ≤ ∥u− w∥L∞(B3/4−η) + ∥w − v∥L∞(B3/4) ≤ Cε1/2,

where C > 0 depends only on n, λ, Λ, and α.

4.6 C1,α regularity at the interface

In this section, we derive pointwise C1,α boundary estimates for viscos-

ity solutions of nonflat interface problems following a perturbation method.

The approximating lemmas from Section 4.5 will be a key ingredient for this

argument.

Theorem 4.6.1. Fix 0 < α < ᾱ, for some ᾱ depending only on n, λ, and Λ.

Assume that 0 ∈ Γ, ψ ∈ C1,α(0), ψ ̸= 0, g ∈ C0,α(0), and f± satisfy( 
Br∩Ω±

|f±|n dx
)1/n

≤ Cf±r
α−1 for all r > 0.
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Assume further that

sup
M∈Sn\{0}

∥F+(M)− F−(M)∥
∥M∥

≤ θ,

for some 0 < θ << 1 depending only on n, λ, Λ, and α. Suppose that u is a

bounded viscosity solution of (4.5.1) in B1, with ∥u∥L∞(B1) ≤ 1. Then

u± ∈ C1,α(0).

Namely, there exist affine functions l±(x) = A± · x+ b such that

|u±(x)− l±(x)| ≤ C|x|1+α for all x ∈ Ω±
r0
,

where r0 = C0/∥ψ∥C1,α(0) and C0 > 0 depends only on n, λ,Λ, and α. Moreover,

|A−|+ |A+|+ |b|+ |C| ≤ C0∥ψ∥C1,α(0)

(
|g(0)|+ [g]C0,α(0) + Cf− + Cf+

)
.

This theorem will follow from iterating the next two lemmas.

Lemma 4.6.2. Given 0 < α < ᾱ, there exist C0 > 0, 0 < δ < 1, and 0 < ρ <

1/2, depending only on n, λ, Λ, and α, such that for any viscosity solution

u ∈ C0(B1) of (4.5.1) and (4.5.2), with ∥u∥L∞(B1) ≤ 1 and ∥g∥L∞(Γ∩B3/4) +

Cf− +Cf+ ≤ δ, there is an affine function l(x) = A ·x+ b, with |A|+ |b| ≤ C0,

such that

∥u− l∥L∞(Bρ) ≤ ρ1+α.

Proof. Fix 0 < τ < 1/4 and 0 < δ < 1 to be chosen. Let v ∈ C1,ᾱ−ε
loc (B3/4) be

the function given in Lemma 4.5.1, for some ϵ > 0 sufficiently small so that

ᾱ− ϵ > α. Then

∥u− v∥L∞(B3/4−τ ) ≤ C(τβ + δ).
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Moreover, if l(x) = v(0) +∇v(0) · x, then |∇l|+ |l(0)| ≤ C0, and the following

estimate holds,

∥v − l∥L∞(Bρ) ≤ C0ρ
1+ᾱ−ϵ,

for any 0 < ρ < 1/2. It follows that

∥u− l∥L∞(Bρ) ≤ ∥u− v∥L∞(Bρ) + ∥v − l∥L∞(Bρ) ≤ C(τβ + δ) + C0ρ
1+ᾱ−ϵ.

First, choose ρ small enough such that C0ρ
1+ᾱ−ϵ ≤ ρ1+α/3. Then choose τ

and δ such that Cτβ ≤ ρ1+α/3 and Cδ ≤ ρ1+α/3.

Lemma 4.6.3. Given 0 < α < ᾱ, there exist constants C0 > 0, 0 < ρ < 1/2,

0 < δ < ρ, depending only on n, λ, Λ, and α such that for any viscosity

solution u ∈ C0(B1) of {
F±(D2u±) = f± in Ω±

u+ν − u−ν = g on Γ,

with ∥u∥L∞(B1) ≤ 1, ∥g− 1∥L∞(Γ) +Cf− +Cf+ ≤ δ, and ∥ψ∥C1,α(B′
1)
≤ δ, there

exist affine functions l±(x) = A± ·x+ b, with |A−|+ |A+|+ |b| ≤ C0, such that

∥u± − l±∥L∞(Ω±
ρ ) ≤ ρ1+α.

Moreover, ∇′l− = ∇′l+ and l+xn − l−xn = 1.

Proof. Fix 0 < ε, δ, ρ < 1/2 to be chosen. Let v be the function given in

Lemma 4.5.6. Define l±v (x) = ∇v±(0)·x+v±(0), where v± = v
∣∣
Ω±

3/4

. We proved

that v± ∈ C1,ᾱ(Ω±
1/2), with ∥v±∥

C1,ᾱ(Ω±
1/2

)
≤ C0, for some C0 > 0 depending

only on n, λ,Λ and α. In particular, we have that |∇v±(0)|+ |v±(0)| ≤ C0.
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We define the affine functions l± as l±v plus a small correction, that is,

l±(x) = l±v (x) + l±ε (x),

with l±ε (x) = A±
ε · x+ b±ε such that

b+ε = −b−ε = 1
2
(v−(0)− v+(0)),

(A+
ε )

′ = −(A−
ε )

′ = 1
2
(∇′v−(0)−∇′v+(0)),

(A+
ε )n = −(A−

ε )n = 1
2
(1− v+xn(0) + v−xn(0)).

By Corollary 4.5.5, we have that |b±ε | + |A±
ε | ≤ ε. Moreover, by definition of

l±, it holds that

l−(0) = l+(0), ∇′l− = ∇′l+, and l+xn − l−xn = 1.

For any x ∈ Ω±
ρ , by Lemma 4.5.6, and the C1,ᾱ-estimate for v±, we

have that

|u±(x)− l±(x)| = |u±(x)− l±v (x)− l±ε (x)|

≤ |u±(x)− v±(x)|+ |v±(x)− l±v (x)|+ |l±ε (x)|

≤ Cε1/2 + C0ρ
1+ᾱ + ερ+ ε.

First, choose 0 < ρ < 1/2 such that C0ρ
1+ᾱ ≤ ρ1+α/2. This is possible since

0 < α < ᾱ < 1. Then choose 0 < ε < ρ such that Cε1/2 + ερ + ε ≤ ρ1+α/2.

Finally, recall that 0 < δ < ε is given as in Corollary 4.5.5. Therefore,

∥u± − l±∥L∞(Ω±
ρ ) ≤ ρ1+α.
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4.6.1 Proof of Theorem 4.6.1

Fix 0 < α < ᾱ. Let C0, ρ, δ > 0 be the minimum of the constants given

in Lemma 4.6.2 and Lemma 4.6.3. Let δ0 > 0 to be chosen sufficiently small.

First, we normalize the problem. Recall that we are assuming that 0 ∈ Γ, that

is, ψ(0′) = 0.

(i) After a rotation, we can assume that ν(0) = en. In particular,

∇′ψ(0′) = 0′. Also, we can suppose that [ψ]C1,α(0) ≤ δ0. Recall that

[ψ]C1,α(0) = sup
x′∈B′

1, x
′ ̸=0′

|∇′ψ(x′)|
|x′|α

.

Indeed, let Kα = [ψ]C1,α(0)/δ0, and consider v(y) = u(y/K), for y ∈ B1. Then

v satisfies {
FK(D

2v±) = f±
K in Ω̃±

v+ν − v−ν = gK on Γ̃,

where FK(M) = K−2F (K2M), for M ∈ Sn, Ω̃± = {y ∈ B1 : y/K ∈ Ω±},

Γ̃ = {y ∈ B1 : y/K ∈ Γ}, f±
K(y) = K−2f±(y/K), for y ∈ Ω̃±, and gK(y) =

K−1g(y/K), for y ∈ Γ̃. In particular, it holds that FK ∈ Eλ,Λ, that is, FK is

a fully nonlinear operator with the same ellipticity constants as F . Also, f±
K

satisfy( 
Br∩Ω̃±

|f±
K(y)|

n dy
)1/n

=
( 

Br∩Ω̃±
|K−2f±(y/K)|n dy

)1/n

=
( 

Br/K∩Ω±
|K−2f±(x)|nKndx

)1/n

=
1

K2

(  
Br/K∩Ω±

|f±(x)|n dx
)1/n

≤ K−2Cf±(r/K)α−1 = K−(1+α)Cf±r
α−1.
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Hence, Cf±K = K−(1+α)Cf± . Moreover, gK satisfies

[gK ]C0,α(0) = sup
y∈B1, y ̸=0

|gK(y)− gK(0)|
|y|α

= K−1 sup
y∈B1, y ̸=0

|g(y/K)− g(0)|
|y|α

≤ K−(1+α)[g]C1,α(0).

If y ∈ Γ̃, then yn = ψ̃(y′), with ψ̃(y′) = Kψ(y′/K). Moreover,

[ψ̃]C1,α(0) = sup
y′∈B′

1, y
′ ̸=0′

|∇′ψ̃(y′)|
|y′|α

= sup
y′∈B′

1, y
′ ̸=0′

|∇′ψ(y′/K)|
|y′|α

≤ K−α[ψ]C1,α(0) = δ0.

If we show that there exist affine functions l±K(y) = A±
K · y + bK such that

|v±(y)− l±K(y)| ≤ CK |y|1+α for all y ∈ Ω̃1/2,

and there exists C0 > 0 depending only on n, λ,Λ, and α, such that

|A−
K |+ |A+

K |+ |bK |+ |CK | ≤ C0

(
|gK(0)|+ [gK ]C0,α(0) + Cf−K

+ Cf+K

)
then rescaling back, we get that

|u±(x)− l±(x)| ≤ C|x|1+α for all x ∈ Ω(2K)−1 ,

with l±(x) = A± · x+ b, A± = KA±
K , b = bK , C = K1+αCK , and

K−1|A−|+K−1|A+|+ |b|+K−(1+α)|C|

≤ C0

(
K−1|g(0)|+K−(1+α)[g]C0,α(0) +K−(1+α)Cf− +K−(1+α)Cf+

)
.

Multiplying by K1+α, and using that Kα = δ−1
0 [ψ]C1,α(0) ≥ 1, we get

|A−|+ |A+|+ |b|+ |C| ≤ C0δ
−1
0 [ψ]C1,α(0)

(
|g(0)|+ [g]C0,α(0) + Cf− + Cf+

)
.
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(ii) Assume that ∥u∥L∞(B1) ≤ 1, Cf− + Cf+ ≤ δ0/2, and

[g]C0,α(0) = sup
x∈Γ∩B1, x ̸=0

|g(x)− g(0)|
|x|α

≤ δ0/2.

Indeed, let K = ∥u∥L∞(B1)+δ
−1
0 ([g]C0,α(0)+Cf−+Cf+), and consider v = u/K.

Then v satisfies {
FK(D

2v±) = f±
K in Ω±

v+ν − v−ν = gK on Γ,

where FK(M) = K−1F (KM), for M ∈ Sn, f±
K = K−1f±, and gK = K−1g.

Moreover, ∥v∥L∞(B1) ≤ 1, and [gK ]C0,α(0) + Cf−K
+ Cf+K

≤ δ0.

(iii) If g(0) ̸= 0, we can suppose that g(0) = 1. Indeed, we consider

v = u/g(0), and argue similarly as in (ii). The case g(0) = 0 will be addressed

at the end.

For simplicity, we use the same notation as in the statement, that is, ψ, u, F ,

f± and g.

Under these assumptions, it is enough to prove the following:

Claim. For all k ≥ 1, there exist affine functions l±k (x) = A±
k · x+ bk with

ρk−1|A−
k − A−

k−1|+ ρk−1|A+
k − A+

k−1|+ |bk − bk−1| ≤ C0ρ
(k−1)(1+α),

where A±
0 = 0, b0 = 0, C0 > 0 depends only on n, λ, Λ, and α, and such that

∥u± − l±k ∥L∞(Ω±
ρk

) ≤ ρk(1+α).

Moreover, ∇′l−k = ∇′l+k , and (l+k )xn − (l−k )xn = 1.
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We prove the claim by induction. For k = 1, by the normalization, we

are under the assumptions of Lemma 4.6.3. Indeed, by (i), we have that

∥ψ∥C1,α(B′
1)
= ∥ψ − ψ(0′)∥L∞(B′

1)
+ ∥∇ψ −∇′ψ(0′)∥L∞(B′

1)
+ [∇ψ]C0,α(B′

1)

≤ 3[ψ]C1,α(0) ≤ 3δ0 ≤ δ.

Moreover, by (ii) and (iii), it follows that

∥g − 1∥L∞(Γ) = ∥g − g(0)∥L∞(Γ) ≤ [g]C0,α(0) ≤ δ0 ≤ δ.

Hence, by Lemma 4.6.3, there exist l±1 (x) = A±
1 ·x+b1, with |A−

1 |+|A+
1 |+|b1| ≤

C0 such that

∥u± − l±1 ∥L∞(Ω±
ρ ) ≤ ρ1+α.

Moreover, ∇′l−1 = ∇′l+1 , and (l+1 )xn − (l−1 )xn = 1.

For the induction step, assume that the claim holds for some k ≥ 1,

and let l±k be such affine functions. Denote by

Ω̃±
k = {x ∈ B1 : ρ

kx ∈ Ω±},

Γ̃k = {x ∈ B1 : ρ
kx ∈ Γ}.

Note that if ψk is a parametrization of Γ̃k in B′
1, then ψk(x′) = ρ−kψ(ρkx′). In

particular, ∇′ψk(x
′) = ∇′ψ(ρkx), and thus, for x ∈ Γ̃k, if νk(x) is the normal

vector on x pointing at Ω̃+
k , then νk(x) = ν(ρkx). Define lk = l+k χΩ̃+

k
+ l−k χΩ̃−

k
.

Consider the rescaled function

v(x) =
u(ρkx)− lk(ρ

kx)

ρk(1+α)
for x ∈ B1.
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Then v satisfies {
F±
k (D

2v±) = f±
k in Ω̃±

k

v+νk − v−νk = gk on Γ̃k,
(4.6.1)

in the viscosity sense, where

F±
k (M) = ρk(1−α)F±(ρk(α−1)M), for M ∈ Sn

f±
k (x) = ρk(1−α)f±(ρkx), for x ∈ Ω̃±

k

gk(x) = ρ−kα(g(ρkx)− νn(ρ
kx)), for x ∈ Γ̃k.

By the induction hypothesis, ∥v∥L∞(B1) ≤ 1. Notice that(  
Br∩Ω̃±

k

|f±
k (y)|

n dy
)1/n

=
( 

Br∩Ω̃±
k

ρnk(1−α)|f±(ρky)|n dy
)1/n

= ρk(1−α)
(  

B
rρk

∩Ω±
k

|f±(x)|n dx
)1/n

≤ ρk(1−α)Cf±(rρ
k)α−1 = Cf±r

α−1. (4.6.2)

Hence, Cf±k = Cf± , and Cf+k + Cf−k
≤ δ0. Moreover,

∥gk∥L∞(Γ̃k)
≤ [g]C0,α(0) + [νn]C0,α(0) ≤ δ0 + δ0 = 2δ0. (4.6.3)

However, we cannot apply Lemma 4.6.2 to v since it has a jump discontinuity

on Γ̃k. In fact, if v± = v
∣∣
Ω̃±

k

, then for x ∈ Γ̃k, by the normalization (i), and

the induction hypothesis, we have

|(v− − v+)(x)| = |l−k (ρkx)− l+k (ρ
kx)|

ρk(1+α)
= ρ−kα|xn| ≤ ρ−kα sup

x∈Γ̃k

|xn|

≤ sup
x′∈B′

1

|ψk(x′)|
ρkα

≤ [ψ]C1,α(0) ≤ δ0. (4.6.4)
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Let w ∈ C0(B1), with w± = w|
Ω̃±

k

, be the viscosity solutions of the following

Dirichlet problems: 
F±
k (D

2w±) = 0 in Ω̃±
k

w = 1
2
(v+ + v−) on Γ̃k

w = v on ∂B1.

We will prove that w satisfies the assumptions of Lemma 4.5.1. By the maxi-

mum principle, ∥w∥L∞(B1) ≤ ∥v∥L∞(∂B1) ≤ 1. Moreover, v± − w± ∈ S(f±
k ) in

Ω̃±
k , v± − w± = ±1

2
ρ−kαxn on Γ̃k, and v± − w± = 0 on ∂Ω̃±

k \ Γ̃k. Then by the

classical ABP, and (4.6.4), we see that

∥v± − w±∥L∞(Ω̃±
k ) ≤ ∥v± − w±∥L∞(Γ̃±

k ) + C∥f±
k ∥Ln(Ω̃±

k ) ≤ Cδ0. (4.6.5)

since ∥f±
k ∥Ln(Ω̃±

k ) ≤ |B1|1/nCf± ≤ C(n)δ0 by (4.6.2) with r = 1. By boundary

pointwise C1,α estimates (see [38, Theorem 1.6]), for any x0 ∈ Γ̃k ∩ B3/4, we

have

|∇(v± − w±)(x0)| ≤ C
(
∥v± − w±∥L∞(Ω̃±

k ) +
1
2
ρ−kα∥ψk∥C1,α(x0) + Cf±k

)
≤ C̃δ0, (4.6.6)

where the last inequality follows from (4.6.2), (4.6.5), and the normaliza-

tion (i). Indeed:

ρ−kα∥ψk∥L∞(B′
1)
= sup

x′∈B′
1

|ψk(x′)|
ρkα

= sup
x′∈B′

1

|ψ(ρkx′)|
ρk(1+α)

≤ [ψ]C1,α(0) ≤ δ0,

ρ−kα∥∇′ψk∥L∞(B′
1)
= sup

x′∈B′
1

|∇′ψk(x
′)|

ρkα
= sup

x′∈B′
1

|∇′ψ(ρkx′)|
ρkα

≤ [ψ]C1,α(0) ≤ δ0,

ρ−kα[∇′ψk]C0,α(B′
1)
= sup

x′,y′∈B′
1, x

′ ̸=y′

|∇′ψ(ρkx′)−∇′ψ(ρky′)|
ρkα|x′ − y′|α

≤ [ψ]C1,α(B′
1)
≤ δ0.
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Hence, ρ−kα∥ψk∥C1,α(x0) ≤ ρ−kα∥ψk∥C1,α(B′
1)
≤ 3δ0.

Let x0 ∈ Γ̃k ∩ B3/4. Suppose there exists a test function φ touching w

by above at x0 in a small neighborhood of x0 contained in B3/4. In particular,

ϕ = φ− (w − v) is a test function that touches v by above at x0. Therefore,

ϕ+
νk
(x0)− ϕ−

νk
(x0) ≥ gk(x0).

It follows that:

φ+
νk
(x0)− φ−

νk
(x0) ≥ gk(x0) + (w+ − v+)νk(x0)− (w− − v−)νk(x0) ≡ g̃k(x0).

Moreover, by (4.6.3) and (4.6.6), we get

∥g̃k∥L∞(Γ̃k∩B3/4)
≤ 2δ0 + 2C̃δ0 ≤ δ.

Similarly, if φ is a test function touching w from below at x0, in a small

neighborhood of x0 contained in B3/4, then

φ+
νk
(x0)− φ−

νk
(x0) ≤ g̃k(x0).

Hence, w+
νk
−w−

νk
= g̃k on Γ̃k∩B3/4 in the viscosity sense. Applying Lemma 4.6.2

to w, we see that there exist C0 > 0 depending only on n, λ, Λ, and α, and an

affine function l(x) = A · x+ b, with |A|+ |b| ≤ C0, such that

∥w − l∥L∞(Bρ) ≤ ρ1+α/2. (4.6.7)

Note that we can always choose ρ sufficiently small such that the previous

estimate holds (see proof of Lemma 4.6.2). Hence, by (4.6.5) and (4.6.7), we

see that

∥v − l∥L∞(Bρ) ≤ ∥v − w∥L∞(Bρ) + ∥w − l∥L∞(Bρ) ≤ C̃δ0 + ρ1+α/2 ≤ ρ1+α.
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In particular, for any x ∈ Bρ, we have∣∣∣∣u(ρkx)− lk(ρ
kx)

ρk(1+α)
− l(x)

∣∣∣∣ ≤ ρ1+α,

or equivalently, if y = ρkx, then for any y ∈ Bρk+1 ,

|u(y)− lk(y)− ρk(1+α)l(ρ−ky)| ≤ ρ(k+1)(1+α). (4.6.8)

Define the affine approximations at the step k + 1 as

l±k+1(y) = l±k (y) + ρk(1+α)l(ρ−ky).

If l±k+1(y) = A±
k+1 · y + bk+1, then

A±
k+1 = A±

k + ρkαA, bk+1 = bk + ρk(1+α)b.

Using the estimate |A|+ |b| ≤ C0, we have

ρk|A±
k+1 − A±

k |+ |bk+1 − bk| ≤ C0ρ
k(1+α).

From (4.6.8), we see that

∥u± − l±k+1∥L∞(Ω±
ρk+1 )

≤ ρ(k+1)(1+α).

Moreover, by the induction hypothesis,

∇′l−k+1 −∇′l+k+1 = ∇′l−k −∇′l+k = 0,

(l+k+1)xn − (l−k+1)xn = (l+k )xn − (l−k )xn = 1.

The proof of the claim is completed.
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Finally, we consider the case g(0) = 0. As before, it is enough to prove

the following:

Claim. For all k ≥ 1, there exist affine functions lk = Ak · x+ bk such that

ρk|Ak − Ak−1|+ |bk − bk−1| ≤ C0ρ
(k−1)(1+α),

where A0 = 0, b0 = 0, C0 > 0 depends only on n, λ, Λ, and α, and such that

∥u− lk∥L∞(B
ρk

) ≤ ρk(1+α).

The proof is by induction. For k = 1, we can apply Lemma 4.6.2 to u.

Indeed, ∥u∥L∞(B1) ≤ 1, and ∥g∥L∞(Γ) + Cf− + Cf+ ≤ δ, given that

∥g∥L∞(Γ) = sup
x∈Γ

|g(x)− g(0)| ≤ [g]C0,α(0) ≤ δ0 ≤ δ.

Then we find an affine function l1(x) = A1 · x+ b1, with |A1|+ |b1| ≤ C0, such

that

∥u− l1∥L∞(Bρ) ≤ ρ1+α.

Assume the claim holds for k ≥ 1. Define

v(x) =
u(ρkx)− lk(ρ

kx)

ρk(1+α)
for x ∈ B1.

Then, arguing as before, we have that v ∈ C0(B1) satisfies (4.6.1), with the

same operator Fk, and the same right-hand sides f±
k , but with different gk:

gk(x) = ρ−kαg(ρkx) for x ∈ Γ̃k.

143



In particular, for any x ∈ Γ̃k, we have

|gk(x)| = ρ−kα|g(ρkx)| ≤ [g]C0,α(0) ≤ δ0 ≤ δ.

Then the claim follows for k + 1 by applying again Lemma 4.6.2.

Remark 4.6.4. The C1,α regularity estimate of u+ and u− up to the interface

(Theorem 4.1.3) follows from a standard argument by patching the classical

interior estimates ( [15, Theorem 8.3]) and the boundary estimates (Theo-

rem 4.6.1). For instance, see [17, Proposition 6.2].
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Chapter 5

A new family of integro-differential operators
related to the Monge-Ampère equation

5.1 Introduction

Integro-differential equations arise in the study of stochastic processes

with jumps, such as Lévy processes. As we discussed in the introduction, a

classical elliptic integro-differential operator is the fractional Laplacian,

∆su(x0) = cn,s PV

ˆ
Rn

(u(x0 + x)− u(x0))
1

|x|n+2s
dx, s ∈ (0, 1),

which can be understood as an infinitesimal generator of a stable Lévy pro-

cess. These types of processes are very well studied in probability, and their

generators may be given by

LKu(x0) =

ˆ
Rn

(u(x0 + x)− u(x0)− x · ∇u(x0))K(x)dx,

where the kernel K is a nonnegative function satisfying some integrability

condition.

Over the last few years, there has been significant interest in studying

linear and nonlinear integro-differential equations from the analytical point of

view. In particular, extremal operators like

Fu(x0) = inf
K∈K

LKu(x0) (5.1.1)
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play a fundamental role in the regularity theory. See [10–12,52] and the refer-

ences therein. The above equation is an example of a fully nonlinear equation

that appears in optimal control problems and stochastic games [32, 46]. The

infimum in (5.1.1) is taken over a family of admissible kernels K that depends

on the applications. In fact, as we discussed in Section 1.2, nonlocal Monge-

Ampère equations have been developed recently in the form (5.1.1), for some

choice of K [8, 13,27].

For the purpose of this chapter, we recall the definition of the nonlocal

Monge-Ampère operator given by L. Caffarelli and L. Silvestre [13]:

MAs u(x0) = cn,s inf
K∈Ks

n

ˆ
Rn

(u(x0 + x)− u(x0)− x · ∇u(x0))K(x) dx,

where the infimum is taken over the family,

Ks
n =

{
K : Rn → R+ : |{x ∈ Rn : K(x) > r−n−2s}| = |Br|, ∀ r > 0

}
. (5.1.2)

In this work, we introduce a new family of operators of the form,

inf
K∈Ks

k

ˆ
Rn

(u(x0 + x)− u(x0)− x · ∇u(x0))K(x) dx, (5.1.3)

for any integer 1 ≤ k < n, which arises from imposing certain geometric

conditions on the kernels. Moreover, we will see that |y|−n−2s ∈ Ks
1 ⊂ Ks

k ⊂

Ks
n, for any 1 < k < n, and thus, this family will be monotone decreasing,

and bounded from above by the fractional Laplacian and by below by the

Caffarelli–Silvestre nonlocal Monge-Ampère.

This chapter is organized as follows. In Section 5.2, we construct the

family of admissible kernels Ks
k, and give the precise definition of our operators
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for C1,1 functions. We introduce in Section 5.3 the basic tools from the theory

of rearrangements necessary for our goals. In Section 5.4, we study the infi-

mum in (5.1.3) and obtain a representation formula, provided some condition

on the level sets is satisfied (see Theorem 5.4.1). We also study the limit as

s → 1 and give a connection to optimal transport. The Hölder continuity of

Fsku is proved in Section 5.5, following similar geometric techniques from [13].

In Section 5.6, we consider a global Poisson problem, prescribing data at in-

finity, and introduce a new definition of our operators for functions that are

merely continuous and convex. We show existence of solutions via Perron’s

method and C1,1 regularity in the full space by constructing appropriate bar-

riers. Finally, we discuss some future directions in Section 5.7.

5.2 Construction of kernels

Let us start with the construction of the family of admissible kernels.

Notice that any kernel K in Ks
n, defined in (5.1.2), will have the same distri-

bution function as the kernel of the fractional Laplacian, since for any r > 0,

{
x ∈ Rn : |x|−n−2s > r−n−2s

}
= Br.

Geometrically, this means that the level sets of K are deformations in any di-

rection of Rn of the level sets of |x|−n−2s, preserving the n-dimensional volume.

In view of this approach, a natural way of finding an intermediate family

of operators between the nonlocal Monge-Ampère and the fractional Laplacian

is to consider kernels whose level sets are deformations that preserve the k-
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dimensional Hausdorff measure Hk, with 1 ≤ k < n, of the restrictions of balls

in Rn to hyperplanes generated by {ei}ki=1.

{K(·, z) > r−n−2s} ⟨e1, e2⟩+ ze3

Br ⊂ R3

Figure 5.1: Area preserving deformation in R3.

We define the set of admissible kernels as follows.

Definition 5.2.1. We say that K ∈ Ks
k if for all z ∈ Rn−k, and all r > 0, it

holds that

Hk
(
{y ∈ Rk : K(y, z) > r−n−2s}

)
=

{
Hk

(
B(r2−|z|2)1/2

)
if |z| < r

0 if |z| ≥ r,
(5.2.1)

where B(r2−|z|2)1/2 is the ball in Rk of radius (r2 − |z|2)1/2.

In Figure 5.1 we illustrate condition (5.2.1) for k = 2 and n = 3. Note

that for k = n, we recover the definition of Ks
n. Moreover, |x|−n−2s ∈ Ks

k, for

all 1 ≤ k ≤ n.

148



Proposition 5.2.2. Let 1 ≤ k < n. Then Ks
k ⊂ Ks

k+1 ⊆ Ks
n.

Proof. Let K ∈ Ks
k. Fix any z ∈ Rn−k−1 and r > 0. Then:

Hk+1
(
{y ∈ Rk+1 : K(y, z) > r−n−2s}

)
=

ˆ
Rk+1

χ{y∈Rk+1:K(y,z)>r−n−2s}(y) dy

=

ˆ
R

( ˆ
Rk

χ{(w,t)∈Rk×R :K(w,t,z)>r−n−2s}(w, t) dw
)
dt

=

ˆ
R
Hk

(
{w ∈ Rk : K(w, t, z) > r−n−2s}

)
dt ≡ I.

If |z| ≥ r, then for any t ∈ R, we have that (t, z) ∈ Rn−k, with |(t, z)| > r.

Therefore, by Definition 5.2.1, it follows that I = 0. If |z| < r, then

I =

ˆ
R
Hk

(
B(r2−t2−|z|2)1/2

)
dt

= ωk

ˆ (r2−|z|2)1/2

−(r2−|z|2)1/2
(r2 − t2 − |z|2)

k
2 dt

= ωk(r
2 − |z|2)

k
2

ˆ (r2−|z|2)1/2

−(r2−|z|2)1/2

(
1−

( t

(r2 − |z|2)1/2
)2) k

2
dt

= ωk(r
2 − |z|2)

k+1
2

ˆ 1

−1

(1− σ2)k/2 dσ

=
πk/2

Γ
(
k
2
+ 1

) π1/2Γ
(
k
2
+ 1

)
Γ
(
k+1
2

+ 1
) (r2 − |z|2)

k+1
2

= ωk+1(r
2 − |z|2)

k+1
2 = Hk+1

(
B(r2−|z|2)1/2

)
,

where ωl = Hl(B1) =
πl/2

Γ
(

l
2
+1
) and B(r2−|z|2)1/2 is the ball of radius (r2−|z|2)1/2

in Rk+1.

Definition 5.2.3. A function u : Rn → R is said to be C1,1 at the point x0,

and we write u ∈ C1,1(x0), if there is a vector p ∈ Rn, a radius ρ > 0, and a
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constant C > 0, such that

|u(x0 + x)− u(x0)− x · p| ≤ C|x|2, for all x ∈ Bρ.

We denote by [u]C1,1(x0), the minimum constant for which this property holds,

among all admissible vectors p and radii ρ.

Definition 5.2.4. Let s ∈ (1/2, 1) and 1 ≤ k < n. For any u ∈ C0(Rn) ∩

C1,1(x0), we define

Fsku(x0) = cn,s inf
K∈Ks

k

ˆ
Rn

(
u(x0 + x)− u(x0)− x · ∇u(x0)

)
K(x) dx,

where Ks
k is the set of kernels satisfying (5.2.1) and cn,s is the constant in ∆s.

As an immediate consequence of Proposition 5.2.2, we obtain that the

operators are ordered.

Corollary 5.2.5. Let s ∈ (1/2, 1) and 1 ≤ k < n. Then for any u ∈ C0(Rn)∩

C1,1(x0),

MAs u(x0) ≤ Fsku(x0) ≤ ∆su(x0).

Moreover, {Fsk}n−1
k=1 is monotone decreasing.

The regularity condition on u in Definition 5.2.4 allows us to compute

Fsku at the point x0 in the classical sense. To obtain a finite number, we need

to impose two extra conditions:

(P1) An integrability condition at infinity:
ˆ
Rn

|u(x)|
(1 + |x|)n+2s

dx <∞.

150



(P2) A convexity condition at x0:

ũ(x) ≡ u(x0 + x)− u(x0)− x · ∇u(x0) ≥ 0, for all x ∈ Rn.

Proposition 5.2.6. If u ∈ C0(Rn)∩C1,1(x0) and satisfies (P1) and (P2), then

0 ≤ Fsku(x0) <∞.

Proof. Let ρ > 0 be as in Definition 5.2.3. Then

0 ≤ Fsku(x0) ≤
ˆ
Rn

(
u(x0 + x)− u(x0)− x · ∇u(x0)

) 1

|x|n+2s
dx

≤
ˆ
Bρ

[u]C1,1(x0)|x|2

|x|n+2s
dx+

ˆ
Rn\Bρ(x0)

|u(x)|
|x− x0|n+2s

dx

+ |u(x0)|
ˆ
Rn\Bρ

1

|x|n+2s
dx+ |∇u(x0)|

ˆ
Rn\Bρ

|x|
|x|n+2s

dx

≤ C(s, ρ)
(
|u(x0)|+ |∇u(x0)|+ [u]C1,1(x0)

)
+ 1+|x0|+ρ

ρ

ˆ
Rn

|u(x)|
(1 + |x|)n+2s

dx <∞, since s ∈ (1/2, 1).

We point out that if u is not convex at x0, then the infimum could be

−∞. We show this result in the next proposition.

Proposition 5.2.7. Let u ∈ C0(Rn)∩C1,1(x0). Assume that u satisfies (P1).

If there exists x̄ ∈ Rn with x̄ = (ȳ, 0) and ȳ ∈ Rk, such that

ũ(x̄) = u(x0 + x̄)− u(x0)− x̄ · ∇u(x0) < 0,

then Fsku(x0) = −∞.
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Proof. Let K(x) = |x− x̄|−n−2s. For any r > 0 and z ∈ Rn−k, if |z| < r, then

Hk
(
{y ∈ Rk : K(y, z) > r−n−2s}

)
= Hk

(
{y ∈ Rk : |y − ȳ|2 + |z|2 < r2}

)
= Hk

(
B(r2−|z|2)1/2

)
.

Also, the measure is clearly zero if |z| ≥ r. Therefore, K ∈ Ks
k. It follows that

Fsku(x0) ≤
ˆ
Rn

ũ(x)|x− x̄|−n−2s dx

=

ˆ
Bε(x̄)

ũ(x)|x− x̄|−n−2s dx+

ˆ
Rn\Bε(x̄)

ũ(x)|x− x̄|−n−2s dx ≡ I + II.

Since u ∈ C0(Rn) ∩ C1,1(x0), we have that ũ is continuous. Hence, given that

ũ(x̄) < 0, then ũ(x) < 0, for all x ∈ Bε(x̄), for some ε > 0. Moreover, since

K /∈ L1(Bε(x̄)), it follows that I = −∞. Arguing similarly as in the proof of

Proposition 5.2.6, we see that II <∞. Therefore,

Fsku(x0) = −∞.

Remark 5.2.8. The operators Fsk are not rotation invariant. This is because,

for simplicity, in the construction of the family of admissible kernels Ks
k we

chose the first k vectors from the canonical basis of Rn. In general, we may take

any subset of k unitary vectors, τ = {τi}ki=1, and replace the first condition on

(5.2.1) by

Hk
(
{y ∈ ⟨τ⟩⊥ : K(y + zτ) > r−n−2s}

)
= Hk

(
B(r2−|z|2)1/2

)
, (5.2.2)

for all z ∈ ⟨τ⟩ and r > 0, where ⟨τ⟩ denotes the span of {τi}ki=1, and ⟨τ⟩⊥

the orthogonal subspace to ⟨τ⟩. Let SO(n) be the group of rotation matrices
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n × n. Since τi = Aei, for some A ∈ SO(n), it follows that any kernel Kτ

satisfying (5.2.2) can be written as Kτ = K ◦ A, where K satisfies (5.2.1).

Therefore to make the operators rotation invariant, one possibility is to take

the infimum over all possible rotations. Namely,

inf
A∈SO(n)

inf
K∈Ks

k

ˆ
Rn

ũ(x)K(Ax) dx.

To focus on the main ideas, we will not explore this operator in this work.

5.3 Rearrangements and measure preserving transfor-
mations

We introduce some definitions and preliminary results regarding rear-

rangements of nonnegative functions. For more detailed information, see for

instance [2, 3].

Definition 5.3.1. Let f : Rn → R be a nonnegative measurable function. We

define the decreasing rearrangement of f as the function f ∗ defined on [0,∞)

given by

f ∗(t) = sup
{
λ > 0 : |{x ∈ Rn : f(x) > λ}| > t

}
,

and the increasing rearrangement of f as the function f∗ defined on [0,∞)

given by

f∗(t) = inf
{
λ > 0 : |{x ∈ Rn : f(x) ≤ λ}| > t

}
.

We use the convention that inf ∅ = ∞.
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Proposition 5.3.2. Let f, g : Rn → R be nonnegative measurable functions.

Then ˆ ∞

0

f∗(t)g
∗(t) dt ≤

ˆ
Rn

f(x)g(x) dx ≤
ˆ ∞

0

f ∗(t)g∗(t) dt.

The upper bound is the classical Hardy–Littlewood inequality. For the

proof see [3, Theorem 2.2] or [2, Corollary 2.16]. For the sake of completeness,

we give the proof of the lower bound.

Proof. For j ≥ 1, let fj = f |Bj
and gj = g|Bj

, where Bj denotes the ball of

radius j centered at 0 in Rn. By [2, Corollary 2.18], it follows that
ˆ |Bj |

0

(fj)∗(t)(gj)
∗(t) dt ≤

ˆ
Bj

fj(x)gj(x) dx.

Since f, g ≥ 0, we get
ˆ
Bj

fj(x)gj(x) dx ≤
ˆ
Rn

f(x)g(x) dx.

Note that for any t ∈ [0, |Bj|], we have

{
λ > 0 : |{x ∈ Bj : fj(x) ≤ λ}| > t

}
⊂

{
λ > 0 : |{x ∈ Rn : f(x) ≤ λ}| > t

}
.

Hence, (fj)∗(t) ≥ f∗(t), and
ˆ |Bj |

0

(fj)∗(t)(gj)
∗(t) dt ≥

ˆ |Bj |

0

f∗(t)(gj)
∗(t) dt.

Moreover, gj ↗ g pointwise on Rn. Then by [2, Proposition 1.39], we have

(gj)
∗ ↗ g∗ pointwise on [0,∞), as j → ∞. By the monotone convergence

theorem, we get

lim
j→∞

ˆ |Bj |

0

f∗(t)(gj)
∗(t) dt =

ˆ ∞

0

f∗(t)g
∗(t) dt.
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Combining the previous estimates, we conclude that

ˆ ∞

0

f∗(t)g
∗(t) dt ≤

ˆ
Rn

f(x)g(x) dx.

Definition 5.3.3. We say that a measurable function ψ : Rl → Rm is a

measure preserving transformation if for any measurable set E in Rm, it holds

that

Hl(ψ−1(E)) = Hm(E).

Lemma 5.3.4. If ψ : Rl → Rm is a measure preserving, then for any measur-

able f : Rm → R, and any measurable set E in Rm, it follows that

ˆ
E

f(y) dy =

ˆ
ψ−1(E)

f(ψ(z)) dz.

An important result by Ryff [53] provides a sufficient condition for

which we can recover a function given its decreasing/increasing rearrangement,

by means of a measure preserving transformation.

Theorem 5.3.5 (Ryff’s theorem). Let f : Rn → R be a nonnegative mea-

surable function. If limt→∞ f ∗(t) = 0, then there exists a measure preserving

σ : supp(f) → supp(f ∗) such that

f = f ∗ ◦ σ

almost everywhere on the support of f . Similarly, if limt→∞ f∗(t) = ∞, then

f = f∗ ◦ σ.
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We will call Ryff’s map, a measure preserving σ satisfying Ryff’s theo-

rem.

Remark 5.3.6. In general, σ is not invertible. Furthermore, there may not

exist a measure preserving transformation ψ such that f ∗ = f ◦ ψ.

As a consequence of Ryff’s theorem, we obtain a representation formula

for the admissible kernels. We denote ωk = Hk(B1).

Lemma 5.3.7. Let K ∈ Ks
k. Fix z ∈ Rn−k and denote by Kz(y) = K(y, z).

Then

K∗
z (t) =

((
ω−1
k t

)2/k
+ |z|2

)−n+2s
2 .

In particular, there exists a measure preserving σz : supp(Kz) → (0,∞), such

that

K(y, z) = K∗
z (σz(y)), for a.e. y ∈ supp(Kz).

Proof. Fix z ∈ Rn−k. Then

K∗
z (t) = sup

{
λ > 0 : Hk

(
{y ∈ Rk : K(y, z) > λ}

)
> t

}
= sup

{
λ < |z|−n−2s : Hk

(
B(λ−2/(n+2s)−|z|2)1/2

)
> t

}
= sup

{
λ < |z|−n−2s : ωk(λ

−2/(n+2s) − |z|2)k/2 > t
}

= sup
{
λ < |z|−n−2s : λ−2/(n+2s) >

(
ω−1
k t

)2/k
+ |z|2

}
=

((
ω−1
k t

)2/k
+ |z|2

)−n+2s
2 .

Moreover, limt→∞K∗
z (t) = 0. Therefore, the result follows from Theorem 5.3.5.
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In view of Definition 5.3.1, we introduce the symmetric rearrangement

of a function in Rn with respect to the first k variables as follows. Fix k ∈ N

with 1 ≤ k < n. Given x ∈ Rn, we denote x = (y, z), with y ∈ Rk and

z ∈ Rn−k. Furthermore, for z fixed, we call fz the restriction of f to Rk.

Namely, fz(y) = f(y, z).

Definition 5.3.8. Let f : Rn → R be a nonnegative measurable function. We

define the k-symmetric decreasing rearrangement of f as the function f ∗,k :

Rn → [0,∞] given by

f ∗,k(x) = f ∗
z (ωk|y|k),

and the k-symmetric increasing rearrangement as the function f∗,k : Rn →

[0,∞] given by

f∗,k(x) = (fz)∗(ωk|y|k).

When k = n, we obtain the usual symmetric rearrangement.

Remark 5.3.9. (1) Notice that f ∗,k and f∗,k are radially symmetric and mono-

tone decreasing/increasing, with respect to y. In the literature, this type of

symmetrization is also known as the Steiner symmetrization [2, Chapter 6].

(2) By Lemma 5.3.7, we see that any kernel K ∈ Ks
k satisfies

K∗,k(x) = |x|−n−2s, for x ̸= 0. (5.3.1)
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5.4 Analysis of Fs
k

Our main goal of this section is to study the infimum in the definition

of the operator,

Fsku(x0) = cn,s inf
K∈Ks

k

ˆ
Rn

ũ(x)K(x) dx,

where ũ(x) = u(x0 + x)− u(x0)− x · ∇u(x0). Throughout the section, we will

assume that u ∈ C0(Rn) ∩ C1,1(x0) and satisfies properties (P1) and (P2), so

that 0 ≤ Fsku(x0) <∞.

5.4.1 Analysis of the infimum

We will study the following cases:

Case 1. For all λ > 0 and z ∈ Rn−k,

Hk
(
{y ∈ Rk : ũ(y, z) ≤ λ}

)
<∞.

Case 2. There exists some λ0 > 0 such that for all z ∈ Rn−k,

Hk
(
{y ∈ Rk : ũ(y, z) ≤ λ}

){<∞ for 0 < λ < λ0

= ∞ for λ ≥ λ0.

Case 3. For all λ > 0 and z ∈ Rn−k,

Hk
(
{y ∈ Rk : ũ(y, z) ≤ λ}

)
= ∞.

In the first case, when all of the level sets of ũ have finite measure,

we show that the infimum is attained at some kernel whose level sets depend

on the measure preserving transformation that rearranges the level sets of ũ.

More precisely:
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Theorem 5.4.1. Suppose that for all λ > 0 and z ∈ Rn−k,

Hk
(
{y ∈ Rk : ũ(y, z) ≤ λ}

)
<∞.

Then, for any z ∈ Rn−k, there exists a measure preserving σz : Rk → [0,∞)

such that

Fsku(x0) = cn,s

ˆ
Rn−k

ˆ
Rk

ũ(y, z)(
(ω−1

k σz(y))2/k + |z|2
)n+2s

2

dydz.

In particular, the infimum is attained.

Remark 5.4.2. Observe that if ũ(·, z) is constant in some set of positive

measure, then the kernel where the infimum is attained is not unique since the

integral is invariant under any measure preserving rearrangement of K within

this set (see [53]).

Before we give the proof of Theorem 5.4.1, we need a lemma regarding

the k-symmetric increasing rearrangement of ũ. By Definition 5.3.8, this is

given by the following expression:

ũ∗,k(y, z) = inf
{
λ > 0 : Hk

(
{w ∈ Rk : ũ(w, z) ≤ λ}

)
> ωk|y|k

}
.

Lemma 5.4.3. Fix z ∈ Rn−k. If Hk
(
{y ∈ Rk : ũ(y, z) ≤ λ}

)
< ∞, for all

λ > 0, then

lim
|y|→∞

ũ∗,k(y, z) = ∞.

Proof. Assume there exists M > 0, independent of λ, such that

Hk
(
{w ∈ Rk : ũ(w, z) ≤ λ}

)
≤M, for all λ > 0. (5.4.1)
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Then for any y ∈ Rk, with ωk|y|k > M , we have that

ũ∗,k(y, z) = ∞,

since inf ∅ = ∞. If (5.4.1) does not hold, then there must be an increasing

sequence {Mλ}λ>0, with Mλ → ∞, as λ→ ∞, such that

Hk
(
{w ∈ Rk : ũ(w, z) ≤ λ}

)
=Mλ.

Then for any M > 0, there exists Λ = Λ(M) > 0 such that Mλ > M , for

all λ > Λ. Since Mλ is monotone increasing, we can assume without loss of

generality that MΛ ≤M . Otherwise, we take Λ to be the minimum for which

this property holds. Also, Λ(M) is monotone increasing, and Λ(M) → ∞, as

M → ∞. In particular, it holds that

inf{λ > 0 :Mλ > M} ≥ Λ(M) → ∞ as M → ∞.

Then for any K > 0, there exists M > 0 such that

inf{λ > 0 :Mλ > M} ≥ K.

Therefore, for any y ∈ Rk, with ωk|y|k > M , we have

ũ∗,k(y, z) = inf{λ > 0 :Mλ > ωk|y|k} ≥ inf{λ > 0 :Mλ > M} ≥ K.

We conclude that

lim
|y|→∞

ũ∗,k(y, z) = ∞.
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Proof of Theorem 5.4.1. Since u is convex at x0, we have that ũ(y, z) ≥ 0.

Moreover,

Fsku(x0) = cn,s inf
K∈Ks

k

ˆ
Rn−k

ˆ
Rk

ũ(y, z)K(y, z) dydz.

Fix z ∈ Rn−k and consider the functions f(y) = ũ(y, z) and g(y) = K(y, z).

Since

Hk
(
{y ∈ Rk : ũ(y, z) ≤ λ}

)
<∞,

for any λ > 0, then by Lemma 5.4.3, we have

lim
t→∞

f∗(t) = lim
|y|→∞

f∗,k(x) = ∞,

with f∗,k(x) = ũ∗,k(y, z) and f∗,k(x) = f∗(ωk|y|k). By Ryff’s theorem (Theo-

rem 5.3.5), there exists a measure preserving σz : Rk → [0,∞), depending on

z, such that

ũ(y, z) = f∗(σz(y)), (5.4.2)

for all y ∈ supp ũ(·, z) ⊆ Rk.

Let K(y, z) =
(
(ω−1

k σz(y))
2/k + |z|2

)−n+2s
2 . For any r > |z|, we have

Hk
(
{y ∈ Rk : K(y, z) > r−n−2s}

)
= Hk

(
{y ∈ Rk :

(
(ω−1

k σz(y))
2/k + |z|2

)−n+2s
2 > r−n−2s}

)
= Hk

(
{y ∈ Rk : σz(y) < ωk(r

2 − |z|2)k/2}
)

= Hk
(
σ−1
z

(
(0, ωk(r

2 − |z|2)k/2)
))

= H1
((
0, ωk(r

2 − |z|2)k/2
))

= ωk(r
2 − |z|2)k/2 = Hk

(
B(r2−|z|2)k/2

)
,
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since σk is measure preserving (see Definition 5.3.3). Then K ∈ Ks
k, and thus,

Fsku(x0) ≤ cn,s

ˆ
Rn−k

ˆ
Rk

ũ(y, z)(
(ω−1

k σz(y))2/k + |z|2
)n+2s

2

dydz.

To prove the reverse inequality, let K ∈ Ks
k. Applying Proposition 5.3.2, we

see that
ˆ
Rk

ũ(y, z)K(y, z) dy ≥
ˆ ∞

0

f∗(t)g
∗(t) dt

=

ˆ
Rk

f∗(σz(y))g
∗(σz(y)) dy

=

ˆ
Rk

ũ(y, z)g∗(σz(y)) dy,

by Lemma 5.3.4 and (5.4.2). Moreover, by the definition of rearrangements,

g∗(σz(y)) = sup
{
λ > 0 : Hk

(
{w ∈ Rk : K(w, z) > λ}

)
> σz(y)

}
= K∗,k(ỹ, z)

with ωk|ỹ|k = σz(y). By (5.3.1), we get

g∗(σz(y)) =
(
|ỹ|2 + |z|2

)−n+2s
2 =

(
(ω−1

k σz(y))
2/k + |z|2

)−n+2s
2 .

Hence, integrating over all z ∈ Rn−k, and taking the infimum over all kernels

K ∈ Ks
k, we conclude that

Fsku(x) = cn,s

ˆ
Rn−k

ˆ
Rk

ũ(y, z)(
(ω−1

k σz(y))2/k + |z|2
)n+2s

2

dydz.

Remark 5.4.4. A natural question that arises from this result is whether

there exists a measure preserving φz : Rk → Rk such that

|φz(y)| =
(
ω−1
k σz(y)

)1/k
.
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In that case, we would have that the infimum is attained at a kernel K such

that

K(y, z) = |ϕ(y, z)|−n−2s,

where ϕ : Rn → Rn is a measure preserving with ϕ(y, z) = (φz(y), z).

Recall that Ryff’s theorem gives a representation of a function f in

terms of its increasing rearrangement f∗, that is, f = f∗ ◦ σ, with σ : Rk → R

measure preserving. If this result were also true for the symmetric increasing

rearrangement, given by f#(x) = f∗(ωk|x|k), then there would exist a measure

preserving φ : Rk → Rk such that f = f# ◦ ψ. In particular,

f(x) = f#(φ(x)) = f∗(ωk|φ(x)|k) = f∗(σ(x)).

Hence, it seems reasonable that ωk|φ(x)|k = σ(x). As far as we know, this is

an open problem.

As an immediate consequence of Theorem 5.4.1, we obtain the following

representation of the function Fsku in terms of the k-symmetric increasing

rearrangement of ũ.

Corollary 5.4.5. Under the assumptions of Theorem 5.4.1, we have

Fsku(x0) = ∆sũ∗,k(0).

Proof. Note that ũ∗,k(0) = 0, since ũ(0) = 0. Therefore, using the same
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notation as in the proof of Theorem 5.4.1, we showed that

Fsku(x0) = cn,s

ˆ
Rn−k

ˆ ∞

0

f∗(t)g
∗(t) dtdz

= ωkcn,s

ˆ
Rn−k

ˆ ∞

0

f∗(ωkr
k)g∗(ωkr

k)rk−1 drdz

= cn,s

ˆ
Rn−k

ˆ
Rk

f∗(ωk|y|k)g∗(ωk|y|k) dydz

= cn,s

ˆ
Rn−k

ˆ
Rk

ũ∗,k(y, z)K
∗,k(y, z) dydz

= cn,s

ˆ
Rn−k

ˆ
Rk

ũ∗,k(y, z)

(|y|2 + |z|2)n+2s
2

dydz = ∆sũ∗,k(0).

From the previous result and the fact that the family of operators

{Fk}n−1
k=1 is monotone decreasing, we see that the fractional Laplacian of the

k-symmetric rearrangements are ordered at the origin.

Corollary 5.4.6. Suppose we are under the assumption of Theorem 5.4.1.

Then

∆sũ∗,k+1(0) ≤ ∆sũ∗,k(0).

Next we treat the second case.

Theorem 5.4.7. Suppose that there exists some λ0 > 0 such that for all

z ∈ Rn−k,

Hk
(
{y ∈ Rk : ũ(y, z) ≤ λ}

){<∞ for 0 < λ < λ0

= ∞ for λ ≥ λ0.

164



Then there exists a kernel K0 ∈ Ks
k, with suppK0(·, z) ⊆ {y ∈ Rk : ũ(y, z) ≤

λ0}, such that

Fsku(x0) = cn,s

ˆ
Rn−k

ˆ
Rk

ũ(y, z)K0(y, z) dydz.

In particular, the infimum is attained.

Proof. Fix z ∈ Rn−k. For j ≥ 1, define the set

Aj(z) =
{
y ∈ Rk : ũ(y, z) ≤ λ0 − 1

j

}
.

For simplicity, we drop the notation of z. We have that Hk(Aj) < ∞, Aj ⊆

Aj+1, and

A∞ =
∞⋃
j=1

Aj =
{
y ∈ Rk : ũ(y, z) < λ0

}
.

Observe that if K ∈ Ks
k, then

Hk
(
{y ∈ Rk : K(y, z) > 0}

)
= lim

r→0
Hk

(
{y ∈ Rk : K(y, z) > r}

)
= ∞.

Hence, we need to distinguish two cases:

Case 2.1. Assume that Hk(A∞) = ∞. Let K ∈ Ks
k and vj = ũχAj

.

By Proposition 5.3.2,

ˆ
Aj

ũ(y, z)K(y, z) dy =

ˆ
Rk

vj(y, z)K(y, z) dy ≥
ˆ ∞

0

(vj)∗(t)K
∗(t) dt.

By Lemma 5.3.4, for any measure preserving σ : Rk → [0,∞), it follows that

ˆ ∞

0

(vj)∗(t)K
∗(t) dt =

ˆ
Rk

(vj)∗(σ(y))K
∗(σ(y)) dy.
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By Ryff’s theorem (Theorem 5.3.5), there exists σj : Aj → [0,Hk(Aj)] measure

preserving such that vj = (vj)∗ ◦ σj in Aj. Therefore,

ˆ
Aj

ũ(y, z)K(y, z) dy ≥
ˆ
Aj

ũ(y, z)K∗(σj(y)) dy. (5.4.3)

We claim that σj+1(y) ≤ σj(y), for all y ∈ Aj. Indeed, since Aj ⊆ Aj+1, we

have {
vj(y) = vj+1(y), for all y ∈ Aj

vj(y) ≤ vj+1(y), for all y ∈ Aj+1 \ Aj.

In particular, for all y ∈ Aj,

(vj+1)∗(σj+1(y)) = (vj)∗(σj(y)) ≤ (vj+1)∗(σj(y)).

Since (vj+1)∗ is monotone increasing, we must have

σj+1(y) ≤ σj(y), for all y ∈ Aj.

Therefore, there exists σ∞ : A∞ → [0,∞) measure preserving such that

σ∞(y) = lim
j→∞

σj(y).

Define the kernel K0 as

K0(y, z) =
(
(ω−1

k σ∞(y))k/2 + |z|2
)−n+2s

2 χA∞(y).

Since Hk(A∞) = ∞, then K0 ∈ Ks
k. Furthermore, note that suppK0(·, z) =

A∞ = {y ∈ Rk : ũ(y, z) ≤ λ0} and K0(y, z) = K∗
0(σ∞(y)), for all y ∈ A∞.
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Then by Fatou’s lemma, Lemma 5.3.7, and (5.4.3), we get
ˆ
Rk

ũ(y, z)K0(y, z) dy =

ˆ
A∞

ũ(y, z)K∗
0(σ∞(y)) dy

≤ lim inf
j→∞

ˆ
Aj

ũ(y, z)K∗
0(σj(y)) dy

= lim inf
j→∞

ˆ
Aj

ũ(y, z)K∗(σj(y)) dy

≤
ˆ
Rk

ũ(y, z)K(y, z) dy,

for any K ∈ Ks
k. Integrating over z and taking the infimum over all kernels

K, we conclude the result.

Case 2.2. Assume that Hk(A∞) < ∞. Set A = {y ∈ Rk : ũ(y, z) =

λ0}. Then

Hk(A) = ∞, (5.4.4)

since {y ∈ Rk : ũ(y, z) ≤ λ0} = A∞ ∪ A. Fix ε > 0 and define

vε(y, z) = ũ(y, z)χA∞(y) + max{λ0, (λ0 + ε)ϕ(y, z)}χA(y),

with ϕ(y, z) = 1−e−|y|2−|z|2 . Note that 0 < ϕ ≤ 1, ϕ(y, z) → 1, as |(y, z)| → ∞,

and ϕ(y, z) ≈ |y|2+|z|2, as |(y, z)| → 0. Also, {vε}ε>0 is a monotone increasing

sequence, and

lim
ε→0

vε(y, z) = ũ(y, z)χA∞(y) + max
{
λ0, lim

ε→0
(λ0 + ε)ϕ(y, z)

}
χA(y) (5.4.5)

= ũ(y, z)χA∞(y) + max{λ0, λ0ϕ(y, z)}χA(y) = ũ(y, z)χA∞∪A(y).

For any j ∈ N, with j > 1/ε, consider the set

Bε
j (z) =

{
y ∈ Rk : vε(y, z) ≤ λ0 + ε− 1

j

}
.
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Then Bε
j ⊆ Bε

j+1 and Bε
∞ =

⋃
j>1/εB

ε
j = {y ∈ Rk : vε(y, z) < λ0 + ε}.

Moreover, we have

Hk(Bε
j ) ≤ Hk(A∞) +Hk

({
y ∈ A : max{λ0, (λ0 + ε)ϕ(y, z)} ≤ λ0 + ε− 1

j

})
.

(5.4.6)

Choose R > 0 large enough (depending on ε, j, λ0, and z) so that

(λ0 + ε)e−R
2−|z|2 < 1

j
.

Then (λ0 + ε)ϕ(y, z) > λ0 + ε− 1
j
> λ0, for all y ∈ Bc

R, and thus,

Hk
({
y ∈ A ∩Bc

R : max{λ0, (λ0 + ε)ϕ(y, z)} ≤ λ0 + ε− 1
j

})
= 0.(5.4.7)

By (5.4.6) and (5.4.7), we see that

Hk(Bε
j (z)) ≤ Hk(A∞) +Hk(A ∩BR) <∞.

Furthermore, A ⊆ Bε
∞, and thus, by (5.4.4), we get

Hk(Bε
∞) ≥ Hk

(
A) = ∞.

In particular, vε satisfies the assumptions of Case 1, so there exists Kε ∈ Ks
k,

Kε(y, z) =
(
(ω−1

k σε(y))
k/2 + |z|2

)−n+2s
2 χBε

∞(y), (5.4.8)

with σε : Bε
∞ → [0,∞) measure preserving, depending on vε, such that

inf
K∈Ks

k

ˆ
Rn−k

ˆ
Rk

vε(y, z)K(y, z) dydz =

ˆ
Rn−k

ˆ
Rk

vε(y, z)Kε(y, z) dydz. (5.4.9)

Finally, we need to pass to the limit. First, we prove that {σε}ε>0

is monotone decreasing. Indeed, let Vε = {y ∈ Rk : vε(y, z) = ũ(y, z)}. In
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particular, A∞ ⊆ Vε ⊆ A∞ ∪ A. Also, Vε2 ⊆ Vε1 , for any ε1 ≤ ε2. By Ryff’s

theorem, recall that

vε1(y, z) = (vε1)∗(σε1(y)) and vε2(y, z) = (vε2)∗(σε2(y)).

Since vε2(y, z) = vε1(y, z), for all y ∈ Vε2 , and vε1(y, z) ≤ vε2(y, z), for all

y ∈ Rk, we see that

(vε2)∗(σε2(y)) = (vε1)∗(σε1(y)) ≤ (vε2)∗(σε1(y)), for all y ∈ Vε2 .

Since (vε2)∗ is monotone increasing, we must have that σε2(y) ≤ σε1(y), for all

y ∈ Vε2 . Hence, there exists σ0 : B∞ → [0,∞) measure preserving such that

σ0(y) = lim
ε→0

σε(y),

where B∞ =
⋂
ε>0B

ε
∞ = {y ∈ Rk : ũ(y, z) ≤ λ0} = A∞ ∪A. In particular, the

sequence of kernels {Kε}ε>0 is monotone decreasing. Define

K0(y, z) = lim
ε→0

Kε(y, z). (5.4.10)

By (5.4.8) and (5.4.10), we have

K0(y, z) =
(
(ω−1

k σ0(y))
k/2 + |z|2

)−n+2s
2 χB∞(y).

Moreover, K0 ∈ Ks
k since Kε ∈ Ks

k, and for any r > 0, it follows that

Hk
(
D0(r)) = lim

ε→0
Hk(Dε(r)),

where Dε(r) = {y ∈ Rk : Kε(y, z) > r−(n+2s)}.
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Finally, using (5.4.5), (5.4.9), (5.4.10), and the monotone convergence

theorem, we get

ˆ
Rn−k

ˆ
Rk

ũ(y, z)K0(y, z) dydz =

ˆ
Rn−k

ˆ
Rk

lim
ε→0

(
vε(y, z)Kε(y, z)

)
dydz

= lim
ε→0

ˆ
Rn−k

ˆ
Rk

vε(y, z)Kε(y, z) dydz

= lim
ε→0

inf
K∈Ks

k

ˆ
Rn−k

ˆ
Rk

vε(y, z)K(y, z) dydz

≤ inf
K∈Ks

k

ˆ
Rn−k

ˆ
Rk

(
lim
ε→0

vε(y, z)
)
K(y, z) dydz

= inf
K∈Ks

k

ˆ
Rn−k

ˆ
Rk

ũ(y, z)
(
K(y, z)χA∞∪A(y)

)
dydz

= inf
K∈Ks

k

ˆ
Rn−k

ˆ
Rk

ũ(y, z)K(y, z) dydz.

The last equality follows from the following observation: since

K̃s
k =

{
K ∈ Ks

k : suppK(·, z) ⊆ A∞ ∪ A
}
⊆ Ks

k,

then the infimum over all kernels in Ks
k is less than or equal to the infimum

over K̃s
k. Moreover, the reverse inequality holds trivially.

Finally, we deal with the third case, that is, when all of the level sets

of ũ have infinite measure. In particular, notice that

ũ∗,k(x) = 0, for all x ∈ Rn.

This is the only case where the infimum is not attained. Indeed, we prove in

the following theorem that the infimum is equal to zero.
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Theorem 5.4.8. Suppose that for all λ > 0 and z ∈ Rn−k,

Hk
(
{y ∈ Rk : ũ(y, z) ≤ λ}

)
= ∞.

Then Fsku(x0) = 0.

Proof. From (P2), we have that Fsku(x0) ≥ 0. To prove the reverse inequality,

it is enough to find a sequence of kernels {Kε}ε>0 ⊂ Ks
k such that

lim inf
ε→0

ˆ
Rn−k

ˆ
Rk

ũ(y, z)Kε(y, z) dydz = 0. (5.4.11)

Fix ε > 0 and z ∈ Rn−k. For any j ≥ 0, we define the set

Uj ≡ Uj(z) =
{
y ∈ Rk : ũ(y, z) < ε2−j(n+2s)e−|z|2}.

Note that Uj+1 ⊆ Uj. Also, by assumption, with λ = ε2−j(1+2s)e−|z|2 , we have

that

Hk(Uj) = ∞, for all j ≥ 0.

We will construct Kε ∈ Ks
k by describing first where to locate each level set of

the form:

A−1 ≡ A−1(z) =
{
y ∈ Rk : 0 < Kε(y, z) ≤ 1

}
Aj ≡ Aj(z) =

{
y ∈ Rk : 2j(n+2s) < Kε(y, z) ≤ 2(j+1)(n+2s)

}
for j ≥ 0.

Recall that K ∈ Ks
k if for all r > 0, we have Hk

(
{y ∈ Rk : K(y, z) >

r−(n+2s)}
)
= Hk

(
{y ∈ Rk : (|y|2 + |z|2)−n+2s

2 > r−(n+2s)}
)
. In view of this

definition, we define the sets

B−1 ≡ B−1(z) =
{
y ∈ Rk : 0 < (|y|2 + |z|2)−

n+2s
2 ≤ 1

}
Bj ≡ Bj(z) =

{
y ∈ Rk : 2j(n+2s) < (|y|2 + |z|2)−

n+2s
2 ≤ 2(j+1)(n+2s)

}
for j ≥ 0.
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Note that {
Hk(A−1) = Hk(B−1) = ∞
Hk(Aj) = Hk(Bj) <∞, for all j ≥ 0.

More precisely, for j ≥ 0, if |z| < 2−(j+1) < 2−j, then

Hk(Aj) = Hk
(
B(2−2j−|z|2)1/2

)
−Hk

(
B(2−2(j+1)−|z|2)1/2

)
= ωk(2

−2j − |z|2)k/2 − ωk(2
−2(j+1) − |z|2)k/2 ≤ ωk2

−kj.

If 2−(j+1) ≤ |z| < 2−j, then

Hk(Aj) = Hk
(
B(2−2j−|z|2)1/2

)
= ωk(2

−2j − |z|2)k/2 ≤ ωk(
3
4
)k/22−kj.

If |z| ≥ 2−j > 2−(j+1), then

Hk(Aj) = 0.

Therefore, Hk(Aj) ≤ c2−kj, where c > 0 only depends on k. It follows that

Hk
( ∞⋃
j=0

Aj

)
=

∞∑
j=0

Hk(Aj) ≤ c
∞∑
j=0

2−jk <∞. (5.4.12)

For any i ≥ 0, let Di be the collection of all dyadic closed cubes of the

form

[m2−i, (m+ 1)2−i]k = [m2−i, (m+ 1)2−i]× · · · × [m2−i, (m+ 1)2−i].

Note that if Q ∈ Di, then l(Q) = 2−i, where l(Q) denotes the side length of

the cube Q. For any j ≥ 0, since Uj is an open set, by a standard covering

argument, we have that there exists a family of dyadic cubes Fj such that

Uj =
⋃
Q∈Fj

Q

satisfying the following properties:
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1. For any Q ∈ Fj, there exists some i ≥ 0 such that Q ∈ Di.

2. Int(Q) ∩ Int(Q̃) = ∅, for any Q, Q̃ ∈ Fj, with Q ̸= Q̃.

3. If x ∈ Q ∈ Fj, then Q is the maximal dyadic cube contained in Uj that

contains x.

Analogously, for the sets Bj, with j ≥ −1, there exists a family of dyadic cubes

F̃j satisfying properties (1)− (3) such that

Int(Bj) =
⋃
Q∈F̃j

Q.

Note that F̃j ∩ F̃j+1 = ∅ since Bj ∩Bj+1 = ∅.

We will construct the sets Aj by properly translating the dyadic cubes

partitioning the sets Bj into Uj. In particular, we will prove that
A0 = T0(B0) ⊂ U0

Aj = Tj(Bj) ⊂ Uj \
⋃j−1
i=0 Ai, for all j ≥ 1

A−1 = T−1(B−1) ⊂ U0 \
⋃∞
i=0Ai,

for some translation mappings Tj : F̃j → Fj to be determined.

We start with the case j = 0. For any i ≥ 0, denote by

mi = H0(F0 ∩Di) and ni = H0(F̃0 ∩Di),

where H0(E) is equal to the cardinal of the set E. Note thatmi, ni ∈ Z+∪{∞}.

We will recursively place B0 into U0. First, fix i = 0. If m0 ≥ n0, then

for any Q̃ ∈ F̃0 ∩D0, there exists some τ ∈ Rk and some Q ∈ F0 ∩D0, such
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that Q = Q̃+ τ . Then define

T0 : F̃0 ∩D0 → F0 ∩D0

Q̃ 7→ Q.
(5.4.13)

Moreover, we can define T0 one-to-one since m0 ≥ n0, and we can always

choose a different Q for each Q̃. Note that there are p0 cubes in F0 ∩D0, with

p0 = m0 − n0, that have not been used. Hence, to all of these cubes, divide

each side in half, so that each cube gives rise to 2k cubes with side length 2−1.

Call this collection of new cubes Q = {Ql}2
kp0

l=1 ⊂ D1, and add them to the

family F0 ∩D1. Namely, we replace F0 ∩D1 by (F0 ∩D1) ∪ Q.

If m0 < n0, then take q0 cubes in F̃0 ∩ D0, with q0 = n0 − m0, and

divide each side in half. Call this collection of new cubes Q̃ = {Q̃l}2
kq0

l=1 ⊂ D1.

Then, we replace F̃0 by F̂0, where

F̂0 ∩D0 = (F̃0 \ Q̃) ∩D0

F̂0 ∩D1 = (F̃0 ∪ Q̃) ∩D1

F̂0 ∩Di = F̃0 ∩Di, for all i ≥ 2.

If n̂0 = H0(F̂0 ∩D0), then m0 = n̂0. Hence, by the same argument as in the

previous case, we find T0 as in (5.4.13). For i ≥ 1, we can repeat the same

process until we run out of cubes from F̃0 (or the modified family). We know

the process will end since Hk(B0) < Hk(U0). When this happens, we will have

constructed a one-to-one mapping T0 : F̃0 → F0, since F̃0 =
⋃∞
i=0 F̃0 ∩Di and

F0 =
⋃∞
i=0 F0 ∩Di. Then define

A0 = T0(B0) ⊂ U0.
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Iterating this process, we find a sequence of translation mappings {Tj}∞j=0

with Tj : F̃j → Fj, and a sequence of disjoint sets {Aj}∞j=0 such that

Aj = Tj(Bj) ⊂ Uj \
j−1⋃
i=0

Ai.

The case j = −1 is somewhat special since Hk(A−1) = Hk(B−1) = ∞.

We will see that

A−1 = T−1(B−1) ⊂ U0 \
∞⋃
i=0

Ai.

This is possible because Hk(U0 \
⋃∞
i=0Ai) = ∞ using (5.4.12). Indeed, we can

write{
y ∈ Rk : 0 < Kε(y, z) ≤ 1

}
=

∞⋃
j=0

{
2−(j+1)(n+2s) < Kε(y, z) ≤ 2−j(n+2s)

}
.

Now call

Cj =
{
2−(j+1)(n+2s) < (|y|2 + |z|2)−

n+2s
2 ≤ 2−j(n+2s)

}
, for j ≥ 0.

Then B−1 =
⋃∞
j=0Cj, with Hk(Cj) < ∞, for all j ≥ 0. Hence, instead

of partitioning all of B−1 into dyadic cubes, we partition each of its disjoint

components Cj. Arguing as before, we place them into U0\
⋃∞
i=0Ai recursively,

according to the following scheme:
T 0
−1(C0) ⊂ U0 \

∞⋃
i=0

Ai

T j−1(Cj) ⊂ U0 \
( ∞⋃
i=0

Ai ∪
j−1⋃
i=0

Ci

)
, for j ≥ 1,

where T j−1 is defined as before. At the end of this process, we find a translation

map T−1 with T−1(Q) = T j−1(Q), for Q ∈ Cj. Therefore, we define

A−1 = T−1(B−1).
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Lastly, let y ∈ Rk = A−1 ∪
(⋃∞

j=0Aj
)
. In particular, there exists some

j ≥ −1 such that y ∈ Aj. Furthermore, recall that Aj = Tj(Bj), where Tj is

a one-to-one and onto translation map. Hence, there exists a unique w ∈ Bj

such that y = Tj(w) = w + τ , for some τ ∈ Rk. Let Tz : Rk → Rk be given by

Tz(y) = w. Note that Tz is measure preserving. Then we define the kernel Kε

as

Kε(y, z) =
(
|Tz(y)|2 + |z|2

)−n+2s
2 .

We have that

ˆ
Rk

ũ(y, z)Kε(y, z) dy =

ˆ
A−1

ũ(y, z)Kε(y, z) dy +
∞∑
j=0

ˆ
Aj

ũ(y, z)Kε(y, z) dy

≡ I + II.

For I, we use that ũ(y, z) ≤ εe−|z|2 , since A−1 ⊂ U0. Then by Lemma 5.3.7

and Lemma 5.3.4:

I ≤ εe−|z|2
ˆ
{0<Kε(y,z)≤1}

Kε(y, z) dy

= εe−|z|2
ˆ
{0<|σz(y)|−n−2s≤1}

|σz(y)|−n−2s dy

= εe−|z|2
ˆ
{|y|≥1}

|y|−n−2s dy = Cεe−|z|2 ,

where C > 0 depends only on n and s. For II, we use that ũ(y, z) ≤

ε2−j(n+2s)e−|z|2 , since Aj ⊂ Uj and Kε(y, z) ≤ 2(j+1)(n+2s) in Aj, by defini-
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tion. Then

II ≤ εe−|z|2
∞∑
j=0

2−j(n+2s)2(j+1)(n+2s)Hk(Aj)

≤ cεe−|z|22n+2s

∞∑
j=0

2−kj ≤ Cεe−|z|2 ,

where C > 0 depends only on n, s, and k.

Integrating over z, we see that

ˆ
Rn−k

ˆ
Rk

ũ(y, z)Kε(y, z) dydz ≤ Cε

ˆ
Rn−k

e−|z|2 dz ≤ C̃ε.

Letting ε→ 0, we conclude (5.4.11).

5.4.2 Limit as s→ 1

Let u ∈ C2(Rn). We define MAk u as the Monge-Ampère operator

acting on u, with respect to the first k variables, that is,

MAk u(x) = k
(
det

(
(uij(x))1≤i,j≤k

))1/k

,

with D2u(x) = (uij(x))1≤i,j≤n. We define ∆n−ku as the Laplacian of u, with

respect to the last n− k variables, that is,

∆n−ku(x) =
n∑

i=k+1

uii(x).

Then under some special conditions, it holds that

lim
s→1

Fsku(x) = MAk u(x) + ∆n−ku(x). (5.4.14)
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In particular, the family {Fsk}n−1
k=1 can be understood as nonlocal analogs of

concave second order elliptic operators, which are decomposed into a Monge-

Ampère operator restricted to Rk and a Laplacian restricted to Rn−k.

Indeed, by Corollary 5.4.5, we have Fsku(x) = ∆sũ∗,k(0). Since the

k-symmetric rearrangement does not depend on s and ∆s → ∆, as s → 1,

passing to the limit we see that

lim
s→1

Fsku(x) = ∆ũ∗,k(0).

Suppose that ũ∗,k(y, z) = ũ(φ−1
z (y), z), where φz : Rk → Rk is an invertible

measure preserving transformation, with φz(0) = 0, and

ωk|φz(y)|1/k = σz(y).

Recall that σz is given in Theorem 5.4.1 (see also Remark 5.4.4). In this case,

∆ũ∗,k(0) = ∆yũ(φ
−1
z (y), z) + ∆zũ(φ

−1
z (y), z)

∣∣
(y,z)=(0,0)

. (5.4.15)

For the first term, we use that

MAk u(x) = inf
ψ∈Ψ

∆(ũ ◦ ψ)(0),

where Ψ = {ψ : Rk → Rk measure preserving such that ψ(0) = 0
}
, and the

fact that the infimum is attained when ũ◦ψ is a radially symmetric increasing

function [13]. Hence,

∆yũ(φ
−1
z (y), z)

∣∣
(y,z)=(0,0)

= MAk u(x). (5.4.16)
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For the second term, call ϕ(y, z) = (φ−1
z (y), z) and compute:

∆z(ũ ◦ ϕ)(0) = tr
(
Dzϕ(0)

TD2
z ũ(ϕ(0))Dzϕ(0)

)
+∇zũ(ϕ(0))

T ·∆zϕ(0).

Recall that ϕ(0) = 0 and ũ(y, z) = u(x+(y, z))−u(x)−∇yu(x) ·y−∇zu(x) ·z.

Then

∇zũ(ϕ(0)) = 0, D2
z ũ(ϕ(0)) = D2

zu(x), and Dzϕ(0) = (0, In−k),

where In−k denotes the identity matrix in Mn−k. Therefore,

∆zũ(φ
−1
z (y), z)

∣∣
(y,z)=(0,0)

= ∆z(ũ ◦ ϕ)(0) = tr
(
D2
zu(x)

)
= ∆n−ku(x). (5.4.17)

Combining (5.4.15), (5.4.16) and (5.4.17), we conclude (5.4.14).

5.4.3 Connection to optimal transport

In Corollary 5.4.5, we obtained a representation of the function Fsku in

terms of the k-symmetric increasing rearrangement. Using this representation,

we find an equivalent expression of Fsku that can be understood from the

viewpoint of optimal transport.

Theorem 5.4.9. Suppose we are under the assumptions of Theorem 5.4.1.

Then for any z ∈ Rn−k, z ̸= 0, there exists an invertible map φz : Rk → Rk

such that

Fsku(x) = cn,s

ˆ
Rn−k

ˆ
Rk

ũ(φ−1
z (y), z)(

|y|2 + |z|2
)n+2s

2

dydz. (5.4.18)

Moreover, if σz : Rk → [0,∞) is the Ryff’s map given in Theorem 5.4.1, then

φz is measure preserving if and only if

ωk|φz(y)|k = σz(y), for a.e. y ∈ Rk. (5.4.19)
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The key tool to prove Theorem 5.4.9 is Brenier–McCann’s theorem, a

very well-known result in the theory of optimal transport [7, 44]. We state it

here in the form that we will use it.

Theorem 5.4.10. Let f, g ∈ L1(Rk). Assume that

∥f∥L1(Rk) = ∥g∥L1(Rk).

Then there exists a convex function ψ : Rk → R whose gradient ∇ψ pushes

forward f dy to g dy. Namely, for any measurable function h in Rk,

ˆ
Rk

h(y)g(y) dy =

ˆ
Rk

h(∇ψ(y))f(y) dy. (5.4.20)

Moreover, ∇ψ : Rk → Rk is invertible and unique.

In the literature, ∇ψ is known as the (optimal) transport map.

Proof of Theorem 5.4.9. Fix z ∈ Rn−k, z ̸= 0, and consider fz, gz ∈ L1(Rk)

given by

fz(y) =
(
|y|2 + |z|2

)−n+2s
2 and gz(y) =

(
(ω−1

k σz(y))
2/k + |z|2

)−n+2s
2 ,

where σz : Rk → [0,∞) is given in Theorem 5.4.1. Note that

∥f∥L1(Rk) =

ˆ
Rk

(
(ω−1

k σz(y))
2/k + |z|2

)−n+2s
2 dy

= kωk

ˆ ∞

0

(
r2 + |z|2

)−n+2s
2 rk−1 dr

=

ˆ
Rk

(
|y|2 + |z|2

)−n+2s
2 dy = ∥g∥L1(Rk),
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since σz is measure preserving. By Theorem 5.4.10, there exists a convex

function ψz : Rk → R (depending on z) whose gradient ∇ψz pushes forward

fz dy to gz dy. Moreover, ∇ψz is invertible and unique. Call φz = (∇ψz)−1.

Using (5.4.20), with h(y) = ũ(y, z), we see that

ˆ
Rk

ũ(y, z)(
(ω−1

k σz(y))2/k + |z|2
)n+2s

2

dy =

ˆ
Rk

ũ(φ−1
z (y), z)(

|y|2 + |z|2
)n+2s

2

dy. (5.4.21)

Integrating over z ∈ Rn−k, we obtain (5.4.18).

It remains to show that φz is measure preserving if and only if (5.4.19)

holds. Indeed, for any measurable set E ⊂ Rk, we have

Hk
(
φ−1
z (E)

)
=

ˆ
φ−1
z (E)

dy =

ˆ
φ−1
z (E)

(
|y|2 + |z|2

)n+2s
2(

|y|2 + |z|2
)n+2s

2

dy

=

ˆ
φ−1
z (E)

(
|φz(φ−1

z (y))|2 + |z|2
)n+2s

2(
|y|2 + |z|2

)n+2s
2

dy

=

ˆ
E

(
|φz(y)|2 + |z|2

)n+2s
2(

ω−1
k σz(y)

)2/k
+ |z|2

)n+2s
2

dy,

where the last equality follows from (5.4.21) with

h(y) =
(
|φz(y)|2 + |z|2

)n+2s
2 χE(y).

Therefore,

Hk
(
φ−1
z (E)

)
= Hk(E)

if and only if ωk|φz(y)|k = σz(y), for a.e. y ∈ Rk.
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5.5 Regularity of Fs
ku

Given x0 ∈ Rn, we define the sections

Dx0u(t) =
{
x ∈ Rn : u(x)− u(x0)− (x− x0) · ∇u(x0) ≤ t

}
, for t > 0.

Our main regularity result is the following.

Theorem 5.5.1. Let s ∈ (1/2, 1) and 1 ≤ k < n. Let u ∈ C1,1(Rn) be convex.

Fix x0 ∈ Rn and r0, ε > 0. Suppose that Λ = supx∈Br0 (x0)
diam(Dxu(ε)) < ∞

and M = supx∈Br0 (x0)
Fsku(x) < ∞. Then Fsku ∈ C0,1−s(Br(x0)) with r <

min{r0/4,Λ, ε/(8Λ)}, and

[Fsk]C0,1−s(Br(x0))
≤ C0[u]C1,1(Rn)

for some constant C0 > 0 depending only on n, k, s, ε, Λ, and M .

This theorem will be a consequence of the next proposition.

Proposition 5.5.2. Fix x0 ∈ Rn and ε > 0. Suppose that

Λ = diam(Dx0u(ε)) <∞ and [u]C1,1(Rn) ≤ 1.

Then for any x1 ∈ Br(x0), with r ≤ ε/(4Λ), it holds that

Fsku(x1)− Fsku(x0) ≤ CΛ1−s|x1 − x0|1−s + 4Λ
ε
|x1 − x0|Fsku(x0)

for some C > 0 depending only on n, k, and s.

First, we prove Theorem 5.5.1.
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Proof of Theorem 5.5.1. Without loss of generality, assume that [u]C1,1(Rn) ≤ 1.

Otherwise, we consider u/[u]C1,1(Rn). Let r < min{r0/4,Λ, ε/(8Λ)}. It is

enough to show that

[Fsk]C0,1−s(Br(x0))
≤ C0, (5.5.1)

for some constant C0 > 0 depending only on n, k, s, ε, Λ, and M .

Let x1, x2 ∈ Br(x0). Then x2 ∈ B2r(x1) ⊂ Br0(x0), since 4r < r0.

Moreover, diam(Dx1u(ε)) ≤ Λ < ∞. Hence, applying Proposition 5.5.2 to u,

replacing Br(x0) by B2r(x1), we get

Fsku(x2)− Fsku(x1) ≤ CΛ1−s|x2 − x1|1−s + 4Λ
ε
|x2 − x1|Fsku(x1)

≤ C0|x2 − x1|1−s,

where C0 = CΛ1−s+4Λ1+sM/(ε2s). Since x1 and x2 are arbitrary, we conclude

(5.5.1).

Before we prove Proposition 5.5.2, we need several preliminary results.

Lemma 5.5.3. If f is monotone increasing, then

ˆ ∞

0

f(r)ω(r) dr =

ˆ ∞

0

ˆ ∞

µf (t)

ω(r) drdt,

with µf (t) = |{r > 0 : f(r) ≤ t}|.

Proof. By Fubini’s theorem, we have

ˆ ∞

0

ˆ ∞

µf (t)

ω(r) drdt =

ˆ ∞

0

ω(r)

ˆ
{r>µf (t)}

dtdr.
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Since f is monotone increasing, then r > µf (t) if and only if t < f(r). There-

fore, ˆ
{r>µf (t)}

dt =

ˆ f(r)

0

dt = f(r).

Proposition 5.5.4. Let x ∈ Rn. Under the assumptions of Corollary 5.4.5 it

holds that

Fsku(x) = cn,s

ˆ ∞

0

ˆ
Rn−k

1

|z|n−k+2s
W

(µxu(t, z)1/k
|z|

)
dzdt,

where µxu(t, z) = ω−1
k Hk

(
{y ∈ Rk : ũx(y, z) ≤ t}

)
and

W (ρ) = kωk

ˆ ∞

ρ

rk−1

(1 + r2)
n+2s

2

dr. (5.5.2)

Proof. By Corollary 5.4.5, we have that

Fsku(x) = ∆sũ∗,k(0) = cn,s

ˆ
Rn−k

1

|z|n+2s

(ˆ
Rk

ũ∗,k(y, z)(
||z|−1y|2 + 1

)n+2s
2

dy
)
dz

= cn,s

ˆ
Rn−k

1

|z|n−k+2s

(
kωk

ˆ ∞

0

v(|z|r, z) rk−1

(r2 + 1)
n+2s

2

dr
)
dz,

where v(r, z) = ũ∗,k(y, z) for |y| = r.

Next we apply Lemma 5.5.3 to

f(r) = v(|z|r, z) and ω(r) = kωkr
k−1(r2 + 1)−

n+2s
2 .

Note that since v is the k-symmetric increasing rearrangement of ũ, we have

µf (t) =
1
|z| |{r > 0 : v(r, z) < t}|

=
ω
−1/k
k

|z| Hk
(
{y ∈ Rk : ũ(y, z) < t}

)1/k
= 1

|z|µxu(t, z)
1/k.
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Therefore,

kωk

ˆ ∞

0

v(|z|r, z) rk−1

(r2 + 1)
n+2s

2

dr =

ˆ ∞

0

(
kωk

ˆ ∞

µxu(t,z)1/k/|z|

rk−1

(r2 + 1)
n+2s

2

dr
)
dt

=

ˆ ∞

0

W
(µxu(t, z)1/k

|z|

)
dt,

where W is given in (5.5.2). By Fubini’s theorem, we conclude that

Fsku(x) = cn,s

ˆ ∞

0

ˆ
Rn−k

1

|z|n−k+2s
W

(µxu(t, z)1/k
|z|

)
dzdt.

Lemma 5.5.5. Suppose we are under the assumptions of Proposition 5.5.2.

Let x1 ∈ Br(x0) and d = |x1 − x0|. The following holds:

(a) If t ∈ (2Λd, ε], then Dx0u(t− 2Λd) ⊂ Dx1u(t).

(b) If t ∈ (ε,∞), then Dx0u
(
t− 2Λdt/ε

)
⊂ Dx1u(t).

Proof. First we prove (a). Fix t ∈ (2Λd, ε] and let x ∈ Dx0u(t− 2Λd). Then

u(x)− u(x0)− (x− x0) · ∇u(x0) ≤ t− 2Λd. (5.5.3)

Using (5.5.3), convexity, and [u]C1,1(Rn) ≤ 1, we see that

u(x)− u(x1)− (x− x1) · ∇u(x1) = u(x)− u(x0)− (x− x0) · ∇u(x0)

−
(
u(x1)− u(x0)− (x1 − x0) · ∇u(x0)

)
+ (x− x1) · (∇u(x0)−∇u(x1))

≤ t− 2Λd+ |x− x1|d.
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Moreover, x ∈ Dx0u(ε), since t ≤ ε, and thus,

|x− x1| ≤ |x− x0|+ |x0 − x1| ≤ Λ + d ≤ 2Λ.

Therefore, x ∈ Dx1u(t).

Next we prove (b). Fix t ∈ (ε,∞) and let x ∈ Dx0u
(
t − 2Λdt/ε

)
. By

the previous computation, we have that

u(x)− u(x1)− (x− x1) · ∇u(x1) ≤ t− 2Λdt/ε+ (|x− x0|+ Λ)d.(5.5.4)

To control the distance from x to x0, we need to estimate the diameter of

Dx0u(t). Take y ∈ Dx0u(t) \Dx0u(ε) and let z be in the intersection between

∂Dx0u(ε) and the line segment joining x0 and y. Then there is some λ > 1

such that y − x0 = λ(z − x0). By convexity of u,

u(z) ≤ λ−1
λ
u(x0) +

1
λ
u(y).

Therefore,

λε = λ
(
u(z)− u(x0)− (z − x0) · ∇u(x0)

)
≤ (λ− 1)u(x0) + u(y)− λu(x0)− (y − x0) · ∇u(x0)

= u(y)− u(x0)− (y − x0) · ∇u(x0) ≤ t,

so λ ≤ t/ε. By convexity, we have that Dx0u(t) ⊂ x0 +
t
ε
(Dx0u(ε) − x0). It

follows that

diamDx0u(t) ≤ t/ε diamDx0u(ε) = Λt/ε.

Hence, |x− x0| ≤ Λt/ε, and by (5.5.4), we get

u(x)− u(x1)− (x− x1) · ∇u(x1) ≤ t− 2Λdt/ε+ (Λt/ε+ Λ)d ≤ t,
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which means that x ∈ Dx1u(t).

We are ready to give the proof of Proposition 5.5.2.

Proof of Proposition 5.5.2. Let x1 ∈ Br(x0), with r ≤ ε/(4Λ), and call d =

|x0 − x1|. We will estimate Fsku(x1) using Proposition 5.5.4:

Fsku(x1) = cn,s

ˆ ∞

0

ˆ
Rn−k

1

|z|n−k+2s
W

(µx1u(t, z)1/k
|z|

)
dzdt.

In view of Lemma 5.5.5, we divide the integral with respect to t in three parts:

I. t ∈ (0, 2Λd], II. t ∈ (2Λd, ε], III. t ∈ (ε,∞).

Let us start with I. Since u ∈ C1,1(Rn) with [u]C1,1(Rn) ≤ 1, then

µx1u(t, z) ≥ (t− |z|2)k/2+ .

Hence, using that W (ρ) is monotone decreasing, we get

W
(µx1u(t, z)1/k

|z|

)
≤ W

((
t

|z|2 − 1
) 1

2

+

)
.

Therefore,
ˆ
Rn−k

1

|z|n−k+2s
W

(µx1u(t, z)1/k
|z|

)
dz

≤
ˆ
{|z|<t1/2}

1

|z|n−k+2s
W

((
t

|z|2 − 1
) 1

2

)
dz +W (0)

ˆ
{|z|>t1/2}

1

|z|n−k+2s
dz

≡ I1 + I2.

Note that W (0) = C(n, k, s) <∞. Then

I2 ≲
ˆ ∞

t1/2

1

ρn−k+2s
ρn−k−1 dρ ≂ t−s.
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For I1, we make the change of variables, w = z/t1/2. We see that

I1 =

ˆ
{|w|<1}

1

t
n−k+2s

2 |w|n−k+2s
W

((
1

|w|2 − 1
) 1

2
)
t
n−k
2 dw

≂
1

ts

ˆ 1

0

1

ρ1+2s
W

((
1
ρ2

− 1
) 1

2
)
dρ.

Note that if 0 < ρ ≤ 1/2, then
(

1
ρ2

− 1
) 1

2 ≥ 1√
2ρ

. Hence,

W
((

1
ρ2

− 1
) 1

2
)
≤ W

(
1√
2ρ

)
=

ˆ ∞

1√
2ρ

rk−1

(1 + r2)
n+2s

2

dr ≲ ρn−k+2s.

Therefore,

I1 ≲ t−s
ˆ 1/2

0

1

ρ1+2s
ρn−k+2s dρ+ t−sW (0)

ˆ 1

1/2

1

ρ1+2s
dρ ≂ t−s,

since n− k > 0. We conclude that

I = cn,s

ˆ 2Λd

0

ˆ
Rn−k

1

|z|n−k+2s
W

(µx1u(t, z)1/k
|z|

)
dzdt

≲
ˆ 2Λd

0

t−s dt ≂ (2Λd)1−s = (2Λ)1−s|x1 − x0|1−s.

Next we estimate the integral for t ∈ (2Λd, ε]. To this end, we use

Lemma 5.5.5, part (a):

Dx0u(t− 2Λd) ⊂ Dx1u(t).

In particular, for any z ∈ Rn−k fixed, we have

{y ∈ Rk : ũx0(y, z) ≤ t− 2Λd} ⊂ {y ∈ Rk : ũx1(y, z) ≤ t}.
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Hence, µx0(t− 2Λd, z) ≤ µx1(t, z), which yields

II = cn,s

ˆ ε

2Λd

ˆ
Rn−k

1

|z|n−k+2s
W

(µx1u(t, z)1/k
|z|

)
dzdt

≤ cn,s

ˆ ε−2Λd

0

ˆ
Rn−k

1

|z|n−k+2s
W

(µx0u(t, z)1/k
|z|

)
dzdt.

Finally, we estimate the integral for t ∈ [ε,∞). By Lemma 5.5.5, part (b):

Dx0u
(
t− 2Λdt/ε

)
⊂ Dx1u(t).

Hence, µx0u(t− 2Λdt/ε, z) ≤ µx1u(t, z), and

III = cn,s

ˆ ∞

ε

ˆ
Rn−k

1

|z|n−k+2s
W

(µx1u(t, z)1/k
|z|

)
dzdt

≲
ˆ ∞

ε

ˆ
Rn−k

1

|z|n−k+2s
W

(µx0u(t− 2Λdt/ε, z)1/k

|z|

)
dzdt

=
1

1− 2Λd/ε

ˆ ∞

ε−2Λd

ˆ
Rn−k

1

|z|n−k+2s
W

(µx0u(t, z)1/k
|z|

)
dzdt.

Note that

II + III ≤ cn,s
1− 2Λd/ε

ˆ ∞

0

ˆ
Rn−k

1

|z|n−k+2s
W

(µx0u(t, z)1/k
|z|

)
dzdt

=
ε

ε− 2Λd
Fsku(x0).

Therefore, we conclude that

Fsku(x1)− Fsku(x0) ≤ CΛ1−s|x1 − x0|1−s +
(

ε
ε−2Λd

− 1
)
Fsku(x0)

≤ CΛ1−s|x1 − x0|1−s + 4Λ
ε
|x1 − x0|Fsku(x0)

since d < r ≤ ε/(4Λ), and thus, ε− 2Λd ≥ ε/2.
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5.6 A Global Poisson Problem

We consider the following Poisson problem in the full space:{
Fsku = u− φ in Rn

(u− φ)(x) → 0 as |x| → ∞,
(5.6.1)

where φ : Rn → R is nonnegative, smooth, and strictly convex. Furthermore,

we ask that φ behaves asymptotically at infinity as a cone ϕ, that is,

lim
|x|→∞

(φ− ϕ)(x) = 0. (5.6.2)

Similar problems have been studied for nonlocal Monge-Ampère operators

in [8, 13].

We will prove the following theorem.

Theorem 5.6.1. There exists a unique solution u to (5.6.1) such that u ∈

C1,1(Rn) with

[u]C1,1(Rn) ≤ [φ]C1,1(Rn).

To define the notion of solution, we introduce a natural pointwise defi-

nition of Fsku for functions u that are merely continuous.

Definition 5.6.2. Let u ∈ C0(Rn).

(a) We say that a linear function l(y) = y · p+ b, with p ∈ Rn, and b ∈ R, is a

supporting plane of u at a point x if l(x) = u(x) and l(y) ≤ u(y), for all

y ∈ Rn.
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(b) We define the subdifferential of u at a point x as the set ∂u(x) of all vectors

p ∈ Rn such that l(y) = y · p+ b is a supporting plane of u at x, for some

b ∈ R.

Definition 5.6.3. Let u ∈ C0(Rn) be a convex function. For x0 ∈ Rn, we

define

Fsku(x0) = cn,s sup
p∈∂u(x0)

inf
K∈Ks

k

ˆ
Rn

(u(x0 + x)− u(x0)− x · p)K(x) dx.

Remark 5.6.4. Note that if u ∈ C1,1(x0), then ∂u(x0) = {∇u(x0)}, and the

previous definition coincides with Definition 5.2.4.

The following properties of Fsku will be useful for our purposes. The

proof is analogous to the one in [13], so we omit it here.

Lemma 5.6.5. Let u, v ∈ C0(Rn) be convex functions.The following holds:

(a) (Homogeneity). For any λ > 0,

Fsk(λu) = λFsku.

(b) (Monotonicity). Assume that u(x0) = v(x0) and u(x) ≥ v(x) for all

x ∈ Rn. Then

Fsku(x0) ≥ Fskv(x0).

(c) (Concavity). For any x ∈ Rn,

Fsk

(u+ v

2

)
(x) ≥ Fsku(x) + Fskv(x)

2
.
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(d) (Lower semicontinuity). Assume that u ∈ C1,1(Rn). Then

Fsku(x0) ≤ lim inf
x→x0

Fsku(x).

Definition 5.6.6. Let u ∈ C0(Rn) be a convex function. We say that u is a

subsolution to Fsku = u− φ in Rn if

Fsku(x0) ≥ u(x0)− φ(x0), for all x0 ∈ Rn.

Similarly, u is a supersolution if

Fsku(x0) ≤ u(x0)− φ(x0), for all x0 ∈ Rn.

We say that u is a solution if it is both a subsolution and a supersolution.

Lemma 5.6.7. If u and v are subsolutions, then max{u, v} is a subsolution.

Proof. Let w = max{u, v}. Then w is continuous and convex. Fix x0 ∈ Rn.

Without loss of generality, we may assume that u(x0) ≥ v(x0). Then w(x0) =

u(x0) and w(x) ≥ u(x), for any x ∈ Rn. By monotonicity (see Lemma 5.6.5),

we have

Fskw(x0) ≥ Fsku(x0) ≥ u(x0)− φ(x0) = w(x0)− φ(x0).

Hence, w is a subsolution.

We will show existence and uniqueness of solutions to (5.6.1) using

Perron’s method. The key ingredients are the comparison principle, and the

existence of a subsolution (lower barrier) and a supersolution (upper barrier).

We state this in the following proposition. We omit the proof since it is similar

to that in [13].
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Proposition 5.6.8. Consider the equation Fsku = u−φ in Rn. The following

holds:

(a) (Comparison principle). Let u and v be a subsolution and supersolution,

respectively. Assume that u ≤ v in Rn \ Ω, for some bounded domain

Ω ⊂ Rn. Then u ≤ v in Rn.

(b) (Lower-barrier). The function φ is a subsolution.

(c) (Upper-barrier). The function φ + w is a supersolution, where w = (I −

∆s)−1∆sφ. In particular, w(x) ≤ C(1 + |x|)1−2s, for some C > 0.

An immediate consequence of the comparison principle is the unique-

ness of solutions.

Lemma 5.6.9 (Uniqueness). There exists at most one solution to (5.6.1).

Proof. Suppose by means of contradiction that there exist two functions u, v ∈

C0(Rn) with u ̸= v, satisfying (5.6.1). Then |u(x) − v(x)| → 0, as |x| → ∞.

Hence, for any ε > 0, there exists a compact set Ωε ∈ Rn, depending on ε,

such that

v(x)− ε ≤ u(x) ≤ v(x) + ε for all x ∈ Rn \ Ωε.

Moreover, for any x0 ∈ Rn, the function v + ε satisfies

Fsk(v + ε)(x0) = v(x0)− φ(x0) < (v(x0) + ε)− φ(x0).
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Therefore, v is a supersolution and by the comparison principle, it follows that

u ≤ v + ε in Rn. Similarly, we see that v− ε is a subsolution and u ≥ v− ε in

Rn. Hence,

∥u− v∥L∞(Rn) ≤ ε,

and letting ε→ 0, we get u = v in Rn, which is a contradiction.

To prove existence of a solution, we define

u(x) = sup
v∈S

v(x), (5.6.3)

where S is the set of admissible subsolutions given by

S =
{
v ∈ C0,1(Rn) : v subsolution, φ ≤ v ≤ φ+ w,

and [v]C0,1(Rn) ≤ [φ]C0,1(Rn)

}
.

Note that S ̸= ∅ since φ ∈ S, and the supremum is finite since v ≤ φ+ w, for

any v ∈ S. Moreover, u is convex and Lipschitz, with

[u]C0,1(Rn) ≤ [φ]C0,1(Rn).

From φ ≤ u ≤ φ + w, and the upper bound for w in Proposition 5.6.8, it

follows that

0 ≤ (u− φ)(x) ≤ w(x) ≤ C(1 + |x|)1−2s → 0,

as |x| → ∞ since 1− 2s < 0.

Proposition 5.6.10. The function u given in (5.6.3) is C1,1(Rn) with

[u]C1,1(Rn) ≤ [φ]C1,1(Rn).
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Proof. We will show that for any x0, x1 ∈ Rn,

0 ≤ u(x0 + x1)− u(x0 − x1)− 2u(x0) ≤ [φ]C1,1(Rn)|x1|2.

Indeed, the lower bound follows from convexity of u. Hence, we only need to

prove the upper bound. Call M = [φ]C1,1(Rn). Then

φ(x0 + x1)− φ(x0 − x1)−M |x1|2 ≤ 2φ(x0). (5.6.4)

Take any v ∈ S and fix x1 ∈ Rn. Define

v̂(x0) =
1
2

(
v(x0 + x1) + v(x0 − x1)−M |x1|2

)
, for x0 ∈ Rn.

We claim that v̂ is a subsolution to Fsku = u−φ in Rn. Indeed, since Fsk is ho-

mogeneous of degree 1, concave, and translation invariant (see Lemma 5.6.5),

we have

Fskv̂(x0) = Fsk

(
1
2
v(x0 + x1) +

1
2
v(x0 − x1)

)
≥ 1

2
Fskv(x0 + x1) +

1
2
Fskv(x0 − x1)

≥ 1
2

(
v(x0 + x1)− φ(x0 + x1) + v(x0 − x1)− φ(x0 − x1)

)
= 1

2

(
v(x0 + x1)− v(x0 − x1)−M |x1|2

)
− 1

2

(
φ(x0 + x1) + φ(x0 − x1)−M |x1|2

)
≥ v̂(x0)− φ(x0).

Moreover, using that v ≤ φ+ w, we get

v̂(x0) ≤ 1
2

(
φ(x0 + x1) + φ(x0 − x1)−M |x1|2

)
+ 1

2

(
w(x0 + x1) + w(x0 − x1)

)
.
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By (5.6.4) and the upper bound of w in Proposition 5.6.8, part (c), we see that

v̂(x0)− φ(x0) ≤ C
2
(1 + |x0 + x1|1−2s) + C

2
(1 + |x0 − x1|)1−2s) → 0,

as |x0| → ∞ and x1 fixed, since 1− 2s < 0. Then for all ε > 0, there is some

compact set Ωε, depending on ε and x1, such that

v̂(x0)− ε ≤ φ(x0), for all x0 ∈ Rn \ Ωε.

Consider v̂ε = max{v̂ − ε, φ}. Then v̂ε is a subsolution, since the maximum

of subsolutions is a subsolution (see Lemma 5.6.7). Also, v̂ε = φ ≤ φ + w in

Rn \Ωε, and φ+w is a supersolution by Proposition 5.6.8, part (c). Applying

the comparison principle, we get φ ≤ v̂ε ≤ φ + w. Moreover, [v̂ε]C0,1(Rn) ≤

[φ]C0,1(Rn). Therefore, v̂ε ∈ S.

Since u(x0) = supv∈S v(x0), it follows that u(x0) ≥ v̂ε(x0) ≥ v̂(x0) − ε.

Letting ε→ 0, we conclude that for any v ∈ S and x0, x1 ∈ Rn,

u(x0) ≥ 1
2

(
v(x0 + x1) + v(x0 − x1)−M |x1|2

)
. (5.6.5)

Finally, by definition of supremum, for any δ > 0, and x0, x1 ∈ Rn, there exist

v1, v2 ∈ S such that u(x0+x1)−δ < v1(x0+x1) and u(x0−x1)−δ < v2(x0−x1).

Let v = max{v1, v2}. Then using (5.6.5) for this v, we get

u(x0) ≥ 1
2

(
u(x0 + x1)− δ + u(x0 − x1)− δ −M |x1|2

)
.

Letting δ → 0, we conclude that

u(x0 + x1)− u(x0 − x1)− 2u(x0) ≤ [φ]C1,1(Rn)|x1|2.
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To complete the proof of Theorem 5.6.1, it remains to see that u is a

solution. Hence, we need to show that u is both a subsolution and a superso-

lution. We will prove these results in the next two propositions.

Lemma 5.6.11. For any x0 ∈ Rn and ε > 0, the set

Dx0u(ε) =
{
x ∈ Rn : u(x)− u(x0)− (x− x0) · ∇u(x0) ≤ ε

}
is compact.

Proof. Let x0 ∈ Rn and ε > 0. Without loss of generality, we may assume that

x0 = 0. Let l be the supporting plane of u at 0, that is, l(x) = u(0)+x ·∇u(0).

Clearly, Dx0u(ε) is closed. Hence, we only need to show that it is bounded.

Recall that

ϕ(x) < φ(x) ≤ u(x), for all x ∈ Rn, (5.6.6)

where ϕ is a cone. Note that the strict inequality in (5.6.6) follows from the

strict convexity of φ. Moreover, by (5.6.1) and (5.6.2), we have

lim
|x|→∞

(u− ϕ)(x) = 0.

Therefore, Dx0u(ε) ⊂ {ϕ < l + ε}. We claim that

lim
|x|→∞

(ϕ− l)(x) = ∞. (5.6.7)

If this condition holds, then for all M > 0, there exists R > 0, such that

ϕ(x)− l(x) > M, for all |x| > R.
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Choosing M = ε, we see that {ϕ < l + ε} ⊂ BR, for some R depending on ε.

Hence, the set Dx0u(ε) is bounded.

To prove the claim, we distinguish two cases. If u(0) = 0, then u

attains an absolute minimum at 0, so ∇u(0) = 0. In particular, l(x) = 0, for

all x ∈ Rn, and thus, (5.6.7) is clearly satisfied. Hence, it remains to show the

claim when

u(0) > 0.

We will prove it by contradiction. If (5.6.7) is not true, then there exists a

sequence of points {xj}∞j=1 ⊂ Rn such that |xj| → ∞, as j → ∞, and

lim
j→∞

(ϕ− l)(xj) <∞.

Using that ϕ is continuous and homogeneous of degree 1, and letting j → ∞,

we get

ϕ(xj)

|xj | − l(xj)

|xj | = ϕ
( xj
|xj |

)
− u(0)

|xj | −
xj
|xj | · ∇u(0) → ϕ(e)−Deu(0) = 0,

where xj/|xj| → e, up to a subsequence. Therefore, ϕ(e) = Deu(0). For any

λ > 0, we have

l(λe) = u(0) + λe · ∇u(0) = u(0) + λϕ(e) = u(0) + ϕ(λe).

Since l is a supporting plane of u, we know that u(x) ≥ l(x), for all x ∈ Rn,

and thus,

u(λe) ≥ l(λe) = ϕ(λe) + u(0).
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Letting λ→ ∞, we see that

0 = lim
λ→∞

(u− ϕ)(λe) ≥ u(0) > 0,

which is a contradiction.

Proposition 5.6.12 (u is a subsolution). The function u given in (5.6.3)

satisfies

Fsku(x0) ≥ u(x0)− φ(x0), for all x0 ∈ Rn.

Proof. By Proposition 5.6.10, we know that u ∈ C1,1(Rn). Without loss of gen-

erality, we may assume that [u]C1,1(Rn) = 1. Otherwise, consider u/[u]C1,1(Rn).

Let x0 ∈ Rn. Then the quadratic polynomial

P (x) = u(x0) +∇u(x0) · (x− x0) + |x− x0|2

touches u from above at x0. Moreover, we may assume that P touches u

strictly from above at x0. If not, we replace P by P + ε|x − x0|2 with ε > 0

small.

Fix δ > 0. Then there exists h > 0, with h→ 0 as δ → 0, such that

P (x)− u(x) ≥ h > 0, for all x ∈ Rn \Bδ(x0).

Since u(x) = supv∈S v(x) and v ∈ S is uniformly continuous, there is a mono-

tone sequence {vj}∞j=1 ⊂ S such that vj → u uniformly in compact subsets of

Rn. In particular, there exists j0 ≥ 1, depending on h, such that for all j > j0,

u(x)− h < vj(x), for all x ∈ Bδ(x0). (5.6.8)
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Call v = vj for some j > j0. It follows that{
P − v ≥ h in Rn \Bδ(x0)

P − v < P − u+ h in Bδ(x0).

Let d = infRn(P − v). Then d = P (x1) − v(x1), for some x1 ∈ Bh(x0), with

0 ≤ d < h, and P (x) − d ≥ v(x), for all x ∈ Rn. Hence, P − d is a quadratic

polynomial that touches v from above at x1. In particular, since v is convex,

then v has a unique supporting plane l at x1, so ∂v(x1) = {∇l}.

Let τ ≥ 0 be such that l+ τ is the supporting plane of u at some point

x2. Note that x2 approaches x0 as h goes to 0, and thus, there exists some

r = r(h) > 0 such that r → 0, as h→ 0, and x2 ∈ Br(x0). Furthermore, since

l(x1) + d = v(x1) + d = P (x1) ≥ u(x1), then τ ≤ d < h (see Figure 5.2).

u

v

P

P − d

l

l + τ

Rn
x0

x1

x2
Br(x0)

Figure 5.2: Geometry involved in the proof of Proposition 5.6.12.

Fix ε > 0. By Lemma 5.6.11, we have that Dx0u(ε) is bounded, so
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Λ = diamDx0u(ε) < ∞. Choose δ sufficiently small, so that r < ε/(4Λ).

Then by Proposition 5.5.2, it holds that

Fsku(x2) ≤ Fsku(x0) + CΛ1−s|x2 − x0|1−s + 4Λ
ε
Fsku(x0)|x2 − x0|

≤ Fsku(x0) + C(r), (5.6.9)

where C(r) → 0, as r → 0. Next we will show that

Fskv(x1)− Cτ 1−s ≤ Fsku(x2) (5.6.10)

for some constant C > 0 depending only on n, k, and s. Since ∂v(x1) = {∇l},

then v ∈ C1,1(x1), and using Proposition 5.5.4, we get

Fskv(x1) = cn,s

ˆ ∞

0

ˆ
Rn−k

1

|z|n−k+2s
W

(µx1v(t, z)1/k
|z|

)
dzdt,

where µxv(t, z) = ω−1
k Hk

(
{y ∈ Rk : ṽx(y, z) ≤ t}

)
, and W is the monotone

decreasing function given in (5.5.2). Observe that since v ≤ u, l is the sup-

porting plane of v at x1, and l+ τ is the supporting plane of u at x2, then for

any t > 0, it follows that

Dx2u(t) = {u− (l + τ) ≤ t} ⊆ {v − l ≤ t+ τ} = Dx1v(t+ τ).

In particular, µx2u(t, z) ≤ µx1v(t+ τ, z), for any z ∈ Rn−k. Therefore,

W (µx2u(t, z)) ≥ W (µx1v(t+ τ, z)),

which yields

Fsku(x2) ≥ cn,s

ˆ ∞

τ

ˆ
Rn−k

1

|z|n−k+2s
W

(µx1v(t, z)1/k
|z|

)
dzdt

= Fskv(x1)− cn,s

ˆ τ

0

ˆ
Rn−k

1

|z|n−k+2s
W

(µx1v(t, z)1/k
|z|

)
dzdt

≥ Fskv(x1)− Cτ 1−s,
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where the last inequality follows from the fact that µx1v(t, z) ≥ C(t− |z|2)k/2+

and W is monotone decreasing.

Combining (5.6.9) and (5.6.10), using that v is a subsolution, and

(5.6.8), we get

Fsku(x0) + C(r) ≥ Fskv(x1)− Cτ 1−s ≥ v(x1)− φ(x1)− Cτ 1−s

> u(x1)− h− φ(x1)− Cτ 1−s.

Letting δ → 0, it follows that h → 0, C(r) → 0, τ → 0, and x1 → x0. By

continuity of u and φ, we conclude the result.

Proposition 5.6.13 (u is a supersolution). The function u given in (5.6.3)

satisfies

Fsku(x0) ≤ u(x0)− φ(x0), for all x0 ∈ Rn.

Proof. Assume the statement is false. Then there exists some x0 ∈ Rn such

that

Fsku(x0) > u(x0)− φ(x0).

Without loss of generality, we may assume that u(x0) = 0 and ∇u(x0) = 0.

Otherwise, consider v(x) = u(x)−u(x0)− (x−x0) ·∇u(x0). Then there exists

some δ > 0 such that

Fsku(x0) ≥ −φ(x0) + δ. (5.6.11)

Fix ε > 0 and let uε(x) = max{u(x), ε}. We will show that for ε

sufficiently small, uε is an admissible subsolution, and thus, reaching a con-

tradiction with u being the largest subsolution. Indeed, uε is convex and
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uε ∈ C0,1(Rn) with [uε]C0,1(Rn) ≤ [φ]C0,1(Rn). Moreover, note that uε(x) = u(x),

for x large. Hence, once we show that uε is a subsolution, it will follow from

the comparison principle that φ ≤ uε ≤ φ+ w.

If x ∈ {uε = u}, then uε(x) = u(x) and uε ≥ u in Rn. By monotonicity

(Lemma 5.6.5),

Fsku
ε(x) ≥ Fsku(x) ≥ u(x)− φ(x) = uε(x)− φ(x),

since u is a subsolution, by Proposition 5.6.12.

If x ∈ {uε > u}, then uε(x) = ε and ∂uε(x) = {0}. In particular,

Fsku
ε(x) = Fsku

ε(x0). (5.6.12)

Moreover, for any t > 0, we have Dx0u
ε(t) = {uε − ε ≤ t} = {u ≤ t + ε} =

Dx0u(t+ ε). Therefore, in view of Proposition 5.5.4, we get

Fsku
ε(x0) = Fsku(x0)−

ˆ ε

0

ˆ
Rn−k

1

|z|n−k+2s
W

(µx0u(t, z)1/k
|z|

)
dzdt

≥ Fsku(x0)− Cε1−s (5.6.13)

since u ∈ C1,1(Rn) and µx0u(t, z) ≥ (t− |z|2)k/2+ .

Combining (5.6.11), (5.6.12), and (5.6.13), we see that

Fsku
ε(x) = Fsku

ε(x0) ≥ Fsku(x0)− Cε1−s ≥ −φ(x0) + δ − Cε1−s

= uε(x)− φ(x) +
(
φ(x)− φ(x0) + δ − Cε1−s − ε

)
,

since uε(x) = ε. We need the term inside the parenthesis to be nonnegative.

Hence, it remains to control φ(x)− φ(x0). Since φ is smooth,

|φ(x)− φ(x0)| ≤ [φ]C0,1(Rn)|x− x0|.
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We distinguish two cases. If {u = 0} = {x0}, then |x − x0| ≤ dε → 0, as

ε→ 0. Hence, choosing ε sufficiently small, we see that

φ(x)− φ(x0) + δ − Cε1−s − ε ≥ δ − [φ]C0,1(Rn)dε − Cε1−s − ε ≥ 0.

Therefore, uε ∈ S, which contradicts uε(x0) > u(x0) = supv∈S v(x0) ≥ uε(x0).

Suppose now that {u = 0} contains more than one point. By compact-

ness of {u = 0} and continuity of φ, there exists some x1 ∈ {u = 0} where φ

attains its maximum. Then

Fsku(x1) = Fsku(x0) ≥ u(x0)− φ(x0) + δ ≥ u(x1)− φ(x1) + δ.

Moreover, by convexity of {u = 0} (since u ≥ φ ≥ 0) and φ, we must have

that x1 ∈ ∂{u = 0}. Hence, there exists {xj}∞j=2 ⊂ {u > 0} such that xj → x1

and u is strictly convex at xj. Namely, there is a supporting plane that touches

u only at xj.

By continuity of u, there exists some j0 ≥ 2 such that

u(x1) > u(xj)− δ/4, for all j > j0.

By continuity of φ, there exists some j1 ≥ 2 such that

φ(x1) < φ(xj) + δ/4, for all j > j1.

By lower semicontinuity of Fsku, up to a subsequence, there exists some j2 ≥ 2

such that

Fsku(xj) > Fsku(x1)− δ/4, for all j > j2.
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Let J > max{j0, j1, j2}. Then

Fsku(xJ) > Fsku(x1)− δ/4 ≥ u(x1)− φ(x1) + 3δ/4 > u(xJ)− φ(xJ) + δ/4,

and we can repeat the previous argument, replacing x0 by xJ . We conclude

that

Fsku(x0) ≤ u(x0)− φ(x0), for all x0 ∈ Rn.

5.7 Future directions

As mentioned in the introduction, the main idea to define a nonlocal

analog to the Monge-Ampère operator is to write it as a concave envelope of

linear operators. More precisely,

n det(D2u(x))1/n = inf
M∈M

tr(MD2u(x)),

where M = {M ∈ Sn : M > 0, det(M) = 1} and Sn is the set of n × n

symmetric matrices. In fact, this extremal property does not only hold for

n det(B)1/n with B ∈ Sn and B > 0. Observe that if λ = (λ1, . . . , λn), where

λi are the eigenvalues of B, then the function f defined in Γ = {λ ∈ Rn : λi >

0, for all i = 1, . . . , n}, given by

f(λ) = n
( n∏
i=1

λi

)1/n

= n det(B)1/n

is differentiable, concave, and homogeneous of degree 1. In general, if f satisfies

these conditions in an open convex set Γ in Rn, then

f(λ) = inf
µ∈Γ

{
f(µ) +∇f(µ) · (λ− µ)

}
= inf

µ∈Γ
∇f(µ) · λ,
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where the second identity follows by Euler’s theorem. Therefore,

f(λ) = inf
M∈Mf

tr(MB),

where Mf = {M ∈ Sn : λ(M) ∈ ∇f(Γ)}, ∇f(Γ) = {∇f(µ) : µ ∈ Γ}, and

λ(M) are the eigenvalues of M .

For instance, the k-Hessian functions introduced by Caffarelli, Niren-

berg, and Spruck in [9] satisfy these conditions and, in fact, fractional analogs

have been recently studied by Wu [62]. It would be interesting to explore

fractional analogs to a wider class of fully nonlinear concave operators, as the

ones mentioned above.

We remark that the 1-Hessian is equal to the Laplacian, and the n-

Hessian is equal to the Monge-Ampère operator. Moreover, for 1 < k < n, we

obtain an intermediate discrete family between these operators. In view of this

observation, a natural question of finding a continuous family connecting the

Laplacian with the Monge-Ampère operator arises. Here we suggest possible

families that connect smoothly these two operators, passing through the k-

Hessians, in some sense. Indeed, let α ∈ (0, 1]n and denote |α| = α1+ · · ·+αn.

For λ ∈ Rn
+, we consider the functions,

fα(λ) =
(∑
σ∈S

λα1

σ(1) · · ·λ
αn

σ(n)

) 1
|α|
,

where S is the set of all cyclic permutations of {1, . . . , n}. Observe that for

any 1 ≤ k ≤ n, if α =
∑

i∈I ei, with |I| = k, then fα is precisely the k-Hessian

function. Consider any smooth simple curve γ : [0, 1] → (0, 1]n such that
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1. γ(0) = ei, for some 1 ≤ i ≤ n,

2. γ(tk) =
∑

i∈Ik ei, with |Ik| = k, and 0 < tk < tk+1 < 1, for all 1 < k < n,

and

3. γ(1) = (1, . . . , 1).

Then the family {fα}α∈Im(γ) is as we described. In particular, fractional analogs

of these functions would give a continuous family from the fractional Laplacian

to the nonlocal Monge-Ampère. We will study this problem in a forthcoming

paper.

207



Bibliography

[1] M. Amaral and E. Teixeira. Free transmission problems. Comm. Math.

Phys., 337:1465–1489, 2015.

[2] A. Baernstein. Symmetrization in Analysis. Cambridge University Press,

2019.

[3] C. Bennett and M. Sharpley. Interpolation of Operators. Pure and

Applied Mathematics, Academic Press, 1988.

[4] I. Blank and Z. Hao. The mean value theorem and basic properties of the

obstacle problem for divergence form elliptic operators. Comm. Anal.

Geom., 23:129–158, 2015.

[5] M. Borsuk. Transmission problems for elliptic second-order equations

in non-smooth domains. Frontiers in Mathematics, Birkhäuser/Springer

Basel AG, Basel, 2010.

[6] M. V. Borsuk. A priori estimates and solvability of second order quasi-

linear elliptic equations in a composite domain with nonlinear boundary

conditions and conjunction condition. Proc. Steklov Inst. of Math.,

103:13–51, 1970.

[7] Y. Brenier. Polar factorization and monotone rearrangement of vector-

valued functions. Comm. Pure Appl. Math., 44:375–417, 1991.

208



[8] L. Caffarelli and F. Charro. On a fractional Monge-Ampère operator.

Ann. PDE, 1, 2015.

[9] L. Caffarelli, L. Nirenberg, and J. Spruck. The Dirichlet problem for

nonlinear second-order elliptic equations. III. Functions of the eigenvalues

of the Hessian. Acta Math., 155:261–301, 1985.

[10] L. Caffarelli and L. Silvestre. Regularity theory for fully nonlinear

integro-differential equations. Comm. Pure Appl. Math., 62:597–638,

2009.

[11] L. Caffarelli and L. Silvestre. The Evans-Krylov theorem for nonlocal

fully nonlinear equations. Ann. of Math., 174:1163–1187, 2011.

[12] L. Caffarelli and L. Silvestre. Regularity results for nonlocal equations

by approximation. Arch. Ration. Mech. Anal., 200:59–88, 2011.

[13] L. Caffarelli and L. Silvestre. A nonlocal Monge-Ampère equation.

Comm. Anal. Geom., 24:307–335, 2016.

[14] L. A. Caffarelli. Elliptic second order equations. Rend. Sem. Mat. Fis.

Milano, 58:253–284, 1988.

[15] L. A. Caffarelli and X. Cabré. Fully Nonlinear Elliptic Equations. Amer-

ican Mathematical Society, Providence, 2005.

[16] L. A. Caffarelli and M. Soria-Carro. On a family of fully nonlinear

integro-differential operators: From fractional laplacian to nonlocal monge-

ampère. arXiv:2111.12781, 2021.

209



[17] L. A. Caffarelli, M. Soria-Carro, and P. R. Stinga. Regularity for C1,α in-

terface transmission problems. Arch. Ration. Mech. Anal., 1:265–294,

2021.

[18] S. Campanato. Sul problema di M. Picone relativo all’equilibrio di un

corpo elastico incastrato. Ricerche Mat., 6:125–149, 1957.

[19] S. Campanato. Proprietà di holderianità di alcune classi di funzioni.

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17:175–188, 1963.

[20] G. Citti and F. Ferrari. A sharp regularity result of solutions of a trans-

mission problem. Proc. Amer. Math. Soc., 140:615–620, 2012.

[21] M. G. Crandall, H. Ishii, and P. L. Lions. User’s guide to viscosity

solutions of second order partial differential equations. Bull. Amer.

Math. Soc., 27:1–67, 1992.

[22] M. G. Crandall and P. L. Lions. Viscosity solutions of hamilton-jacobi

equations. Trans. Amer. Math. Soc., 277:1–42, 1983.

[23] L. C. Evans and R. F. Gariepi. Measure Theory and Fine Properties of

Functions. Studies in Advanced Mathematics, CRC Press, Boca Raton,

FL, 1992.

[24] A. Figalli. The Monge-Ampère Equation and Its Applications. Zurich

Lectures in Advanced Mathematics, European Mathematical Society, 2017.

210



[25] C. De Filippis. Regularity for solutions of fully nonlinear elliptic equa-

tions with nonhomogeneous degeneracy. Proc. Roy. Soc. Edinburgh

Sect. A, 151:110–132, 2021.

[26] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of

second order. Classics in Mathematics, Springer-Verlag, Berlin, 2001.

[27] N. Guillen and R. W. Schwab. Aleksandrov-bakelman-pucci type esti-

mates for integro-differential equations. Arch. Ration. Mech. Anal.,

206:111–117, 2012.

[28] C. E. Gutiérrez. The Monge-Ampère Equation. Progress in Nonlinear

Differential Equations and Their Applications, 2001.

[29] G. Huaroto, E. A. Pimentel, G. C. Rampasso, and A. Świȩch. A fully
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