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Passive transport and Brownian effect

Passive transport in a flow (dust or pollutant in a river for
instance) can be modeled as

∂tθ + u · ∇θ = ∆θ,

where θ is the density of the particles, u the velocity of the flow,
and ∆θ models the brownian effects.
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Anomalous diffusion and fractional Laplacians

In case of a turbulent flow, there is a lot of ”swirls” which eject
the particles making them to ”jump”.

Figure: Passive transport in a turbulent flow

A classical way to model ”anomalous” diffusion is using fractional
Laplacians:

∂tθ + v · ∇θ −∆s/2θ = 0.
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Probabilistic interpretation and integral form

This corresponds to a Levy process (vs Brownian process) involving
jumps of size y .
Actually, for 0 < s < 1

∆s/2θ(x) = Cs,N

∫
RN

θ(y)− θ(x)

|x − y |s+N
dy .

They can be generalized to non homogenous operators of the form∫
RN

(θ(y)− θ(x))K (x , y) dy ,

with
1

Λ|x − y |s+N
≤ K (x , y) ≤ Λ

1

|x − y |s+N
.
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2D projection and the Half Laplacian

The half Laplacian ∆1/2 corresponds to the ”Dirichlet to
Neumann” map.

Figure: 2D projection

It is used for modeling in different situation (Dislocation dynamics,
Surface Quasi-Geostrophic equation...)
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Surface Quasi Geostrophic equation

We consider the potential temperature function θ : R2 → R at the
surface of the earth.

∂tθ + u · ∇θ = ∆1/2θ,

u = R⊥θ.

R⊥θ = (R2θ,−R1θ)
where:

R̂iθ =
ξi
|ξ|
θ̂.

Note divu = 0
(incompressibility).
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Random waiting time and fractional in time derivatives

Example of anomalous diffusion due to random waiting time:
Assume that the eddies ”trap” the particles for a random (long
enough) time.
It gives rise to a memory effect (non-Markovian equations): to
propagate the flow at a given time, you need to know the position
of the particles and the eddies, but also how long the particles have
already been trapped in the eddies.

Figure: Passive transport in a turbulent flow
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The Caputo fractional in time derivative

This leads to the Caputo fractional in time derivative (0 < α < 1):

0D
α
t θ(t) = Cα

∫ t

0

θ′(s)

(t − s)α
ds.

It can be written in the following integral form:

0D
α
t θ(t) = Cα

∫ t

−∞

θ(s)− θ(t)

(t − s)α+1
ds,

where u(x) = u0 (initial value) for x < 0.
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Results

The solutions of the following problems, with initial values
bounded in L2, are C∞ for t > 0.

(Caffarelli-V., 2010, Annals of Math. ) The quasi-Geostrophic
equation.

(Caffarelli -Chan -V., J. of the AMS)

∂tθ(t, x)−
∫
RN

φ′(θ(t, y)− θ(t, x))K (y − x)dy = 0,

Where φ is strictly convex and K is comparable with a
fractional Laplacian:

(Caffarelli- Allen- V., 2015):

0D
α
t θ −

∫
RN

(θ(t, y)− θ(t, x))K (t, x , y)dy = 0,
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De Giorgi method

Theorem

(De giorgi 57) Let φ be strictly convex. Then any local minimizers
of

V (u) =

∫
Ω
φ(∇u) dx

is C∞ strictly inside Ω.

u is solution of the associated Euler-Lagrange equation.

let θ = ∂eu. It is solution to

div(A(x)∇θ) = 0,

where A(x) (function of u) is bounded elliptic but not a priori
regular.

The method developed by De Giorgi shows that θ ∈ Cα.
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Applications to our problems

We need the following tools:

ENERGY: We need to have an energy dissipation.

The estimate of the ”levels” of energy has to be localizable.

Cα is the threshold to obtain higher regularity (via more
standard mehods).

In all these applications, we can concentrate on linear
problems (as De Giorgi).
(But this is not crucial, see Caffarelli-Vaszquez (porous
media), or Chan-V. (Hamilton-Jacobi)).
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Main steps

L2 (bounded energy) to L∞ (uniformly bounded).

L∞ (uniformly bounded) to Cα (modulus of continuity).
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Main difficulty

The main difficulty: For nonlocal problems, how to localize the
energy ?

Via the extension operator (Caffarelli-V.). But leads to a very
degenerated energy inequality.
Does not work if the operator is not homogenous.

Via a ”weak” localization (Caffarelli-Chan-V.): Far easier...

What about the fractional derivatives in time ?
It works pretty much the same way. It can be seen as a kind
of nonlocal elliptic problem in space time.
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Thank you

THANK YOU !!
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