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ABSTRACT

This dissertation deals with the following two projects.

First, we characterize one-sided weighted Sobolev spaces W 1,p(R, ω), where ω is a one-sided

Sawyer weight, in terms of a.e. and weighted Lp limits as α→ 1− of Marchaud fractional derivatives

of order 0 < α < 1. These are Bourgain–Brezis–Mironescu-type characterizations for one-sided

weighted Sobolev spaces. Similar results for weighted Sobolev spaces W 2,p(Rn, ν), where ν is an

Ap-Muckenhoupt weight, are proved in terms of limits as s → 1− of fractional Laplacians (−∆)s.

We also additionally study the a.e. and weighted Lp limits as α, s→ 0+.

Second, we define fractional powers of nondivergence form elliptic operators (−aij(x)∂ij)
s for

0 < s < 1 with Hölder coefficients and characterize a Poisson problem driven by (−aij(x)∂ij)
s with

a local degenerate extension problem. An interior Harnack inequality for nonnegative solutions to

such an extension equation with bounded, measurable coefficients is proved. This in turn implies

the interior Harnack inequality for the fractional problem.
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CHAPTER 1. INTRODUCTION

This dissertation pertains to the mathematical analysis of functional spaces related to fractional

derivatives and fractional Laplacians and regularity theory of solutions to equations driven by

fractional powers of nondivergence form elliptic differential operators. More precisely, we solve the

following problems.

1. We define appropriate one-sided weighted Sobolev spaces W 1,p(R, ω) which are conducive for

working with one-sided fractional derivatives. The weights ω ∈ A−p (R) are one-sided Sawyer

weights. We prove a Bourgain–Brezis–Mironescu-type characterization of the weighted spaces

W 1,p(R, ω) and Lp(R, ω) by showing that the respective limits

lim
α→1−

(Dleft)
αu(t) = u′(t) and lim

α→0+
(Dleft)

αu(t) = u(t) (1.0.1)

hold in Lp(R, ω) and almost everywhere. Here, (Dleft)
α denotes the Marchaud left-derivative

of order 0 < α < 1. We prove a similar characterization of the two-sided weighted Sobolev

spaces W 2,p(Rn, ν) and Lp(Rn, ν) using fractional Laplacians of order 0 < s < 1. Here,

ν ∈ Ap(Rn) are classical Muckenhoupt weights.

2. We define fractional powers of nondivergence form elliptic operators

Lu = −aij(x)∂iju, Dom(L) = {u ∈ C0(Ω) ∩W 2,n
loc (Ω) : Lu ∈ C0(Ω)},

using the method of semigroups, where Ω ⊂ Rn is a bounded, Lipschitz domain and aij(x)

are Hölder continuous and uniformly elliptic. We prove Harnack inequality for nonnegative

solutions u ∈ Dom(L) to the problem Lsu = 0, 0 < s < 1, in a ball B ⊂⊂ Ω. We characterize

the Poisson problem driven by Lsu with a local, degenerate extension equation.
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1.1 Introduction

Fractional derivatives were first introduced as a purely mathematical concept. When referring

to the nth order derivative dnu(t)
dtn , G. L’Höpital asked G. Leibniz in his 1695 letter [45]

“What if n is 1/2?”

Leibniz replied,

“It will lead to a paradox. From this apparent paradox,

one day useful consequences will be drawn.”

Many years later, in 1819, S. F. Lacroix devoted only two pages of his 700 page textbook on

differential and integral calculus to providing the first definition of a fractional derivative, with no

apparent physical interpretations:

d1/2

dt1/2
(tp) =

Γ(p+ 1)

Γ(p+ 1/2)
tp−1/2, p > 0

where Γ denotes the Gamma function [41]. The first known application of fractional derivatives

appeared shortly later in 1823 when N. H. Abel used fractional derivatives to model the tautochrone

problem [1]. Since then, many scientists, like Riemann, Liouville, Riesz, and Weyl, have attempted

to define derivatives of fractional order as seen in the very complete monograph by Samko–Kilbas–

Marichev [64]. Moreover, within the last 20 years, there has been an explosion of interest of

fractional derivatives in applied sciences. For example, fractional derivatives are used to capture

the avalanche-like behavior and trapping effects of particles due to eddies in plasmas [22].

In contrast to classical derivatives for which, to compute u′(t), we only need to know the values

of u in a small neighborhood of t, fractional derivatives are nonlocal in nature. For example, the

Marchaud left-fractional derivative of a function u = u(t) : R→ R is given by

(Dleft)
αu(t) =

1

Γ(−α)

∫ t

−∞

u(h)− u(t)

(t− h)1+α
dh, 0 < α < 1, (1.1.1)

see [52]. This operator satisfies the Fourier transform identity

̂(Dleft)αu(ξ) = (iξ)αû(ξ), ξ ∈ R.
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By taking α = 1, we can see that the definition agrees with the usual derivative. Notice from (1.1.1)

that to determine (Dleft)
αu(t), one needs to know the entire history of u, i.e. all the values of u in

(−∞, t]. Fractional derivatives can be used to refine existing models in order to capture memory

effects such as with world population growth and blood-alcohol level systems in humans [5].

While fractional derivatives can be regarded as nonlocal in time, fractional powers of second-

order differential operators can be seen as nonlocal in space. Perhaps the most important nonlocal

operator in space is the fractional Laplacian on Rn. For a function u = u(x) : Rn → R, we define

(−∆)su by

(−∆)su(x) = cn,sP.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy, 0 < s < 1, (1.1.2)

where P.V. denotes that the integral is taken in the principle value sense and cn,s > 0 is a normalizing

constant. This operator satisfies the Fourier transform identity

̂(−∆)su(ξ) = |ξ|2s û(ξ) ξ ∈ Rn.

By taking s = 1, we can see that the definition agrees with the classical Laplacian and hence gives

the name “fractional Laplacian.” Like (1.1.1), fractional Laplacians are nonlocal, but, in contrast

to (Dleft)
αu(t) for which we need to know the values of u in one direction, to compute (−∆)su(x),

we need to know the values of u everywhere.

Fractional powers of differential operators are classical objects that have been studied from

several points of view, including harmonic analysis [70], potential analysis [42], probability [10],

functional analysis [80], pseudo-differential operator theory [77], fractional calculus [64], among

others. Nonlocal equations of fractional order have received a lot of attention in recent years in the

field of partial differential equations, mainly due to the work of Luis Caffarelli and collaborators

[9, 17, 18, 19, 20, 21]. Indeed, over 90% of the papers on Google Scholar with the phrase “fractional

Laplacian” in the title appear after Luis Silvestre’s thesis in 2005 [68].

Despite all this activity, there are still many open questions in the theory of fractional operators

that need to be addressed. Given a model, the theory of PDEs requires refinements of the model to

prove desired estimates. Just to mention one instance, the theory of pseudo-differential operators
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has proven to be insufficient for obtaining some fine regularity estimates, like Harnack inequalities,

on Lipschitz domains.

1.2 Applications of fractional operators

We present some models that are the main motivation for the work presented in this dissertation.

1.2.1 Fractional derivatives

I. Anomalous diffusion. Let u = u(x, t) be the probability of finding an object in position x at time

t. The normal diffusion equation is given by

∂

∂t
u = D

∂2

∂x2
u

where D is the diffusion constant. Spider monkeys, however, have been observed to remain in

motion for a long period of time without changing direction. In this case, displacement grows

faster than normal diffusion and is modeled by

∂α

∂tα
u = D

∂2

∂x2
u

where α > 1 is non-integer. On the other hand, when displacement grows slower than normal

diffusion, such as for proteins diffusing across a cell or the movement of contaminants in ground

water, the model utilizes a fractional time derivative of order 0 < α < 1. These are so-called

anomalous diffusions. See [39] for these and more details.

II. Viscoelasticity. In continuum mechanics, when modeling how a continuous materials behaves

under deformations, we need a relationship between the internal forces (stress, σ = σ(t)) and the

measure of the deformation of the material (strain, ε = ε(t)). For elastic materials, such as springs,

this relationship follows Hooke’s law in that stress is proportional to strain:

σ(t) = Eε(t)
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where E is material constant, called the Young’s modulus. Viscous fluids, such as water or honey,

follow Newton’s law in that stress is proportional to the velocity of strain:

σ(t) = −η d
dt
ε(t)

where η is a material constant, called the viscosity.

Viscoelastic materials, such as rubber and concrete, exhibit both elastic and viscous characteris-

tics when undergoing deformations. Classical models of viscoelastic materials, such as the Maxwell

and Kelvin-Voigt models, use combinations of elastic and viscous relations. Nevertheless, for some

viscoelastic materials, such as gels and biological tissues, these turn out to be rather inadequate

models. It has been observed experimentally that the stress-strain relationship for such materials

can be effectively modeled with a fractional derivative relation

σ = C
dα

dtα
ε,

which cannot be expressed as a finite combination of strain and derivatives of strain (see [51, 57]).

As the result of an internship at Oak Ridge National Laboratory in 2018, my mentor at the lab

Pablo Seleson, my major professor Pablo Raúl Stinga, and myself have established a model using

fractional derivatives to describe viscoelastic solids with growing cracks. The work presented in

this document is on the theory of Sobolev spaces that takes into account the history of fractional

derivatives and is foundational towards the analysis of our model.

1.2.2 Fractional powers of nonlocal nondivergence form operators

III. Random walks. Consider a particle moving randomly in a bounded domain Ω ⊂ Rn that is

terminated at the boundary. We can describe this behavior with a Wiener process Wt (also called

Brownian motion) that is killed at the first exit time τ of W from Ω. This process is generated by

the Dirichlet Laplacian −∆.

Suppose now that we want to describe a particle that is randomly jumping in Ω and is killed

when it tries to cross the boundary. In particular, we subordinate the process Wt with an s-stable
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symmetric Lévy subordinator Tt. This subordinated process is generated by the fractional power

of the Dirichlet Laplacian (−∆)s.

By considering the particle jumping in heterogeneous media, the process is generated by−aij(x)∂ij ,

for some elliptic coefficients aij(x). The corresponding subordinated process is generated by the

fractional operator (−aij(x)∂ij)
s. See [36, 37, 69] for more details.

IV. The fractional Monge–Ampère equation. The classical Monge–Ampère equation, given by

detD2u = f for a convex solution u : Ω ⊂ Rn → R,

appears in the theories of prescribed Gauss curvature, optimal transport, and fluid dynamics. See

[28, 34] for more on applications and theory. Consider the class M of n × n symmetric, positive

definite matrices A with constant coefficients such that det(A) = 1. For a convex, C2 function u,

one can check that

n det(D2u(x))1/n = inf{∆(u ◦A)(A−1x) : A ∈M}

= inf{trace(A2D2u(x)) : A ∈M}.

The infimum is attained at A2 = det(D2u)1/n(D2u)−1.

Define the operators LA for A ∈M by

LAu(x) = −∆(u ◦A)(A−1x) = − trace(A2D2u(x)).

Caffarelli–Charro [15] defined a fractional Monge–Ampère operator by

Dsu(x) = inf{−(−∆)s(u ◦A)(A−1x) : A ∈M}, 0 < s < 1.

Stinga–Jhaveri [76] showed that this definition coincides with

Dsu(x) = inf{−(LA)su(x) : A ∈M},

where (LA)s is the fractional power of LA.
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We remark that both the local and fractional Monge–Ampère operators are degenerate elliptic.

Indeed, in dimension 2, the matrices

Aε =

(
ε 0

0 1
ε

)
for ε > 0

are in the class M but degenerate as ε→ 0+. Nevertheless, for the local Monge–Ampère equation,

if u is convex, D2
eeu ≤ M0, and det(D2u) ≥ η0 > 0, then one can take the matrices A > λI in

the computation of the infimum and the equation becomes uniformly elliptic (see [28]). In the

fractional setting, if u is Lipschitz, semiconcave, and Dsu ≥ η0 > 0 then, again, one can take the

matrices A > λI in the computation of the infimum and the equation becomes uniformly elliptic

(see [15]). Under these assumptions, it follows that

Dsu(x) = −(−aij(x)∂ij)
su(x)

for some bounded, measurable, uniformly elliptic coefficients aij(x).

1.3 Description of results

The results of this dissertation are contained in Chapter 2 and Chapter 3. Here, we describe

those results.

1.3.1 Chapter 2: One-sided weighted fractional Sobolev spaces

The work in this chapter has been published in Nonlinear Analysis, 2020 [75].

Since L’Höpital’s letter to Leibniz, many “derivatives of fractional order” have been defined

[64]. It is my opinion that any reasonable definition of derivative Dα of fractional order 0 < α < 1

should at least satisfy the relations Dα[Dβu](t) = Dα+βu(t), and

lim
α→1−

Dαu(t) = u′(t) and lim
α→0+

Dαu(t) = u(t) (1.3.1)

whenever u is a sufficiently smooth function. Recall that the Marchaud left fractional derivative,

given by

(Dleft)
αu(t) =

1

Γ(−α)

∫ t

−∞

u(τ)− u(t)

(t− τ)1+α
dτ, (1.3.2)
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takes into account the values of u to the left of t (the past). Similarly, the Marchaud right fractional

derivative

(Dright)
αu(t) =

1

Γ(−α)

∫ ∞
t

u(τ)− u(t)

(τ − t)1+α
dτ (1.3.3)

looks at u only to the right of t (the future). These were first introduced by André Marchaud in

his 1927 dissertation [52] (see also, for example, [2, 3, 4, 8, 64] for theory and applications). One

can check that if u is a Schwartz class function, then (1.3.1) holds.

On the other hand, in 2001, Bourgain–Brezis–Mironescu famously characterized the Sobolev

space W 1,p(Ω), Ω ⊆ Rn, in terms of the limit as s→ 1− of fractional Gagliardo seminorms, namely,

the seminorms of the fractional Sobolev spaces W s,p(Ω) [11]:

lim
s→1−

(1− s)
∫

Ω

∫
Ω

|u(x)− u(y)|p

|x− y|n+sp dx dy = cn,p

∫
Ω
|Du|p dx.

In 2002, Maz’ya–Shaposhnikavo complimented their work by using the limit as s→ 0+ to charac-

terize the space Lp(R) [58]:

lim
s→0+

s

∫
Rn

∫
Rn

|u(x)− u(y)|p

|x− y|n+sp dx dy = cn,p

∫
Rn
|u|p dx.

These characterizations embody the same flavor as showing (1.3.1) in Lp.

We define, for the first time, weighted Sobolev spaces that take into account the one-sided

behavior of fractional derivatives. We prove characterizations of such spaces by studying the limits

of fractional derivatives in the almost everywhere and Lp senses.

In this regard, we remark that classical Sobolev spaces make no distinction between left and

right classical derivatives. Indeed, we recall that hidden within the limit definition of the usual

derivative, u′(t), are the following one-sided limits

d−

dt
u(t) = lim

h→0−

u(t+ h)− h(t)

h
,

d+

dt
u(t) = lim

h→0+

u(t+ h)− h(t)

h
.

The property that a function is differentiable from only one-side, say the left, is lost in the weak

setting since, for a test function ϕ ∈ C∞c (R),∫
R

d−

dt
u(t)ϕ(t) dt = −

∫
R
u(t)

d+

dt
ϕ(t) dt = −

∫
R
u(t)ϕ′(t) dt = u′(ϕ).

In other words, d−

dt u = u′ in the sense of distributions.
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We believe that a more natural, appropriate class of functions to consider is the weighted

Sobolev space W 1,p(R, ω), 1 ≤ p < ∞, but where ω is now a one-sided Sawyer weight in A−p (R)

(for left-sided fractional derivatives) or in A+
p (R) (for right-sided fractional derivatives). We define

these one-sided fractional Sobolev spaces as

W 1,p(R, ω) =
{
u ∈ Lp(R, ω) : u′ ∈ Lp(R, ω)

}
with the norm

‖u‖p
W 1,p(R,ω)

= ‖u‖pLp(R,ω) + ‖u′‖pLp(R,ω)

for 1 ≤ p < ∞. The Sawyer weights ω ∈ A−p (R) are the good weights for the original one-sided

Hardy–Littlewood maximal function [35, p. 92]:

M−u(t) = sup
h>0

1

h

∫ t

t−h
|u(τ)| dτ.

Indeed, M− is bounded in Lp(R, ω) if and only if ω ∈ A−p (R), 1 < p < ∞, see [66], and M− is

bounded from L1(R, ω) into weak-L1(R, ω) if and only if ω ∈ A−1 (R), see [55]. For more details, see

Section 2.2 and also [54].

We first develop one-sided distributional spaces in which fractional derivatives have sense. Then

we show that in such a setting one can always define (Dleft)
αu as a distribution for any function

u ∈ Lp(R, ω), ω ∈ A−p (R). We additionally prove that smooth functions with compact support are

dense in W 1,p(R, ω).

As done by Silvestre for the fractional Laplacian [68], we show that if u ∈ Cα+ε(I) for some

ε > 0 and open set I ∈ R, then (Dleft)
αu, which a priori is a distribution, is a continuous function

in I and coincides with (1.3.2) in I.

One of the main results of this chapter is that our one-sided weighted Sobolev spaces W 1,p(R, ω)

can be characterized by the almost everywhere and Lp limits of fractional derivatives. We show

that u ∈W 1,p(Rn, ω), ω ∈ A−p (R), if and only if

lim
α→1−

(Dleft)
αu = u′ in Lp(R, ω) and a.e. in R.
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If u ∈W 1,p(Rn, ω), we also show that

lim
α→0+

(Dleft)
αu = u in Lp(R, ω) and a.e. in R.

This part of my thesis is largely a study in harmonic analysis and function spaces. In general,

statements involving a.e. convergence are proved by considering the underlying maximal operators,

see, for example, [27, Chapter 2]. A key estimate that we are able to deduce is the pointwise

maximal inequality

sup
0<α<1

∣∣∣∣ 1

Γ(−α)

∫ t

−∞

u(τ)− u(t)

(t− τ)1+α
dτ

∣∣∣∣ ≤ C(M−(u′)(t) +M−u(t)
)

a.e. in R (1.3.4)

for any u ∈W 1,p(R, ω), where the constant C > 0 is independent of u, p, t, and α.

As a consequence of (1.3.4), the pointwise formula (1.3.2) is well-defined for u ∈ W 1,p(R, ω)

when 1 < p <∞. By a distributional argument, we are able to show that (Dleft)
αu coincides with

Marchaud’s pointwise formula almost everywhere. Notice that the object on the left-hand side of

(1.3.4) is a maximal operator taken with respect to the orders of the fractional derivatives.

The one-sided Lp(R, ω) spaces, with ω ∈ A−p (R), are also natural for the Marchaud left fractional

derivative in the sense of the Fundamental Theorem of Fractional Calculus. Indeed, let u ∈ Lp(R, ω)

and consider the left-sided Weyl fractional integral [64]

(Dleft)
−αu(t) =

1

Γ(α)

∫ t

−∞

u(τ)

(t− τ)1−α dτ.

It was proved in [8] that (Dleft)
α(Dleft)

−αu(t) = u(t) in Lp(R, ω) and for a.e. t ∈ R, for any

0 < α < 1 and any u ∈ Lp(R, ω). Our work complements their results and shows that the one-sided

weighted Sobolev spaces W 1,p(R, ω) are the correct spaces for one-sided fractional derivatives.

We also consider the weighted Sobolev spaces W 2,p(Rn, ν) that we define by

W 2,p(Rn, ν) =
{
u ∈ Lp(Rn, ν) : Du,D2u ∈ Lp(Rn, ν)

}
with the norm

‖u‖p
W 2,p(Rn,ν)

= ‖u‖pLp(Rn,ν) + ‖Du‖pLp(Rn,ν) + ‖D2u‖pLp(Rn,ν)
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where ν is a weight in the Muckenhoupt class Ap(Rn), 1 ≤ p < ∞. We recall that the Ap(Rn)

Muckenhoupt weights are the good weights for the classical Hardy–Littlewood maximal function

M on Rn. We prove a similar characterization of our weighted Sobolev spaces W 2,p(Rn, ν) with

the limits

lim
s→1−

(−∆)su = −∆u and lim
s→0+

(−∆)su = u

in Lp(Rn, ν) and almost everywhere. For this, we prove the following maximal estimate

sup
0<s<1

sup
ε>0

∣∣∣∣∣cn,s
∫
|x−y|>ε

u(y)− u(x)

|x− y|n+2s dy

∣∣∣∣∣ ≤ Cn(M(D2u)(x) +Mu(x)
)

a.e. in Rn, (1.3.5)

for any u ∈W 2,p(Rn, ν), where the constant Cn > 0 depends only on dimension.

Other authors have considered similar questions for abstract settings, see for example [25, 79]. In

particular, their results apply to Ahlfors-regular metric spaces. On the other hand, some weighted

fractional spaces with power weights were defined in [26]. Nevertheless, neither are our weighted

spaces Ahlfors-regular nor do our weighted spaces correspond to those in [26].

1.3.2 Chapter 3: Harnack inequality for fractional nondivergence form elliptic equa-

tions

The work in this chapter will soon be submitted for publication [74].

Harnack inequality is a very important regularity estimate in partial differential equations that

was first stated by Axel von Harnack in the 1800’s for nonnegative harmonic functions. The simplest

statement of the theorem is as follows: there exists constant C > 0 depending only on dimension

such that for any nonnegative harmonic function u : B1 ⊂ Rn → R, we have that

sup
B1/2

u ≤ C inf
B1/2

u.

It is essential to note that the estimate holds for all nonnegative harmonic functions in B1 with

the same constant C. The proof follows, for example, from the mean value property for harmonic

functions.

Harnack inequality has since been studied for elliptic and parabolic PDEs in various settings.

Moser proved it for divergence form operators [60, 61], Krylov–Safanov proved it for nondivergence
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form elliptic operators [40], and Caffarelli proved it for viscosity solutions to fully nonlinear elliptic

equations [14, 12]. Other notable names include De Giorgi, Nash, Nirenberg, Serrin, Trudinger,

among others, see [31].

An important consequence of Harnack inequality is that weak solutions to divergence form and

viscosity solutions to nondivergence form elliptic equations with bounded, measurable coefficients

are Hölder continuous. This has important consequences for nonlinear equations in proving higher

regularity estimates [14, 31].

For our setting, let L : Dom(L)→ C0(Ω) be the operator defined by

Lu = −aij(x)∂iju, Dom(L) = {u ∈ C0(Ω) ∩W 2,n
loc (Ω) : Lu ∈ C0(Ω)}

where Ω ⊂ Rn is a bounded, Lipschitz domain and aij : Ω → R are Hölder continuous, uniformly

elliptic coefficients. We prove interior Harnack inequality for nonnegative solutions u ∈ Dom(L) to

(−aij(x)∂ij)
su = 0 in B (1.3.6)

where 0 < s < 1 and B ⊂⊂ Ω is a Euclidean ball. Indeed, we show that there exist positive

constants CH = CH(n, λ,Λ, s) > 1, κ = κ(n, λ,Λ, s) < 1, and K̂ = K̂(n, λ,Λ, s) ≥ 1, such that if

BR(x0) is a ball such that BK̂R(x0) ⊂⊂ B ⊂⊂ Ω, then

sup
BκR(x0)

u ≤ CH inf
BκR(x0)

u.

Furthermore, solutions to (1.3.6) are locally Hölder continuous in B. We mention that Grubb

[32, 33] and Seeley [67] studied fractional powers of nondivergence form operators, but their work

utilizes the theory of pseudo-differentiable operators and does not contain our result.

The first difficulty is how to define the nonlocal operator Lsu in an appropriate way. We use

the method of semigroups to define Lsu, 0 < s < 1, using the definition of Balakrishnan [7], by

Lsu(x) =
1

Γ(−s)

∫ ∞
0

(
e−tLu(x)− u(x)

) dt

t1+s
.
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Here, v = e−tLu is the C0-semigroup generated by L which solves the heat equation with initial

data u: 
∂tv(x, t) = −Lv(x, t) in Ω× (0,∞)

v(x, t) = 0 on ∂Ω× (0,∞)

v(x, 0) = u(x) on Ω× {t = 0}.

For more details, see [80]. It can be seen from this definition that Ls is nonlocal in Ω.

To study regularity properties of equations with Ls, we extend the nonlocal equation one di-

mension to Rn+1 with a local extension characterization by Galé–Miana–Stinga [30]. Indeed, for

u ∈ C0(Ω), the function U given by

U(x, z) =
(2s)z

4sΓ(s)

∫ ∞
0

e−
s2

t
z

1
s e−tLu(x)

dt

t1+s

is a solution to 
aij(x)∂ijU(x, z) + z2−1/sUzz(x, z) = 0 in Ω× [0,∞)

U(x, z) = 0 on Ω× (0,∞)

U(x, 0) = u(x) on Ω× {z = 0}.

(1.3.7)

It turns out that if u ∈ Dom(L), then

− lim
z→0+

∂zU(x, z) = cs(−aij(x)∂ij)
su(x)

for some constant cs > 0. Observe that the Neumann condition recovers the fractional operator.

Hence, to prove Harnack inequality for the nonlocal equation (1.3.6), we study the local, degenerate

equation (1.3.7) and take the trace at z = 0. We mention that the extension characterization in

[30] is more general than the one of Caffarelli–Silvestre for (−∆)s [19]. See also the work of Stinga–

Torrea for an extension characterization of fractional operators in Hilbert spaces [73].

Towards this end, we define the even reflection of U by Ũ(x, z) = U(x, |z|). For convenience,

we continue to use the notation U . We prove Harnack inequality for nonnegative solutions U ∈

C2(Ω× [R \ {z = 0}]) ∩ C(Ω× R), such that Uz ∈ C([0,∞);C0(Ω)), to aij(x)∂ijU(x, z) + |z|2−1/s Uzz(x, z) = 0 in B × {z 6= 0}

−∂z+U(x, 0) = 0 on B × {z = 0}
(1.3.8)
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where aij(x) are bounded, measurable, elliptic coefficients and B ⊂⊂ Ω is a Euclidean ball. As a

consequence of (1.3.7), we obtain Harnack inequality for (1.3.6).

Next, we recast (1.3.8) as an equation comparable to a linearized Monge–Ampère equation.

For this, we recall some details about the Monge–Ampère equation. The Monge-Ampère equation,

given by

detD2ψ = F, (1.3.9)

is a fully nonlinear second-order partial differential equation. One approach to studying regularity

estimates of (1.3.9) is to take the directional derivative ∂e in the direction of e to obtain

trace(det(D2ψ)(D2ψ)−1D2(∂eψ)) = ∂eF.

Notice that Aψ = det(D2ψ)(D2ψ)−1 is the matrix of cofactors of D2ψ. If we define u = ∂eψ and

f = ∂eF , then u solves the linearized Monge-Ampère equation

trace(Aψ(x)D2u) = f. (1.3.10)

This equation is a linear, nondivergence form equation and is elliptic as soon as D2ψ > 0 and

f > 0. However, (1.3.10) is not uniformly elliptic in general because the eigenvalues of Aψ are not

controlled.

For our degenerate equation (1.3.7), we define function Φ = Φ(x, z) : Rn+1 → R by

Φ(x, z) =
1

2
|x|2 +

s2

1− s
|z|

1
s .

Notice that Φ is strictly convex and C1(Rn+1). This function was also considered by Maldonado–

Stinga in [50] to study the extension problem for the fractional nonlocal linearized Monge–Ampère

equation Lsϕu = f associated to a convex function ϕ ∈ C3(Rn). Since the Hessian of Φ is

D2Φ(x, z) =

I 0

0 |z|
1
s
−2

 ,

the linearized Monge–Ampère operator for D2Φ is

trace((D2Φ)−1D2U) = ∆xU + |z|2−
1
s ∂zzU. (1.3.11)
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As the coefficients aij(x) are uniformly elliptic, there exist constants 0 < λ < Λ <∞ such that

λ |ξ|2 ≤ aij(x)ξiξj ≤ Λ |ξ|2 for all ξ ∈ Rn \ {z = 0}, x ∈ Rn,

from which we can see that the coefficients in (1.3.7) are comparable to the coefficients in (1.3.11).

An important feature of the linearized Monge–Ampère equation is the intrinsic geometry that

was first discovered by Caffarelli–Guitérrez [16]. They proved Harnack inequality for nonnegative

solutions to (1.3.10) with f ≡ 0 where the Euclidean balls are replaced by Monge–Ampère sections.

The Monge–Ampère sections associated to a convex, C1 function ψ are the sublevel sets of ψ − `

where ` is a linear function. The Monge–Ampère measure associated to ψ of a Borel set E is given

by µψ(E) = |Dψ(E)|.

It turns out that the geometry of our degenerate equation (1.3.7) is given by the Monge–Ampère

sections SR associated to Φ, that is, the sublevel sets of Φ− `. In many instances, we find it more

natural to consider Monge–Ampère cubes QR. We will first prove Harnack inequality in these cubes

(see Section 3.5.5).

Harnack inequality has been studied for the linearized Monge–Ampère equation by Caffarelli–

Gutierrez [16], Gutierrez [34], Le [43], Maldonado [48], Le–Savin [44], among others. In each

case, they either assume that the matrix D2u is bounded away from zero and infinity or that

the convex function ψ is sufficiently regular. In [49], Maldonado proved Harnack inequality for

certain degenerate elliptic equations, but his techniques are different than the ones presented in

this dissertation and do not include the case in which 1/2 < s < 1.

We develop a method of sliding paraboloids as Savin did in the Euclidean case for uniformly

elliptic equations [65]. Similar approaches were used by Le when λI ≤ D2ψ ≤ ΛI, ψ ∈ C2

(making the underlying Monge–Ampère measure comparable to the Lebesgue measure) [43] and

recently by Mooney for the uniformly elliptic case [59]. For our setting, we use the Monge–Ampère

geometry which brings additional challenges since Φ is only C1 and D2Φ is degenerate/singular.

Moreover, we cannot use any divergence form structure. Harnack inequality for (1.3.8) was proved

by Maldonado–Stinga for the fractional linearized Monge–Ampère equation when the matrix aij(x)
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is the identity matrix or comes from the matrix of cofactors D2ψ for a C3 function ψ [50]. Their

proof however relies on the Monge–Ampère structure in divergence form.

For this method, we define paraboloids P of opening a > 0 with vertex (xv, zv) ∈ Rn+1 by

P (x, z) = −a(Φ(x, z)− Φ(xv, zv)− 〈DΦ(xv, zv), (x, z)− (xv, zv)〉) + cv.

We lift these paraboloids from below until they touch the graph of U in a cube QR for the first

time, and we measure the set contact points with the underlying Monge–Ampère measure. Then

we show that by increasing the opening of these paraboloids, they almost cover QR in measure,

which ultimately leads to Harnack inequality. More precisely, the proof relies on three key lemmas.

The first lemma is similar to the Alexandroff–Bakelman–Pucci estimate for fully nonlinear

equations (see [14]). We prove that if we lift paraboloids of fixed opening a > 0 with vertices in

a closed, bounded set from below until they touch the graph of U , then, by using the equation,

the Monge–Ampère measure of the contact points is a universal proportion of the Monge–Ampère

measure of the vertices.

The second lemma is a measure estimate. Suppose that U can be touched from below with

paraboloid P of opening a > 0 in a cube Qr. We show that the set in which U can be touched from

below by paraboloids of increased opening Ca > 0 in a smaller cube Qηr, 0 < η < 1, make up a

universal proportion of Qr. The proof relies on a delicate barrier argument to localize the equation

and control the growth of U − P in Qηr.

The third lemma is similar to the Calderón-Zygmund decomposition. We use a Vitali covering

lemma in the Monge–Ampère geometry to show that, as we increase the openings of the paraboloids,

the measure of the contact points almost cover the domain in measure. By also controlling the

height of the paraboloids, we consequently show that the measure of the set where U is large is

small.

These ingredients allow us to prove Harnack inequality for the extension (1.3.8). By restricting

back to z = 0, we obtain Harnack inequality for the fractional Poisson problem (1.3.6).
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Stinga–Maldonado also proved a critical-density measure estimate and local boundedness for the

fractional linearized Monge–Ampère equation for the fractional linearized Monge–Ampère equation

[50]. We show that those results hold in our case and the proof is identical.
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CHAPTER 2. ONE SIDED WEIGHTED FRACTIONAL SOBOLEV

SPACES

2.1 Main results

We formally state the main results of this chapter.

The one-sided Sawyer weights A−p (R) are the good weights for the original one-sided Hardy-

Littlewood maximal functions M− and M+:

M−u(t) = sup
h>0

1

h

∫ t

t−h
|u(τ)| dτ and M+u(t) = sup

h>0

1

h

∫ t+h

t
|u(τ)| dτ

Indeed, ω ∈ A−p for 1 < p < ∞ if and only if M− is bounded from Lp(R, ω) into Lp(R, ω). Also,

ω ∈ A−1 if and only if L1(R, ω) into weak-L1(R, ω). For more details, see Section 2.2.

We define the one-sided weighted Sobolev spaces W 1,p(R, ω), ω ∈ A−p (R), 1 ≤ p <∞ by

W 1,p(R, ω) = {u ∈ Lp(R, ω) : u′ ∈ Lp(R, ω)

with the norm

‖u‖p
W 1,p(R,ω)

= ‖u‖pLp(R,ω) + ‖u′‖pLp(R,ω).

Theorem 2.1.1 (W 1,p(R, ω) and limits of left fractional derivatives). Let u ∈ Lp(R, ω), where

ω ∈ A−p (R), for 1 ≤ p <∞.

(a) If u ∈W 1,p(R, ω), then the distribution (Dleft)
αu coincides with a function in Lp(R, ω) and

(Dleft)
αu(t) =

1

Γ(−α)

∫ t

−∞

u(τ)− u(t)

(t− τ)1+α
dτ for a.e. t ∈ R (2.1.1)

with

‖(Dleft)
αu‖Lp(R,ω) ≤ Cp,ω

(
‖u‖Lp(R,ω) + ‖u′‖Lp(R,ω)

)
(2.1.2)

for some constant Cp,ω > 0. Moreover,

lim
α→1−

(Dleft)
αu = u′ in Lp(R, ω) and a.e. in R (2.1.3)
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and

lim
α→0+

(Dleft)
αu = u a.e. in R. (2.1.4)

Furthermore, the limit in (2.1.4) holds also in Lp(R, ω) when 1 < p <∞, and in L1(R, ω) when

p = 1 and M−u,M−u′ ∈ L1(R, ω).

(b) Conversely, suppose that (Dleft)
αu ∈ Lp(R, ω) and that (Dleft)

αu converges in Lp(R, ω) as

α→ 1−. Then u ∈W 1,p(R, ω) and (2.1.3) holds.

(c) Alternatively, suppose that (Dleft)
αu ∈ Lp(R, ω) and that (Dleft)

αu converges in Lp(R, ω) as

α→ 0+. Then (2.1.4) holds and, as a consequence, (Dleft)
αu→ u in Lp(R, ω) as α→ 0+.

Theorem 2.1.2. There exists a universal constant C > 0 such that for any u ∈ W 1,p(R, ω),

ω ∈ A−p (R), 1 ≤ p <∞, we have

sup
0<α<1

∣∣∣∣ 1

Γ(−α)

∫ ∞
0

(u(t− τ)− u(t))
dτ

τ1+α

∣∣∣∣ ≤ C (M−(u′)(t) +M−u(t)
)

for a.e. t ∈ R.

Though we established Theorems 2.1.1 and 2.1.2 for the left fractional derivative, all the ar-

guments carry on by replacing Dleft by Dright and A−p (R) by A+
p (R). Hence, for the rest of the

chapter, we will only consider the case of Dleft and left-sided Sawyer weights.

The class of Muckenhoupt weightsAp(R) are the good weights for the two-sided Hardy-Littlewood

maximal functions M :

Mu(x) = sup
B3x

1

|B|

∫
B
|u(y)| dy

where the supremum is taken over all balls B ⊂ Rn containing x. Indeed, ω ∈ Ap for 1 < p <∞ if

and only if M is bounded from Lp(Rn, ν) into Lp(Rn, ν). Also, ω ∈ A1 if and only if L1(Rn, ν) into

weak-L1(Rn, ν). For more details, see Section 2.4.

We define the weighted Sobolev spaces W 2,p(Rn, ν), ν ∈ Ap(Rn), 1 ≤ p <∞ by

W 2,p(Rn, ν) = {u ∈ Lp(Rn, ν) : u′ ∈ Lp(R, ν)
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with the norm

‖u‖p
W 2,p(Rn,ν)

= ‖u‖pLp(Rn,ν) + ‖Du‖pLp(Rn,ν) + ‖D2u‖pLp(Rn,ν)

In the following statement, {et∆}t≥0 denotes the heat semigroup generated by the Laplacian on

Rn.

Theorem 2.1.3 (W 2,p(Rn, ν) and limits of fractional Laplacians). Let u ∈ Lp(Rn, ν), where ν ∈

Ap(Rn), for 1 ≤ p <∞.

(a) If u ∈W 2,p(Rn, ν), then the distribution (−∆)su coincides with a function in Lp(Rn, ν) and

(−∆)su(x) =
1

Γ(−s)

∫ ∞
0

(
et∆u(x)− u(x)

) dt

t1+s
for a.e. x ∈ Rn. (2.1.5)

In addition,

(−∆)su(x) = cn,s lim
ε→0

∫
|x−y|>ε

u(x)− u(y)

|x− y|n+2s dy for a.e. x ∈ Rn and in Lp(Rn, ν) (2.1.6)

with

‖(−∆)su‖Lp(Rn,ν) ≤ Cn,p,ν
(
‖u‖Lp(Rn,ν) + ‖∆u‖Lp(Rn,ν)

)
(2.1.7)

for some constant Cn,p,ν > 0. Moreover,

lim
s→1−

(−∆)su = −∆u in Lp(Rn, ν) and a.e. in Rn (2.1.8)

and

lim
s→0+

(−∆)su = u a.e. in Rn. (2.1.9)

Furthermore, the limit in (2.1.9) holds also in Lp(Rn, ν) when 1 < p < ∞, and in L1(Rn, ν)

when p = 1 and Mu,M(D2u) ∈ L1(Rn, ν).

(b) Conversely, suppose that (−∆)su ∈ Lp(Rn, ν) and that (−∆)su converges in Lp(Rn, ν) as

s → 1−. If 1 < p < ∞ then u ∈ W 2,p(Rn, ν) and (2.1.8) holds. If p = 1, then D2u ∈

weak-L1(Rn, ν).

(c) Alternatively, suppose that (−∆)su ∈ Lp(Rn, ν) and that (−∆)su converges in Lp(Rn, ν) as

s→ 0+. Then (2.1.9) holds and, as a consequence, (−∆)su→ u in Lp(Rn, ν) as s→ 0+.
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Theorem 2.1.4. There exists a constant Cn > 0 such that for any u ∈ W 2,p(Rn, ν), ν ∈ Ap(Rn),

1 ≤ p <∞, we have

sup
0<s<1

sup
ε>0

∣∣∣∣∣cn,s
∫
|y|>ε

u(x− y)− u(x)

|y|n+2s dy

∣∣∣∣∣ ≤ Cn (M(D2u)(x) +Mu(x)
)

for almost every x ∈ Rn.

This rest of the chapter is organized as follows. Section 2.2 contains preliminary results on

one-sided Sawyer weights, the new distributional setting for one-sided fractional derivatives, and

the proof of the Theorem 2.1.2. Theorem 2.1.1 is proved in Section 2.3. The fractional Laplacian

in weighted Lebesgue spaces is studied in detail in Section 2.4, where we also show the proof of

Theorem 2.1.4 Finally, Section 2.5 contains the proof of Theorem 2.1.3.

We denote by S(Rn) the class of Schwartz functions on Rn. We always take 0 < α, s < 1. We

will use the following inequality: for any fixed ρ > 0 there exists Cρ > 0 such that, for every r > 0,

e−rrρ ≤ Cρe−r/2. (2.1.10)

For a measure space (X,µ), we define the space weak-L1(X,µ) as the set of measurable functions

u : X → R such that the quasi-norm ‖·‖weak-L1(X,µ), defined by

‖u‖weak-L1(X,µ) = sup
λ>0

λµ({x ∈ X : |u(x)| > λ}),

is finite.

2.2 Fractional derivatives and one-sided spaces

Let u = u(t) ∈ S(R) and define

Dleftu(t) = lim
τ→0+

u(t)− u(t− τ)

τ
and Drightu(t) = lim

τ→0+

u(t)− u(t+ τ)

τ
.

Observe that Dleftu = −Drightu = u′. From the Fourier transform identities

D̂leftu(ξ) = (iξ)û(ξ) and D̂rightu(ξ) = (−iξ)û(ξ),
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one can define

̂(Dleft)αu(ξ) = (iξ)αû(ξ) and ̂(Dright)αu(ξ) = (−iξ)αû(ξ). (2.2.1)

Using the semigroup of translations, it is shown in [8], see also [64], that (Dleft)
αu(t) and (Dright)

αu(t)

are given by the pointwise formulas in (1.3.2) and (1.3.3), respectively. For completeness, we provide

the details for (Dleft)
αu(t).

Using the Cauchy Integral Theorem, we can write

Γ(−α) =

∫
ray(θ)

(e−z − 1)
dz

z1+α
, for any 0 < α < 1, − π

2
≤ θ ≤ π

2
,

see [8, Lemma 2.1]. Choose θ = π/2, parameterize the integral, and rearrange to obtain

(iξ)α =
1

Γ(−α)

∫ ∞
0

(
e−iξτ − 1

) dt

τ1+s
, ξ ∈ R.

Therefore, ̂(Dleft)αu(ξ) can be written as

̂(Dleft)αu(ξ) = (iξ)αû(ξ) =
1

Γ(−α)

∫ ∞
0

(
e−iξτ û(ξ)− û(ξ)

) dτ

τ1+α
.

Since translations Tτu(t) = u(t− τ) correspond to multiplication by e−iτξ when taking the Fourier

transform T̂τu(ξ) = e−iτξû(ξ), we take the inverse Fourier transform to obtain

(Dleft)
αu(t) =

1

Γ(−α)

∫ ∞
0

u(t− τ)− u(t)

τ1+α
dτ

=
1

Γ(−α)

∫ t

−∞

u(τ)− u(t)

(t− τ)1+α
dτ.

We mention that the family of shift operators {Tτ}τ≥0 forms a semigroup and that v = Tτu

solves the transport equation with initial data u on R: ∂τv = −Dleftv for t ∈ R, τ > 0

v(t, 0) = u(t) for t ∈ R.

This is consistent with properties we will see for the fractional Laplacian in Section 2.4.
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2.2.1 Distributional setting

If u, ϕ ∈ S(R), then∫ ∞
−∞

(Dleft)
αu(t)ϕ(t) dt =

1

Γ(−α)
lim
ε→0+

∫ ∞
ε

∫ ∞
−∞

u(t− τ)− u(t)

τ1+α
ϕ(t) dt dτ

=
1

Γ(−α)
lim
ε→0+

(∫ ∞
ε

∫ ∞
−∞

u(t− τ)ϕ(t)

τ1+α
dt dτ −

∫ ∞
ε

∫ ∞
−∞

u(t)ϕ(t)

τ1+α
dt dτ

)
=

1

Γ(−α)
lim
ε→0+

(∫ ∞
ε

∫ ∞
−∞

u(r)ϕ(t+ r)

τ1+α
dr dτ −

∫ ∞
ε

∫ ∞
−∞

u(r)ϕ(r)

τ1+α
dr dτ

)
=

1

Γ(−α)
lim
ε→0+

∫ ∞
ε

∫ ∞
−∞

u(r)
ϕ(r + τ)− ϕ(r)

τ1+α
dr dτ

=

∫ ∞
−∞

u(r)(Dleft)
αϕ(r) dr.

We will use this identity to define (Dleft)
αu in the sense of distributions. Notice that if u ∈ S′(R),

then a natural definition would be

((Dleft)
αu)(ϕ) = u ((Dright)

αϕ) .

Nevertheless, it is straightforward from (2.2.1) to see that, in general, (Dright)
αϕ /∈ S(R), so we

need to consider a different space of test functions and distributions.

We define the class

S− = {ϕ ∈ S(R) : suppϕ ⊂ (−∞, A], for some A ∈ R} .

We denote by Sα− the set of functions

ϕ ∈ C∞(R) such that suppϕ ⊂ (−∞, A] and
∣∣∣ dk
dtk

ϕ(t)
∣∣∣ ≤ C

1 + |t|1+α

for all k ≥ 0, for some A ∈ R and C > 0.

Lemma 2.2.1. If ϕ ∈ S− then (Dright)
αϕ ∈ Sα−.

Proof. Clearly, if ϕ ∈ S− with suppϕ ∈ (−∞, A], then (Dright)
αϕ also has support in (−∞, A],

see (1.3.3). Since (Dright)
α dk

dtk
ϕ = dk

dtk
(Dright)

αϕ, we know (Dright)
αϕ ∈ C∞(R) and only need to

estimate (Dright)
αϕ.
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If t > A, then the estimate holds trivially because (Dright)
αϕ(t) = 0.

Suppose that −1 < t < A. The estimate holds because ϕ is smooth and bounded. Indeed,

|(Dright)
αϕ(t)| ≤

∫ ∞
t

|ϕ(τ)− ϕ(t)|
|τ − t|1+α

dτ

≤ 2 ‖ϕ‖L∞(R)

∫ ∞
t+1

1

(τ − t)1+α
dτ +

∥∥ϕ′∥∥
L∞(R)

∫ t+1

t

1

|τ − t|α
dτ

= 2 ‖ϕ‖L∞(R)

∫ ∞
1

r−1−α dr +
∥∥ϕ′∥∥

L∞(R)

∫ 1

0
r−α dr

=
2 ‖ϕ‖L∞(R)

α
+
‖ϕ′‖L∞(R)

1− α

= C
|t|1+α + 1

|t|1+α + 1
<

C

|t|1+α + 1
.

Suppose −∞ < t < −1 and write∫ ∞
t

|ϕ(τ)− ϕ(t)|
|τ − t|1+α

dτ =

∫ t/2

t

|ϕ(τ)− ϕ(t)|
|τ − t|1+α

dτ +

∫ ∞
t/2

|ϕ(τ)− ϕ(t)|
|τ − t|1+α

dτ = I + II.

For I, note that

|ϕ(τ)− ϕ(t)| ≤ |ϕ′(ξ)| |τ − t|

= |ϕ′(ξ)|(1 + |ξ|)3 (τ − t)
(1 + |ξ|)3

≤ Cϕ
(τ − t)

(1 + |ξ|)3

where ξ is some point in between t and τ . Hence,

I ≤ C

|t|3

∫ t/2

t

1

(τ − t)α
dτ =

C

|t|2+α
≤ C

1 + |t|1+α
.

On the other hand, if τ > t/2, then τ − t > −t/2 > 0 and

II ≤
∫ ∞
t/2

|ϕ(τ)|
(τ − t)1+α

dτ + |ϕ(t)|
∫ ∞
t/2

1

(τ − t)1+α
dτ

≤ C

|t|1+α
‖ϕ‖L1(R) +

C

|t|1+α
|tϕ(t)| ≤ C

1 + |t|1+α
.

Collecting all the terms, we get

|(Dright)
αϕ(t)| ≤ C

∫ ∞
t

|ϕ(τ)− ϕ(t)|
|τ − t|1+α

dτ ≤ C

1 + |t|1+α

for all t ∈ R. Thus, (Dright)
αϕ ∈ Sα−.
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We endow S− and Sα− with the families of seminorms

ρ`,k− (ϕ) = sup
t∈R
|t|`
∣∣∣ dk
dtk

ϕ(t)
∣∣∣ for `, k ≥ 0,

and

ρα,k− (ϕ) = sup
t∈R

(1 + |t|1+α)
∣∣∣ dk
dtk

ϕ(t)
∣∣∣ for k ≥ 0,

respectively. Let us denote by (S−)′ and (Sα−)′ the corresponding dual spaces of S− and Sα−. Notice

that S− ⊂ Sα−, so that (Sα−)′ ⊂ (S−)′. It turns out that (Sα−)′ is the appropriate class of distributions

to extend the definition of the left fractional derivative.

Definition 2.2.1. For u ∈ (Sα−)′, we define (Dleft)
αu as the distribution in (S−)′ given by

((Dleft)
αu)(ϕ) = u((Dright)

αϕ) for any ϕ ∈ S−.

Consider next the class of functions given by

Lα− =

{
u ∈ L1

loc(R) :

∫ A

−∞

|u(τ)|
1 + |τ |1+α dτ <∞, for any A ∈ R

}
.

We use the notation

‖u‖A =

∫ A

−∞

|u(τ)|
1 + |τ |1+α

dτ for A ∈ R.

Any function u ∈ Lα− defines a distribution in (Sα−)′ in the usual way, so that (Dleft)
αu is well

defined as an object in (S−)′. The following result is proved similarly as in the case of the fractional

Laplacian (see Proposition 2.4.1).

Proposition 2.2.1. Let u ∈ Lα−. Assume that u ∈ Cα+ε(I) for some ε > 0 and some open set

I ⊂ R. Then (Dleft)
αu ∈ C(I) and

(Dleft)
αu(t) =

1

Γ(−α)

∫ t

−∞

u(τ)− u(t)

(t− τ)1+α
dτ for all t ∈ I.

Proof. Let I0 ⊂⊂ I be arbitrary. There exists a sequence uk ∈ S− such that fk is uniformly

bounded in Cα+ε(I), fk → f uniformly in I0, and fk → f in Lα−.

We will show that

(Dleft)
αuk(t)→

1

Γ(−α)

∫ t

−∞

u(τ)− u(t)

(t− τ)1+α
dτ as k →∞
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uniformly in I0. Fix ε̄ > 0. Let ρ > 0 be such that∫ ρ

0

M

|τ |1−ε
dτ ≤ ε̄

3
, where M = sup

k
[uk]Cα+ε(I0). (2.2.2)

Write

Ikρ + IIkρ :=
1

Γ(−α)

∫ t

t−ρ

uk(τ)− uk(t)
(t− τ)1+α

dτ +
1

Γ(−α)

∫ t−ρ

−∞

uk(τ)− uk(t)
(t− τ)1+α

dτ

Iρ + IIρ :=
1

Γ(−α)

∫ t

t−ρ

u(τ)− u(t)

(t− τ)1+α
dτ +

1

Γ(−α)

∫ t−ρ

−∞

u(τ)− u(t)

(t− τ)1+α
dτ.

First, observe that, by (2.2.2),

∣∣∣Ikρ ∣∣∣ ≤ 1

|Γ(−α)|

∫ t

t−ρ

|uk(τ)− uk(t)|
|t− τ |1+α dτ

≤ 1

|Γ(−α)|

∫ t

t−ρ

M |t− τ |α+ε

|t− τ |1+α dτ =
1

|Γ(−α)|

∫ ρ

0

M

|τ |1−ε
dτ ≤ ε̄

3
.

It follows similarly that |Iρ| ≤ ε̄
3 . To study IIkρ − IIρ, notice that

1

|Γ(−α)|

∫ t−ρ

−∞

|uk(t)− u(t)|
|t− τ |1+α dτ = |uk(t)− u(t)| 1

|Γ(−α)|

∫ ∞
ρ

1

|τ |1+α dτ

= |uk(t)− u(t)| ρ−α

α |Γ(−α)|
<
ε̄

6

for k large because uk → u uniformly in I0. Since uk → u in Lα−, it follows that, for k large,

1

|Γ(−α)|

∫ t−ρ

−∞

|uk(τ)− u(τ)|
|t− τ |1+α dτ =

1

|Γ(−α)|

∫ t−ρ

−∞

|uk(τ)− u(τ)|
|t− τ |1+α

1 + |τ |1+α

1 + |τ |1+α dτ

≤ C

|Γ(−α)|

∫ t−ρ

−∞

|uk(τ)− u(τ)|
1 + |τ |1+α dτ ≤ ε̄

6
.

Here, we used that

1 + |τ |
|t− τ |

≤ 1

|t− τ |
+
|t− τ |
|t− τ |

+
|t|
|t− τ |

≤ 1

ρ
+ 1 +

|t|
ρ
≤ C.

Therefore,

∣∣∣IIkρ − IIρ∣∣∣ =

∣∣∣∣ 1

Γ(−α)

∫ t−ρ

−∞

(uk(τ)− u(τ))− (uk(t)− u(t))

(t− τ)1+α
dτ

∣∣∣∣
≤ 1

|Γ(−α)|

∫ t−ρ

−∞

|uk(τ)− u(τ)|
|t− τ |1+α dτ +

1

|Γ(−α)|

∫ t−ρ

−∞

|uk(t)− u(t)|
|t− τ |1+α dτ <

ε̄

3
.
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We conclude that, for k sufficiently large,∣∣∣∣(Dleft)
αuk(t)−

1

Γ(−α)

∫ t

−∞

u(τ)− u(t)

(t− τ)1+α
dτ

∣∣∣∣ ≤ |Ikρ |+ |Iρ|+ |IIkρ − IIρ| < ε̄

as desired.

Let ϕ ∈ C∞c (I0). Let A ∈ R be such that suppϕ ⊂ (−∞, A] ⊂ I0, so that ϕ ∈ S− and

(Dleft)
αϕ ∈ Sα−. By the above uniform convergence, we have that

((Dleft)
αuk)(ϕ) =

∫ ∞
−∞

(Dleft)
αuk(t)ϕ(t) dt→

∫ ∞
−∞

(
1

Γ(−α)

∫ t

−∞

u(τ)− u(t)

(t− τ)1+α
dτ

)
ϕ(t) dt

as k →∞. Furthermore, since uk → u in Lα−, we know that (Dleft)
αuk → (Dleft)

αu in (S−)′. Hence,

((Dleft)
αuk)(ϕ) = uk((Dright)

αϕ)→ u((Dright)
αϕ) = ((Dleft)

αu)(ϕ), as k →∞.

By uniqueness of limits,

((Dleft)
αu)(ϕ) =

∫ ∞
−∞

(
1

Γ(−α)

∫ t

−∞

u(τ)− u(t)

(t− τ)1+α
dτ

)
ϕ(t) dt.

Since ϕ ∈ C∞c (I0) was arbitrary, (Dleft)
αumust coincide with the pointwise formula in I0. Moreover,

(Dleft)
αu is continuous in I0 as it is the uniform limit of a sequence of continuous functions.

Since I0 was arbitrary, the result follows.

Remark 2.2.1. We have found that the one-sided class Lα− is the appropriate space of locally

integrable functions to define the left fractional derivative. This is a refinement with respect to the

distributional definition presented in [8, Remark 2.6], which was two-sided in nature.

2.2.2 One-sided weighted spaces

A nonnegative, locally integrable function ω = ω(τ) defined on R is in the left-sided Sawyer

class A−p (R), for 1 < p <∞, if there exists C > 0 such that(
1

h

∫ a+h

a
ω dτ

)1/p(
1

h

∫ a

a−h
ω1−p′ dτ

)1/p′

≤ C

for all a ∈ R and h > 0, where 1/p + 1/p′ = 1. We then write ω ∈ A−p (R). By re-orienting the

real line, one may similarly define the right-sided A+
p (R)-condition: a weight ω̃ belongs to A+

p (R)
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if there is a constant C > 0 such that(
1

h

∫ a

a−h
ω̃ dτ

)1/p(1

h

∫ a+h

a
ω̃1−p′ dτ

)1/p′

≤ C

for all a ∈ R and h > 0. In this way, ω ∈ A−p (R) if and only if ω1−p′ ∈ A+
p′(R).

From the definition, one should note that, for ω ∈ A−p (R), there exist −∞ ≤ a < b ≤ ∞ such

that ω = ∞ in (−∞, a), 0 < ω < ∞ in (a, b), ω = 0 in (b,∞), and ω ∈ L1
loc((a, b)). For simplicity

and without loss of generality, we will assume (a, b) = R, so that 0 < ω <∞ in R.

The one-sided Hardy–Littlewood maximal functions M− and M+ are defined by

M−u(t) = sup
h>0

1

h

∫ t

t−h
|u(τ)| dτ and M+u(t) = sup

h>0

1

h

∫ t+h

t
|u(τ)| dτ

respectively. If 1 < p < ∞, then M± is bounded on Lp(R, ω) if and only if ω ∈ A±p (R), see [66].

When p = 1, M± is bounded from L1(R, ω) into weak-L1(R, ω) if and only if ω ∈ A±1 (R), namely,

there exists C > 0 such that

M∓ω(t) ≤ Cω(t) for a.e. t ∈ R

see [55]. We refer to [46, 53, 54, 55, 56, 66] for these and more properties of one-sided weights.

It is clear that A−p (R) is a larger family than the classical class of Muckenhoupt weights Ap(R).

In particular, any decreasing function is in A−p (R), but there are decreasing functions that are not

in Ap(R) (see Section 2.4). For instance, ω(t) = e−t belongs to A−p (R) but not to Ap(R) because it

is not a doubling weight.

For a measurable set E ⊂ R, we denote

ω(E) =

∫
E
ω dτ.

An important property that we will use is the following.

Lemma 2.2.2 (See [46, Theorem 3]). Let η = η(t) ≥ 0 be a integrable function with support in

[0,∞) and nonincreasing in [0,∞). Then, for any measurable function u : R → R and for almost

all t ∈ R, we have

|u ∗ η(t)| ≤M−u(t)

∫ ∞
0

η(τ) dτ.
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By changing the orientation of the real line, the analogue conclusion holds for nondecreasing η

supported in (−∞, 0] with M+ in place of M−.

Lemma 2.2.3 (See [56, Theorem 1]). If ω ∈ A−p (R), 1 ≤ p < ∞, then there exist C, δ > 0 such

that

ω(E)

ω((a, c))
≤ C

(
|E|
b− a

)δ
for all a < b < c and all measurable subsets E ⊂ (b, c).

Lemma 2.2.4. If ω ∈ A−1 (R), then there is a constant C > 0 such that, for any 0 < a < b,

ω((−a,−a+ (b− a)))

2(b− a)
≤ C inf

−b<t<−a
ω(t).

Proof. Let t ∈ (−b,−a). Since (−a,−a+ (b− a)) ⊂ (t, t+ 2(b− a)), then, by the A−1 (R)-condition,

we get

Cω(t) ≥M+ω(t) ≥ 1

2(b− a)

∫ t+2(b−a)

t
ω(τ) dτ

≥ 1

2(b− a)

∫ −a+(b−a)

−a
ω(τ) dτ

=
ω((−a,−a+ (b− a)))

2(b− a)

for almost every t ∈ R.

The following result says that (Dleft)
αu is well defined as a distribution in (S−)′ whenever

u ∈ Lp(R, ω), for ω ∈ A−p (R), 1 ≤ p <∞.

Proposition 2.2.2. If ω ∈ A−p (R), 1 ≤ p < ∞, then Lp(R, ω) ⊂ Lα−, α ≥ 0, and, for any A ∈ R,

there is a constant C = CA,ω,p > 0 such that

‖u‖A ≤ C‖u‖Lp(R,ω).

In particular, Lp(R, ω) ⊂ L1
loc(R).

Proof. Let u ∈ Lp(R, ω) and fix any A ∈ R.
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We first let 1 < p <∞. By Hölder’s inequality,

‖u‖A =

∫ A

−∞

|u(τ)|
1 + |τ |1+α dτ

=

∫ A

−∞
|u(τ)|ω(τ)1/p ω(τ)−1/p

1 + |τ |1+α dτ

≤ ‖u‖Lp(R,ω)

(∫ A

−∞

ω(τ)−p
′/p

(1 + |τ |)p′
dτ

)1/p′

= ‖u‖Lp(R,ω) · (IA)1/p′ .

Observe that ω̃(τ) = ω(τ)−p
′/p = ω(τ)1−p′ ∈ A+

p′(R). To conclude, it is enough to recall that

I =

∫ 0

−∞

ω̃(τ)

(1 + |τ |)p′
dτ <∞,

see [53, Lemma 4].

Now let p = 1. For convenience with the notation, we let A = 0 (the general case follows the

same lines). First observe that, by the A−1 (R)-condition and Lemma 2.2.4,∫ 0

−1

|u(τ)|
1 + |τ |1+α dτ ≤

∫ 0

−1
|u(τ)|ω(τ)ω(τ)−1 dτ

≤ ‖u‖L1(R,ω) sup
t∈(−1,0)

ω(t)−1

= ‖u‖L1(ω)

(
inf

t∈(−1,0)
ω(t)

)−1

≤ ‖u‖L1(ω)

C

ω((−1, 0))
<∞.

On the other hand, by Lemma 2.2.4,∫ −1

−∞

|u(τ)|
1 + |τ |1+α dτ ≤

∞∑
k=0

∫ −2k

−2k+1

|u(τ)|
|τ |

dτ

≤
∞∑
k=0

1

2k

∫ −2k

−2k+1

|u(τ)|ω(τ)ω(τ)−1 dτ

≤ ‖u‖L1(R,ω)

∞∑
k=0

1

2k
sup

−2k+1<t<−2k
ω(τ)−1

≤ ‖u‖L1(R,ω)

∞∑
k=0

1

2k

(
inf

−2k+1<t<−2k
ω(t)

)−1

≤ C ‖u‖L1(R,ω)

∞∑
k=0

1

ω((−2k, 0))
.
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Lemma 2.2.3 implies that there exist C, δ > 0 such that

ω((−1, 0))

ω((−2k, 0))
≤ C

(
1

2k

)δ
.

Whence, ∫ −1

−∞

|u(τ)|
1 + |τ |1+α dτ ≤

C

ω((−1, 0))
‖u‖L1(R,ω)

∞∑
k=0

(
1

2k

)δ
<∞.

Thus, u ∈ Lα− with the corresponding estimate.

2.2.3 Density of smooth functions in W 1,p(R, ω)

The proof of the following statement is similar to that of Lorente [46, Theorem 3]. Indeed, the

idea is to bound ψ ∈ C∞c ([0,∞)) by a measurable function η supported in [0,∞) which is nonin-

creasing in [0,∞), and follow the steps of the proof in [46]. We provide the proof for completeness.

Proposition 2.2.3. Let ω ∈ A−p (R) and u ∈ Lp(R, ω) for 1 ≤ p < ∞. Let ψ ∈ C∞c ([0,∞)) be a

nonnegative function such that

∫ ∞
0

ψ dt = 1. Define ψε(t) = 1
εψ
(
t
ε

)
. Then the following hold.

(1) |u ∗ ψε(t)| ≤ CM−u(t) for almost every t ∈ R.

(2) ‖u ∗ ψε‖Lp(R,ω) ≤ C ‖u‖Lp(R,ω).

(3) limε→0+ u ∗ ψε(t) = u(t) for almost every t ∈ R.

(4) limε→0+ ‖u ∗ ψε − u‖Lp(R,ω) = 0.

It follows that C∞(R)∩Lp(R, ω) and C∞c (R) are dense in Lp(R, ω) for ω ∈ A−p (R), 1 ≤ p <∞.

Additionally, notice that if ψ is as in Proposition 2.2.3 and u ∈W 1,p(R, ω), then

(u ∗ ψε)′(t) =

∫ ∞
−∞

u′(τ)ψε(t− τ) dτ = (u′ ∗ ψε)(t).

Hence u ∗ ψε → u as ε → 0+ in W 1,p(R, ω), so that C∞(R) ∩W 1,p(R, ω) and C∞c (R) are dense in

W 1,p(R, ω) for ω ∈ A−p (R), 1 ≤ p <∞.

Proof of Proposition 2.2.3. Let η ≥ 0 be an integrable function with support in [0,∞), which is

nonincreasing in [0,∞) be such that ψ ≤ η everywhere.
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To prove (1), we first estimate

|(u ∗ ψε)(t)| ≤
∫ ∞
−∞
|u(t− τ)| 1

ε
ψ
(τ
ε

)
dτ

=

∫ ∞
−∞
|u(t− ετ)|ψ(τ) dτ

≤
∫ ∞

0
|u(t− ετ)|

∫ η(τ)

0
ds dτ.

Define h(s) and s̄ by

h(s) = sup{τ ≥ 0 : η(τ) ≥ s}, s = sup{s : h(s) ≥ 0}.

Therefore, we have that∫ ∞
0
|u(t− ετ)|

∫ η(τ)

0
ds dτ =

∫ s

0

∫ h(s)

0
|u(t− ετ)| dτ ds

=

∫ s

0
h(s)

(
1

ε h(s)

∫ t

t−εh(s)
|u(r)| dr

)
ds

≤
∫ s

0
h(s)M−u(t) ds

= M−u(t)

∫ ∞
0

∫
{τ≥0:η(τ)≥s}

dτ ds

= M−u(t)

∫ ∞
0

∫ η(τ)

0
ds dτ

= M−u(t)

∫ ∞
0

η(τ)dτ

= CM−u(t).

Combing the estimates, we obtain (1).

We now prove (2). For 1 < p <∞, it follows from part (1) and the boundedness of M− that

‖u ∗ ψε‖Lp(R,ω) ≤ C
∥∥M−u∥∥

Lp(R,ω)
≤ C ‖u‖Lp(R,ω) .
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Let p = 1, we have that

‖u ∗ ψε‖L1(R,ω) ≤
∫ ∞
−∞

∫ ∞
−∞
|u(t− τ)|ψε(τ) dτ ω(t) dt

=

∫ ∞
−∞

ψε(τ)

∫ ∞
−∞
|u(t− τ)|ω(t) dt dτ

=

∫ ∞
−∞

ψε(τ)

∫ ∞
−∞
|u(t)|ω(t+ τ) dt dτ

=

∫ ∞
−∞
|u(t)|

∫ ∞
−∞

ω(t+ τ)ψε(τ) dτ dt.

By the computation in part (1) with u and −ετ replaced by ω and ετ , it follows that∫ ∞
−∞

ω(t+ τ)ψε(τ) dτ ≤ CM+ω(t)

which proves (2).

To prove (3), we see that

|u ∗ ψε(t)− u(t)| ≤
∫ ∞
−∞
|u(t− ετ)− u(t)|ψ(τ) dτ

≤
∫ ∞

0
|u(t− ετ)− u(t)| η(τ) dτ

=

∫ s

0

∫ h(s)

0
|u(t− ετ)− u(t)| dτ ds

=

∫ s

0
h(s)

(
1

εh(s)

∫ εh(s)

0
|u(t− τ)− u(t)| dτ

)
ds→ 0

as ε→ 0 for almost every t ∈ R by the Dominated Convergence Theorem and Lebesgue Differenti-

ation Theorem.

Lastly, we prove (4). For 1 < p <∞, by part (1),

|u ∗ ψε(t)− u(t)|p ω(t) ≤ C (|Mu(t)|p + |u|p)ω(t) ∈ L1(R).

Hence, by the Dominated Convergence Theorem and part (3)

lim
ε→0
‖u ∗ ψε − u‖Lp(R,ω) =

∫ ∞
−∞

lim
ε→0
|u ∗ ψε(t)− u(t)|p ω(t) dt = 0.

For p = 1, we define the function g by

g(τ) =

∫ ∞
−∞
|u(t− τ)− u(t)|ω(t) dt.
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If u ∈ C∞c (R), then g is continuous and we estimate

‖u ∗ ψε − u‖L1(R,ω) =

∫ ∞
−∞
|u ∗ ψε(t)− u(t)|ω(t) dt

≤
∫ ∞
−∞

∫ ∞
−∞
|u(t− τ)− u(t)|ψε(τ) dτω(t) dt

=

∫ ∞
−∞

∫ ∞
−∞
|u(t− τ)− u(t)|ω(t) dt ψε(τ) dτ

=

∫ ∞
−∞

g(τ)ψε(τ) dτ → g(0) = 0

as ε→ 0 since {ψε}ε>0 is an approximation of the identity.

Since C∞c (R) is dense in Lp(R, ω) (see [63, Theorem 3.14]), the result follows in general. Indeed,

for u ∈ L1(R, ω), let uk ∈ C∞c (R) such that uk → u in L1(R, ω). Let δ > 0. By part (2), we get

‖u ∗ ψε − u‖L1(R,ω) ≤ ‖u ∗ ψε − uk ∗ ψε‖L1(R,ω) + ‖uk ∗ ψε − uk‖L1(R,ω) + ‖uk − u‖L1(R,ω)

= ‖(u− uk) ∗ ψε‖L1(R,ω) + ‖uk ∗ ϕε − uk‖L1(R,ω) + ‖uk − u‖L1(R,ω)

≤ C ‖u− uk‖L1(R,ω) + ‖uk ∗ ϕε − uk‖L1(R,ω) + ‖uk − u‖L1(R,ω) < δ

for k large and ε small.

2.2.4 The maximal estimate (1.3.4)

Proof of Theorem 2.1.2. We begin by writing

Iα + IIα :=
1

Γ(−α)

∫ 1

0
(u(t− τ)− u(t))

dτ

τ1+α
+

1

Γ(−α)

∫ ∞
1

(u(t− τ)− u(t))
dτ

τ1+α
. (2.2.3)

To study Iα, notice that∫ 1

0
|u(t− τ)− u(t)| dτ

τ1+α
≤
∫ 1

0
τ

∫ 1

0

∣∣u′(t− rτ)
∣∣ dr dτ

τ1+α

=

∫ 1

0

∫ 1

0

∣∣u′(t− rτ)
∣∣ dτ
τα

dr

=

∫ 1

0

(∫ r

0

∣∣u′(t− τ)
∣∣ dτ
τα

)
rα
dr

r

≤
∫ 1

0
rα−1

∫ 1

0

∣∣u′(t− τ)
∣∣ dτ
τα

dr

=
1

α

∫ 1

0

∣∣u′(t− τ)
∣∣ dτ
τα
.

(2.2.4)
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Then, if we let η(t) = t−αχ(0,1)(t), by Lemma 2.2.2,

|Iα| ≤
1

|Γ(−α)α|
(|u′| ∗ η)(t)

≤ 1

|Γ(1− α)|
M−u(t)

∫ 1

0
τ−α dτ

=
1

|Γ(1− α)| (1− α)
M−u(t) = C1M

−u(t)

where

C1 =
1

Γ(2− α)
.

Considering now the second integral in (2.2.3), we observe that

IIα =
1

Γ(−α)

∫ ∞
1

u(t− τ)
dτ

τ1+α
+

1

Γ(1− α)
u(t).

For the first term, we estimate using Lemma 2.2.2 with η(t) = χ(0,1](t) + t−1−αχ(1,∞)(t),∣∣∣∣ 1

Γ(−α)

∫ ∞
1

u(t− τ)
dτ

τ1+α

∣∣∣∣ ≤ 1

|Γ(−α)|
(|u| ∗ η)(t)

≤ 1

|Γ(−α)|
M−u(t)

(∫ 1

0
dτ +

∫ ∞
1

τ−1−α dτ

)
=

1

|Γ(−α)|

(
1 +

1

α

)
M−u(t) = C2M

−u(t)

where

C2 =
1 + α

Γ(1− α)

which is bounded independently of α. Therefore,

|IIα| ≤ C2M
−u(t) + C3 |u(t)| ≤ (C2 + C3)M−u(t)

where

C3 =
1

|Γ(1− α)|
.

The result follows since

C2 ≤ 1 and C2 + C3 =
2 + α

Γ(1− α)
=

(2 + α)(1− α)

Γ(2− α)
≤ 3
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2.3 Proof of Theorem 2.1.1

2.3.1 Proof of Theorem 2.1.1 (a)

The proof of part (a) is organized as follows. We first show that the formula in the right hand side

of (2.1.1) is well-defined as a function in Lp(R, ω). It is then shown that the distribution (Dleft)
αu

is indeed given by such pointwise formula using the fact that C∞c (R) is dense in W 1,p(R, ω). The

Lp(R, ω) estimate in (2.1.2) follows immediately from these steps of the proof. Next, we show that

the limit in (2.1.3) holds in Lp(R, ω) for u ∈ C∞c (R) and then use a density argument to show the

result for u ∈ W 1,p(R, ω). The a.e. convergence of (2.1.3) is proved by showing that the set of

functions in W 1,p(R, ω) such that (2.1.3) holds a.e. is closed in W 1,p(R, ω). The a.e. convergence

of (2.1.4) follows similarly. Finally, the maximal estimate allows us to prove that (2.1.4) holds in

Lp(R, ω), 1 < p <∞.

Step 1. The integral expression in (2.1.1) defines a function in Lp(R, ω).

First let 1 < p <∞. By Theorem 2.1.2 and the boundedness of M− in Lp(R, ω) for ω ∈ A−p (R),

it is immediate that∥∥∥∥ 1

Γ(−α)

∫ ∞
0

(u(t− τ)− u(t))
dτ

τ1+α

∥∥∥∥
Lp(R,ω)

≤ Cω
(
‖u‖Lp(R,ω) +

∥∥u′∥∥
Lp(R,ω)

)
. (2.3.1)

For p = 1, we consider the terms Iα and IIα as in (2.2.3). We use (2.2.4) to observe that

‖Iα‖L1(R,ω) ≤
1

|Γ(1− α)|

∫ ∞
−∞

∫ 1

0

∣∣u′(t− τ)
∣∣ dτ
τα

ω(t) dt

=
1

|Γ(1− α)|

∫ ∞
−∞

∫ t

t−1

|u′(τ)|
(t− τ)α

dτ w(t) dt

=
1

|Γ(1− α)|

∫ ∞
−∞

∣∣u′(τ)
∣∣ ∫ τ+1

τ

ω(t)

(t− τ)α
dt dτ

=
1

|Γ(1− α)|

∫ ∞
−∞

∣∣u′(τ)
∣∣ ∫ 1

0

ω(t+ τ)

tα
dt dτ.
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Since ω ∈ A−1 (R), for a.e. τ ∈ R we can use Lemma 2.2.2 with η(τ) = |τ |−α χ(−1,0)(τ) to get∫ 1

0

ω(t+ τ)

tα
dt =

∫ 0

−1

ω(τ − t)
|t|α

dt = (ω ∗ η)(τ)

≤M+ω(τ)

∫ 0

−1
|t|−α dt

=
1

(1− α)
M+ω(τ)

≤ C

(1− α)
ω(τ).

Therefore,

‖Iα‖L1(R,ω) ≤ CωC1

∥∥u′∥∥
L1(R,ω)

where C1 is as in the proof of Theorem 2.1.2. Moving to the second term in (2.2.3), we write

IIα =
1

Γ(−α)

∫ ∞
1

u(t− τ)
dτ

τ1+α
+

1

Γ(1− α)
u(t)

and estimate ∥∥∥∥∫ ∞
1

u(t− τ)
dτ

τ1+α

∥∥∥∥
L1(R,ω)

≤
∫ ∞
−∞

∫ ∞
1

|u(t− τ)|
τ1+α

dτ ω(t) dt

=

∫ ∞
−∞

∫ t−1

−∞

|u(τ)|
(t− τ)1+α

dτ ω(t) dt

=

∫ ∞
−∞
|u(τ)|

∫ ∞
τ+1

ω(t)

(t− τ)1+α
dt dτ

=

∫ ∞
−∞
|u(τ)|

∫ ∞
1

ω(t+ τ)

t1+α
dt dτ.

By using again the A−1 (R)-condition and Lemma 2.2.2 with η(τ) = χ[−1,0)(τ)+ |τ |−1−α χ(−∞,−1)(τ),

for a.e. τ ∈ R, ∫ ∞
1

ω(t+ τ)

t1+α
dt =

∫ −1

−∞

ω(τ − t)
|t|1+α dt

≤ (ω ∗ η)(τ)

≤M+ω(τ)

(∫ 0

−1
dt+

∫ −1

−∞
|t|−1−α dt

)
≤ 1 + α

α
M+ω(τ)

≤ C 1 + α

α
ω(τ).
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Therefore, by collecting terms,

‖IIα‖L1(R,ω) ≤
1

|Γ(−α)|

∥∥∥∥∫ ∞
1

u(t− τ)
dτ

τ1+α

∥∥∥∥
L1(R,ω)

+
1

|Γ(1− α)|
‖u‖L1(R,ω)

≤ C 1 + α

|Γ(−α)|α
‖u‖L1(R,ω) +

1

|Γ(1− α)|
‖u‖L1(R,ω)

≤ Cω(C2 + C3) ‖u‖L1(R,ω)

(2.3.2)

where C2, C3 > 0 are as in the proof of Theorem 2.1.2. Thus,∥∥∥∥ 1

Γ(−α)

∫ ∞
0

(u(t− τ)− u(t))
dτ

τ1+α

∥∥∥∥
L1(R,ω)

≤ Cω
(
‖u‖L1(R,ω) +

∥∥u′∥∥
L1(R,ω)

)
. (2.3.3)

Hence, the integral in (2.1.1) is in Lp(R, ω) for 1 ≤ p <∞.

Step 2. The distribution (Dleft)
αu coincides with the integral formula in (2.1.1). Therefore (Dleft)

αu

is in Lp(R, ω) and, by (2.3.1) and (2.3.3), (2.1.2) holds.

To show (2.1.1), let uk ∈ C∞c (R) such that uk → u in W 1,p(R, ω) as k →∞. We may write

(Dleft)
αuk(t) =

1

Γ(−α)

∫ ∞
0

(uk(t− τ)− uk(t))
dτ

τ1+α
.

Using (2.3.1) and (2.3.3), we can show that the formulas converge in norm. Indeed,∥∥∥∥ 1

Γ(−α)

∫ ∞
0

(uk(t− τ)− uk(t))
dτ

τ1+α
− 1

Γ(−α)

∫ ∞
0

(u(t− τ)− u(t))
dτ

τ1+α

∥∥∥∥
Lp(R,ω)

≤ C
(
‖uk − u‖Lp(ω) +

∥∥u′k − u′∥∥Lp(R,ω)

)
→ 0 as k →∞.

If ϕ ∈ C∞c (R) and A is such that suppϕ ⊂ (−∞, A], then ϕ ∈ S− and (Dright)
αϕ ∈ Sα− with

supp((Dright)
αϕ) ⊂ (−∞, A]. Now, by Definition 2.2.1,

((Dleft)
αu)(ϕ) =

∫ ∞
−∞

u(t) (Dright)
αϕ(t) dt

= lim
k→∞

∫ ∞
−∞

uk(t) (Dright)
αϕ(t) dt

= lim
k→∞

∫ ∞
−∞

(Dleft)
αuk(t)ϕ(t) dt

= lim
k→∞

∫ ∞
−∞

(
1

Γ(−α)

∫ ∞
0

(uk(t− τ)− uk(t))
dτ

τ1+α

)
ϕ(t) dt

=

∫ ∞
−∞

(
1

Γ(−α)

∫ ∞
0

(u(t− τ)− u(t))
dτ

τ1+α

)
ϕ(t) dt.

(2.3.4)
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In the second identity above we used that, by Proposition 2.2.2,∣∣∣∣ ∫ ∞
−∞

uk(t) (Dright)
αϕ(t) dt−

∫ ∞
−∞

u(t) (Dright)
αϕ(t) dt

∣∣∣∣
≤
∫ A

−∞
|uk(t)− u(t)| |(Dright)

αϕ(t)| dt

=

∫ A

−∞

|uk(t)− u(t)|
1 + |t|1+α |(Dright)

αϕ(t)| (1 + |t|1+α) dt

≤ C
∫ A

−∞

|uk(t)− u(t)|
1 + |t|1+α dt

≤ C ‖uk − u‖Lp(R,ω) → 0 as k →∞

and in the last equality we observed that∣∣∣∣∫ ∞
−∞

(Dleft)
αuk(t)ϕ(t) dt −

∫ ∞
−∞

(
1

Γ(−α)

∫ ∞
0

(u(t− τ)− u(t))
dτ

τ1+α

)
ϕ(t) dt

∣∣∣∣
≤ C

∫ A

−∞

∣∣∣∣∫ ∞
0

(uk(t− τ)− uk(t))
dτ

τ1+α
−
∫ ∞

0
(u(t− τ)− u(t))

dτ

τ1+α

∣∣∣∣ 1

1 + |t|1+α dt

≤ C
∥∥∥∥∫ ∞

0
(uk(· − τ)− uk(·))

dτ

τ1+α
−
∫ ∞

0
(u(· − τ)− u(·)) dτ

τ1+α

∥∥∥∥
Lp(R,ω)

→ 0

as k →∞. Therefore, since ϕ was arbitrary in (2.3.4),

(Dleft)
αu(t) =

1

Γ(−α)

∫ ∞
0

(u(t− τ)− u(t))
dτ

τ1+α
a.e. in R.

Step 3. The limit as α→ 1− in (2.1.3) holds in Lp(R, ω) for u ∈ C∞c (R).

Suppose that u ∈ C∞c (R) and write (Dleft)
αu(t) = Iα + IIα as in (2.2.3). For 1 < p < ∞, we

see from the proof of Theorem 2.1.2 that

‖IIα‖Lp(R,ω) ≤ (C2 + C3)
∥∥M−u∥∥

Lp(R,ω)

≤
(

1 + α

Γ(1− α)
+

1

Γ(1− α)

)
Cω ‖u‖Lp(R,ω) → 0

as α→ 1−. For p = 1, by (2.3.2) in Step 1, we similarly obtain

‖IIα‖Lp(ω) ≤ Cw(C2 + C3) ‖u‖L1(ω) → 0 as α→ 1−.
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Next, observe that

Iα − u′(t) =
1

Γ(−α)

∫ 1

0

(
−
∫ τ

0
u′(t− r) dr

)
dτ

τ1+α
− u′(t)

=
1

Γ(−α)

∫ 1

0

∫ τ

0
(u′(t)− u′(t− r)) dr dτ

τ1+α
+

(
α

Γ(2− α)
− 1

)
u′(t)

=
1

Γ(−α)

∫ 1

0

∫ τ

0

∫ r

0
u′′(t− µ) dµ dr

dτ

τ1+α
+

(
α

Γ(2− α)
− 1

)
u′(t).

Let K be such that suppu′′(· − µ) ⊂ [−K,K] for all µ ∈ [0, 1]. Then, for 1 ≤ p <∞,

∥∥u′′(· − µ)
∥∥
Lp(R,ω)

≤
∥∥u′′∥∥

L∞(R)
ω([−K,K])1/p = c

where c > 0 is independent of α. Therefore,

‖Iα−u′‖Lp(R,ω)

≤ 1

|Γ(−α)|

∫ 1

0

∫ τ

0

∫ r

0

∥∥u′′(t− µ)
∥∥
Lp(R,ω)

dµ dr
dτ

τ1+α
+

∣∣∣∣ α

Γ(2− α)
− 1

∣∣∣∣ ∥∥u′∥∥Lp(R,ω)

≤ c

|Γ(−α)|

∫ 1

0

∫ τ

0

∫ r

0
dµ dr

dτ

τ1+α
+

∣∣∣∣ α

Γ(2− α)
− 1

∣∣∣∣ ∥∥u′∥∥Lp(R,ω)

≤ c

|Γ(−α)| (2− α)
+

∣∣∣∣ α

Γ(2− α)
− 1

∣∣∣∣ ∥∥u′∥∥Lp(R,ω)

= c
α(1− α)

|Γ(3− α)|
+

∣∣∣∣ α

Γ(2− α)
− 1

∣∣∣∣ ∥∥u′∥∥Lp(R,ω)
→ 0 as α→ 1−.

Hence, ∥∥(Dleft)
αu− u′

∥∥
Lp(R,ω)

≤ ‖IIα‖Lp(R,ω) +
∥∥Iα − u′∥∥Lp(R,ω)

→ 0,

as α→ 1−.

Step 4. The limit as α→ 1− in (2.1.3) holds in Lp(R, ω) for u ∈W 1,p(R, ω).

Let uk ∈ C∞c (R) be such that uk → u in W 1,p(R, ω) as k → ∞. We just observe that, by the

Lp estimate (2.1.2) (that was proved in Step 2), for 1 ≤ p <∞,

∥∥(Dleft)
αu− u′

∥∥
Lp(R,ω)

≤ ‖(Dleft)
α(u− uk)‖Lp(R,ω) +

∥∥(Dleft)
αuk − u′k

∥∥
Lp(R,ω)

+
∥∥u′k − u′∥∥Lp(R,ω)

≤ C
(
‖u− uk‖Lp(R,ω) +

∥∥(u− uk)′
∥∥
Lp(R,ω)

)
+
∥∥(Dleft)

αuk − u′k
∥∥
Lp(R,ω)

.



41

Then take k large and choose α close to 1− (see Step 3).

Step 5. The limit as α→ 1− in (2.1.3) holds almost everywhere for u ∈W 1,p(R, ω).

It follows from Theorem 2.1.2 and the properties of M− that the operator T ∗ defined by

T ∗u(t) = sup
0<α<1

(Dleft)
αu(t) for u ∈W 1,p(R, ω)

satisfies the estimates

‖T ∗u‖Lp(R,ω) ≤ Cp,ω ‖u‖W 1,p(R,ω) for any u ∈W 1,p(R, ω), 1 < p <∞

and

ω
(
{t ∈ R : |T ∗u(t)| > λ}

)
≤ Cω

λ
‖u‖W 1,1(R,ω) for any u ∈W 1,1(R, ω).

In particular, T ∗ is bounded from W 1,p(R, ω) into weak-Lp(R, ω), for any 1 ≤ p <∞. To conclude,

we need to see that the set

E = {u ∈W 1,p(R, ω) : lim
α→1−

(Dleft)
αu(t) = u′(t) a.e.}

is closed in W 1,p(R, ω). Indeed, since C∞c (R) ⊂ E and C∞c (R) is dense in W 1,p(R, ω), this claim

gives that E = W 1,p(R, ω).

To check that E is a closed set, let uk ∈ E be a sequence such that uk → u in W 1,p(R, ω), for

some u ∈W 1,p(R, ω). We will prove that u ∈ E. Let λ > 0 be arbitrary. By using the boundedness

of T ∗ and Chebyshev’s inequality, we find that

ω({t ∈ R : lim sup
α→1−

∣∣(Dleft)
αu(t)− u′(t)

∣∣ > λ})

≤ ω({t ∈ R : lim sup
α→1−

|(Dleft)
αu(t)− (Dleft)

αuk(t)| > λ/3})

+ ω({t ∈ R : lim sup
α→1−

∣∣(Dleft)
αuk(t)− u′k(t)

∣∣ > λ/3})

+ ω({t ∈ R :
∣∣u′k(t)− u′(t)∣∣ > λ/3})

≤ ω({t ∈ R : |T ∗(u− uk)(t)| > λ/3}) + ω({t ∈ R :
∣∣(uk − u)′(t)

∣∣ > λ/3})

≤ 2

(
3C

λ
‖u− uk‖W 1,p(R,ω)

)p
→ 0
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as k →∞. Therefore

ω({t ∈ R : lim sup
α→1−

∣∣(Dleft)
αu(t)− u′(t)

∣∣ > 0})

≤
∞∑
n=1

ω({t ∈ R : lim sup
α→1−

∣∣(Dleft)
αu(t)− u′(t)

∣∣ > 1/n}) = 0.

Since λ > 0 was arbitrary, we have u ∈ E.

Step 6. The limit as α→ 0+ in (2.1.4) holds almost everywhere for u ∈W 1,p(R, ω).

As in Step 5, one can check that the set

E′ = {u ∈W 1,p(R, ω) : lim
α→0+

(Dleft)
αu(t) = u(t) a.e.}

is closed in W 1,p(R, ω). Since C∞c (R) ⊂ E′, by density, we get E′ = W 1,p(R, ω).

Step 7. The limit as α→ 0+ in (2.1.4) holds in Lp(R, ω).

By Theorem 2.1.2, for any 0 < α < 1,

|(Dleft)
αu(t)− u(t)|p ω(t) ≤

(
C(M−(u′)(t) +M−u(t)) + |u(t)|

)p
ω(t)

≤ Cp
(
(M−(u′)(t))p + (M−u(t))p

)
ω(t) ∈ Lp(R).

Therefore, by Step 6 and the Dominated Convergence Theorem, (2.1.4) holds.

The proof of Theorem 2.1.1, part (a), is completed.

2.3.2 Proof of Theorem 2.1.1 (b)

This is proved through a distributional argument.

Suppose that (Dleft)
αu → v in Lp(R, ω) as α → 1−. Let ϕ ∈ C∞c (R). Let A ∈ R be such that

suppϕ ⊂ (−∞, A], so that ϕ ∈ S− and (Dright)
αϕ ∈ Sα−. By Proposition 2.2.2,∣∣∣∣∫ ∞

−∞
v(t)ϕ(t) dt−

∫ ∞
−∞

(Dleft)
αu(t)ϕ(t) dt

∣∣∣∣ ≤ ∫ A

−∞
|v(t)− (Dleft)

αu(t)| C

1 + |t|
dt

≤ Cϕ,A,ω,p ‖v − (Dleft)
αu‖Lp(R,ω) → 0
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as α→ 1−. With this and the definition of (Dleft)
αu we can write∫ ∞

−∞
v ϕ dt = lim

α→1−

∫ ∞
−∞

(Dleft)
αuϕdt

= lim
α→1−

∫ ∞
−∞

u (Dright)
αϕdt.

Next, notice that, by Proposition 2.2.2,

|u(t)| |(Dright)
αϕ+ ϕ′| ≤ |u(t)| Cϕ

1 + |t|1+α
χ(−∞,A](t)

≤ Cϕ
|u(t)|
1 + |t|

χ(−∞,A](t) ∈ L1(R).

Therefore, by the Dominated Convergence Theorem, as (Dright)
αϕ(t)→ −ϕ′(t) as α→ 0+,

lim
α→1−

∣∣∣∣ ∫ ∞
−∞

u(t) (Dright)
αϕ(t) dt+

∫ ∞
−∞

u(t)ϕ′(t) dt

∣∣∣∣
≤
∫ ∞
−∞

lim
α→1−

|u(t)|
∣∣(Dright)

αϕ(t) + ϕ′(t)
∣∣ dt = 0

Whence, ∫ ∞
−∞

v ϕ dt = lim
α→1−

∫ ∞
−∞

u (Dright)
αϕdt

= −
∫ ∞
−∞

uϕ′ dt =

∫ ∞
−∞

u′ ϕdt.

Therefore v = u′ a.e. in R. Since u′ = v ∈ Lp(R, ω), we get u ∈ W 1,p(R, ω), and by Theorem

2.1.1(a), the conclusion follows.

2.3.3 Proof of Theorem 2.1.1 (c)

Using the exact same arguments as in part (b), we find that∫ ∞
−∞

v ϕ dt = lim
α→0+

∫ ∞
−∞

(Dleft)
αuϕdt

= lim
α→0+

∫ ∞
−∞

u (Dright)
αϕdt =

∫ ∞
−∞

uϕdt.

Therefore v = u a.e. in R and the conclusion follows.
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2.4 Fractional Laplacians and Muckenhoupt weights

For u ∈ S(Rn), the Fourier transform identity

(̂−∆)u(ξ) = |ξ|2û(ξ)

is used to define the fractional Laplacian as

̂(−∆)su(ξ) = |ξ|2sû(ξ) for 0 < s < 1.

Using the heat diffusion semigroup {et∆}t≥0 generated by −∆, it is shown in [72, 73] that the

fractional Laplacian can be expressed using the semigroup formula (2.1.5) and that this is equivalent

to the pointwise formula (2.1.6). For completeness, we provide some of the details.

Using the Gamma function, we can write

λs =
1

Γ(−s)

∫ ∞
0

(
e−λt − 1

) dt

t1+s
, for any 0 < s < 1, λ > 0.

Choosing λ = |ξ|2 and multiplying by û(ξ), we obtain

̂(−∆)su(ξ) = |ξ|2sû(ξ) =
1

Γ(−s)

∫ ∞
0

(
e−t|ξ|

2

û(ξ)− û(ξ)
) dt

t1+s
.

Taking the inverse Fourier transform, the semigroup formula (2.1.5) holds. Here, et∆ is the operator

that satisfies

êt∆u(ξ) = e−t|ξ|
2
û(ξ).

It is well known that et∆u(x) = (Wt ∗ u)(x) where Wt(x) is the Gauss–Weierstrass kernel

Wt(x) =
1

(4πt)n/2
e−|x|

2/(4t) for x ∈ Rn, t > 0

and that v = et∆u solves the heat equation in Rn with initial data u, ∂tv = ∆v for x ∈ Rn, t > 0

v(x, 0) = u(x) for x ∈ Rn.

By writing

(−∆)su(x) =
1

Γ(−s)

∫ ∞
0

((Wt ∗ u)(x)− u(x))
dt

t1+s

=
1

Γ(−s)

∫ ∞
0

∫
Rn
Wt(x− y) (u(y)− u(x)) dy

dt

t1+s

and applying Fubini’s theorem, the pointwise formula (2.1.6) holds.
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2.4.1 Distributional setting

The distributional setting for the fractional Laplacian was developed by Silvestre in [68]. Con-

sider the function class

Ss =

{
ϕ ∈ C∞(Rn) : |Dγϕ(x)| ≤ C

1 + |x|n+2s , for all γ ∈ Nn0 , x ∈ Rn, for some C > 0

}
.

We endow Ss with the topology induced by the family of seminorms

ρsγ(ϕ) = sup
x∈Rn

(1 + |x|n+2s) |Dγϕ(x)| , for γ ∈ Nn0 .

Let (Ss)
′ be the dual space of Ss. Notice that S ⊂ Ss, so that (Ss)

′ ⊂ S′. For u ∈ (Ss)
′, (−∆)su is

defined as a distribution on S′ by

((−∆)su)(ϕ) = u ((−∆)sϕ) for any ϕ ∈ S.

One can check that Ls ⊂ (Ss)
′, where

Ls =

{
u ∈ L1

loc(Rn) :

∫
Rn

|u(x)|
1 + |x|n+2s dx <∞

}
.

Proposition 2.4.1 (Silvestre [68]). Let Ω be an open set in Rn and u ∈ Ls. If u ∈ C2s+ε(Ω) (or

C1,2s+ε−1(Ω) if s ≥ 1/2) for some ε > 0, then (−∆)su ∈ C(Ω) and

(−∆)su(x) = cn,sP.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s dy for every x ∈ Ω.

Here (see [72, 73])

cn,s =
4sΓ(n/2 + s)

|Γ(−s)|πn/2
∼ s(1− s) as s→ 0, 1. (2.4.1)

2.4.2 Muckenhoupt weights

A function ν ∈ L1
loc(Rn), ν > 0 a.e., is called an Ap(Rn) Muckenhoupt weight, 1 < p <∞, if it

satisfies the following condition: there exists C > 0 such that(
1

|B|

∫
B
ν dx

)1/p( 1

|B|

∫
B
ν1−p′ dx

)1/p′

≤ C (2.4.2)
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for any ball B ⊂ Rn. If ν satisfies (2.4.2), we write ν ∈ Ap(Rn). Observe that ν ∈ Ap(Rn) if and

only if ν1−p′ ∈ Ap′(Rn). The Hardy–Littlewood maximal function is defined by

Mu(x) = sup
B3x

1

|B|

∫
B
|u(y)| dy

where the supremum is taken over all balls B ⊂ Rn containing x. For 1 < p <∞, the operator M

is bounded on Lp(Rn, ν) if and only if ν ∈ Ap(Rn). When p = 1, M is bounded from L1(Rn, ν)

into weak-L1(Rn, ν) if and only if ν ∈ A1(Rn), namely, there exists C > 0 such that

Mν(x) ≤ Cν(x) for a.e. x ∈ Rn.

For a measurable set E ⊂ Rn and a weight ν, we denote

ν(E) =

∫
E
ν dx.

See [27] for more details about Muckenhoupt weights.

Lemma 2.4.1 (See [27, Proposition 2.7]). Let η = η(x) be a function that is positive, radial,

decreasing (as a function on (0,∞)) and integrable. Then for any measurable function u : Rn → R

and for almost every x ∈ Rn, we have

|u ∗ η(x)| ≤ ‖η‖L1(Rn)Mu(x).

Lemma 2.4.2 (See [27, Corollary 7.6]). If ν ∈ Ap(Rn), 1 ≤ p < ∞, then there exists δ > 0 such

that given a ball B and a measurable subset S of B,

ν(S)

ν(B)
≤ C

(
|S|
|B|

)δ
.

Our next result shows that for any function u ∈ Lp(Rn, ν), ν ∈ Ap(Rn), 1 ≤ p <∞, the object

(−∆)su is well defined as a distribution in S′.

Proposition 2.4.2. If u ∈ Lp(Rn, ν), ν ∈ Ap(Rn), 1 ≤ p <∞, then u ∈ Ls, s ≥ 0, and there is a

constant C = Cn,p,ν > 0 such that

‖u‖Ls ≤ C ‖u‖Lp(Rn,ν) .

In particular, Lp(Rn, ν) ⊂ L1
loc(Rn).
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Proof. Suppose first that 1 < p <∞. By Hölder’s inequality,

‖u‖Ls ≤ ‖u‖Lp(Rn,ν)

(
Cn

∫
Rn

ν(x)1−p′

(1 + |x|n)p′
dx

) 1
p′

.

Let ν̃(x) = ν(x)1−p′ ∈ Ap′(Rn). It is enough to show∫
Rn

ν̃(x)

(1 + |x|)np′
dx <∞.

Let f(x) = χB1(x). If |x| ≤ 1, then Mf(x) = 1. If |x| ≥ 1, then B1 ⊂ B(x, 2 |x|) and

Mf(x) ≥ |B(0, 1)|
|B(x, 2 |x|)|

=
1

(2 |x|)n
≥ Cn

(1 + |x|)n
.

Since M is bounded on Lp
′
(Rn, ν̃), for ν̃ ∈ Ap′(Rn),∫

Rn

ν̃(x)

(1 + |x|)np′
dx ≤ C

∫
Rn

(Mf(x))p
′
ν̃(x) dx

≤ C
∫
Rn

(f(x))p
′
ν̃(x) dx = C

∫
B1

ν̃(x) dx = Cν1−p′(B1).

Therefore,

‖u‖Ls ≤ C ‖u‖Lp(Rn,ν) ν
1−p′(B1) <∞.

Now let p = 1. Observe that∫
|x|<1

|u(x)|
1 + |x|n+2s dx ≤ ‖u‖L1(Rn,ν) sup

x∈B1

ν(x)−1 ≤ Cn,ν ‖u‖L1(Rn,ν)

where in the last inequality we used that, since ν ∈ A1(Rn),

sup
B1

ν−1 =

(
inf
B1

ν

)−1

≤ C
(
ν(B1)

|B1|

)−1

.

On the other hand, let Bj = B2j (0), j ≥ 0. By using the A1(Rn)-condition and Lemma 2.4.2 with

S = B1 and B = Bj ,
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∫
|x|>1

|u(x)|
1 + |x|n+2s dx ≤

∞∑
j=0

∫
Bj+1\Bj

|u(x)|
|x|n

dx

≤ cn
∞∑
j=1

1

(2j)n

∫
Bj

|u(x)| dx

≤ cn ‖u‖L1(Rn,ν)

∞∑
j=1

1

(2j)n
sup
x∈Bj

ν−1(x)

≤ C ‖u‖L1(Rn,ν)

∞∑
j=1

1

(2j)n
|Bj |δ

ν(Bj)
|Bj |1−δ

≤ C ‖u‖L1(Rn,ν)

|B1|δ

ν(B1)

∞∑
j=1

(2jn)1−δ

(2j)n

≤ Cn,ν ‖u‖L1(Rn,ν) .

The result for p = 1 follows by combining the previous estimates.

2.4.3 The heat semigroup on weighted spaces

Recall the definition of the classical heat semigroup {et∆}t≥0 on Rn:

et∆u(x) =

∫
Rn
Wt(x− y)u(y) dy =

1

(4πt)n/2

∫
Rn
e−|x−y|

2/(4t)u(y) dy (2.4.3)

for x ∈ Rn, t > 0. We believe that the following result belongs to the folklore, but we provide a

proof for the sake of completeness.

Theorem 2.4.1. Let ν ∈ Ap(Rn) and u ∈ Lp(Rn, ν), 1 ≤ p <∞. The following hold.

(1) The integral defining et∆u(x) in (2.4.3) is absolutely convergent for x ∈ Rn, t > 0, and

sup
t>0

∣∣et∆u(x)
∣∣ ≤Mu(x)

for almost every x ∈ Rn.

(2) et∆u(x) ∈ C∞((0,∞)× Rn) and ∂t(e
t∆u) = ∆(et∆u) in Rn × (0,∞).

(3)
∥∥et∆u∥∥

Lp(Rn,ν)
≤ Cn,p,ν ‖u‖Lp(Rn,ν), where Cn,p,ν > 0.
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(4) lim
t→0+

et∆u(x) = u(x) for almost every x ∈ Rn.

(5) lim
t→0+

∥∥et∆u− u∥∥
Lp(Rn,ν)

= 0.

(6) If u ∈W 2,p(Rn, ν), then et∆∆u = ∆et∆u.

(7) lim
ε→0

∥∥∥∥∥
∫
|x−y|<ε

Wt(x− y)u(y) dy

∥∥∥∥∥
Lp(Rn,ν)

= 0.

Proof. Let u ∈ Lp(Rn, ν), ν ∈ Ap(Rn), for 1 ≤ p <∞.

For (1), we apply Lemma 2.4.1 with η(x) = Wt(x) and notice that ‖Wt‖L1(Rn) = 1, for each

fixed t > 0 to estimate

∣∣et∆u(x)
∣∣ = |η ∗ u(x)| ≤ ‖η‖L1(Rn)Mu(x) = Mu(x).

To prove (2), we recall that Wt(x) ∈ C∞(Rn × (0,∞)), ∂tWt = ∆Wt in Rn × (0,∞) and that

there exists c > 0 such that |∂tWt(x)| ≤ c
tWct(x) for each t > 0 and x ∈ Rn. Thus, we can

differentiate inside of the integral in (2.4.3) to find that et∆u(x) ∈ C∞(Rn× (0,∞)) and solves the

heat equation.

If 1 < p < ∞, then part (1) and the boundedness of the maximal function M show that∥∥et∆u∥∥
Lp(Rn,ν)

≤ C ‖u‖Lp(Rn,ν). If p = 1, as in part (1) and by using the A1(Rn)-condition,

∥∥et∆u∥∥
L1(Rn,ν)

≤
∫
Rn
|u(y)|

(∫
Rn
Wt(x− y)ν(x) dx

)
dy

≤
∫
Rn
|u(y)|Mν(y) dy

≤ C
∫
Rn
|u(x)| ν(y) dy = C ‖u‖L1(Rn,ν) .

Whence, (3) holds.

To verify the almost everywhere limit in (4), we only need to observe that limt→0+ et∆ϕ(x) =

ϕ(x) for every x ∈ Rn whenever ϕ ∈ C∞c (Rn), that C∞c (Rn) is dense in Lp(Rn, ν) and that, by part

(1), the maximal operator

T ∗u(x) = sup
t>0

∣∣et∆u(x)
∣∣

is bounded from Lp(Rn, ν) into weak-Lp(Rn, ν) (see, for instance, [27, Theorem 2.2]).
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For (5), notice that if ϕ ∈ C∞c (Rn), then, as in part (1),

∣∣et∆ϕ(x)− ϕ(x)
∣∣ =

∣∣∣∣∫ t

0
∂se

s∆ϕ(x) ds

∣∣∣∣
≤
∫ t

0

∣∣es∆∆ϕ(x)
∣∣ ds ≤ CM(∆ϕ)(x) t.

For 1 < p <∞, ∥∥et∆ϕ− ϕ∥∥
Lp(Rn,ν)

≤ C ‖∆ϕ‖Lp(Rn,ν) t→ 0

as t→ 0+. If p = 1, then by part (3),

∥∥et∆ϕ− ϕ∥∥
L1(Rn,ν)

=

∫
Rn

∣∣et∆ϕ(x)− ϕ(x)
∣∣ ν(x) dx

≤
∫
Rn

∫ t

0

∣∣es∆∆ϕ(x)
∣∣ ν(x) ds dx

=

∫ t

0

∥∥es∆∆ϕ
∥∥
L1(Rn,ν)

ds

≤
∫ t

0
C ‖∆ϕ‖L1(Rn,ν) ds = Ct ‖∆ϕ‖L1(Rn,ν) → 0

as t→ 0+. We then use the density of C∞c (Rn) in Lp(Rn, ν).

For (6), let ϕ ∈ C∞c (Rn) and observe that∫
Rn

∆et∆u(x)ϕ(x) dx =

∫
Rn
et∆u(x)∆ϕ(x) dx

=

∫
Rn

∫
Rn
Wt(x− y)u(y)∆ϕ(x) dy dx

=

∫
Rn
Wt(z)

[ ∫
Rn
u(y)∆yϕ(x+ y) dy

]
dx

=

∫
Rn
Wt(z)

[ ∫
Rn

∆u(y)ϕ(x+ y) dy

]
dx

=

∫
Rn
et∆∆u(x)ϕ(x) dx.

Then ∆et∆u(x) = et∆∆u(x), for almost every x ∈ Rn.

Let us finally prove (7). Observe that, by part (1),∫
|x−y|<ε

Wt(x− y) |u(y)| dy ≤Mu(x).
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For 1 < p <∞, Mu ∈ Lp(Rn, ν) so, by the Dominated Convergence Theorem,

lim
ε→0

∥∥∥∥∫
|x−y|<ε

Wt(x− y) |u(y)| dy
∥∥∥∥p
Lp(Rn,ν)

=

∫
Rn

lim
ε→0

(∫
|x−y|<ε

Wt(x− y) |u(y)| dy

)p
ν(x) dx = 0.

For p = 1,∥∥∥∥∫
|x−y|<ε

Wt(x− y)u(y) dy

∥∥∥∥
L1(Rn,ν)

≤
∫
Rn

[
|u(y)|

∫
|x−y|<ε

Wt(x− y)ν(x) dx

]
dy

and, by part (1),

|u(y)|
∫
|x−y|<ε

Wt(x− y)ν(x) dx ≤ |u(y)|Mν(y) ≤ C |u(y)| ν(y) ∈ L1(Rn)

for a.e. y ∈ Rn. Therefore, (7) holds for p = 1 by the Dominated Convergence Theorem.

2.4.4 The maximal estimate (1.3.5)

Proof of Theorem 2.1.4. Define the operator Ts,ε on W 2,p(Rn, ν) by

Ts,εu(x) = cn,s

∫
|y|>ε

u(x− y)− u(x)

|y|n+2s dy.

We will show that there is a constant C = Cn > 0 such that

|Ts,εu(x)| ≤ C
(
M(D2u)(x) +Mu(x)

)
for a.e. x ∈ Rn

from which the statement follows. We write

Ts,εu(x) = cn,s

∫
ε<|y|<1

u(x− y)− u(x)

|y|n+2s dy + cn,s

∫
|y|>1

u(x− y)− u(x)

|y|n+2s dy = I + II.

Let us first estimate the second term. Take η(x) = χ{|x|≤1}(x) + |x|−n−2s χ{|x|>1}(x) in Lemma

2.4.1 and use (2.4.1) to get
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|II| ≤ cn,s
∫
|y|>1

|u(x− y)|
|y|n+2s dy + cn,s |u(x)|

∫
|y|>1

1

|y|n+2s dy

≤ Cns(1− s)
(

(|u| ∗ η)(x) +
|u(x)|
s

)
≤ Cns(1− s)

(
‖η‖L1(Rn)Mu(x) +

|u(x)|
s

)
= Cns(1− s)

((
1 + 2s

2s

)
Mu(x) +

|u(x)|
s

)
≤ CnMu(x).

Consider now the first term, that we rewrite as

I = cn,s

∫
ε<|y|<1

u(x− y)− u(x) +∇u(x) · y
|y|n+2s dy.

Since u ∈W 2,p(Rn, ν) and (2.4.1) holds, for a.e. x ∈ Rn we can estimate

|I| ≤ cn,s
∫
ε<|y|<1

|u(x− y)− u(x) +∇u(x) · y|
|y|n+2s dy

≤ cn,s
∫
ε<|y|<1

|y|2

|y|n+2s

∫ 1

0
(1− t)

∣∣D2u(x− ty)
∣∣ dt dy

= cn,s

∫ 1

0
(1− t)

∫
ε<|y|<1

∣∣D2u(x− ty)
∣∣

|y|n−2(1−s) dy dt

≤ cn,s
∫ 1

0
(1− t) t−2(1−s)

∫
|y|<t

∣∣D2u(x− y)
∣∣

|y|n−2(1−s) dy dt

≤ cn,s
∫ 1

0
(1− t) t−2(1−s)

∞∑
k=0

∫
2−(k+1)t<|y|<2−kt

∣∣D2u(x− y)
∣∣

|y|n−2(1−s) dy dt

≤ cn,s
∫ 1

0
(1− t) t−2(1−s)

∞∑
k=0

1

(2−(k+1)t)n−2(1−s)

∫
|y|<2−kt

∣∣D2u(x− y)
∣∣ dy dt

≤ Cns(1− s)2n−2(1−s)M(D2u)(x)

∫ 1

0
(1− t)

[ ∞∑
k=0

1(
22(1−s)

)k ] dt
≤ Cn

s(1− s)
41−s − 1

M(D2u)(x) ≤ CnM(D2u)(x)

where in the last line we applied the estimate 41−s − 1 ≥ c(1 − s), for any 0 < s < 1. Therefore,

|Ts,εu(x)| ≤ |I|+ |II| ≤ Cn
(
M(D2u)(x) +Mu(x)

)
for a.e x ∈ Rn.
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2.5 Proof of Theorem 2.1.3

2.5.1 Proof of Theorem 2.1.3 (a)

The steps in the proof of part (a) are similar to the steps in the proof of Theorem 2.1.1 (a).

Step 1. The semigroup formula in (2.1.5) defines a function in Lp(Rn, ν).

Let us begin by writing

1

Γ(−s)

∫ ∞
0
|et∆u(x)− u(x)| dt

t1+s

=
1

Γ(−s)

∫ 1

0
|et∆u(x)− u(x)| dt

t1+s
+

1

Γ(−s)

∫ ∞
1
|et∆u(x)− u(x)| dt

t1+s

= I + II.

(2.5.1)

To study I, recall Theorem 2.4.1 and observe for t ∈ [0, 1] that

∥∥et∆u− u∥∥
Lp(Rn,ν)

≤
∫ t

0

∥∥er∆(∆u)
∥∥
Lp(Rn,ν)

dr ≤ C ‖∆u‖Lp(Rn,ν) t.

Therefore

‖I‖Lp(Rn,ν) ≤
1

|Γ(−s)|

∫ 1

0

∥∥et∆u− u∥∥
Lp(Rn,ν)

dt

t1+s

=
C

|Γ(−s)|
‖∆u‖Lp(Rn,ν)

∫ 1

0
t−s dt

= C
s

|Γ(2− s)|
‖∆u‖Lp(Rn,ν) .

(2.5.2)

For II, in view of Theorem 2.4.1,

‖II‖Lp(Rn,ν) ≤
1

|Γ(−s)|

∫ ∞
1

(∥∥et∆u∥∥
Lp(Rn,ν)

+ ‖u‖Lp(Rn,ν)

) dt

t1+s

≤ 1

|Γ(−s)|

(
C ‖u‖Lp(Rn,ν) + ‖u‖Lp(Rn,ν)

)∫ ∞
1

dt

t1+s

=
C(1− s)
|Γ(2− s)|

‖u‖Lp(Rn,ν) .

(2.5.3)

Therefore∥∥∥∥ 1

Γ(−s)

∫ ∞
0

(
et∆u(x)− u(x)

) dt

t1+s

∥∥∥∥
Lp(Rn,ν)

≤ C
(
‖u‖Lp(Rn,ν) + ‖∆u‖Lp(Rn,ν)

)
<∞. (2.5.4)

Step 2. The distribution (−∆)su coincides with the semigroup formula in (2.1.5) for a.e. x ∈ Rn.

Therefore, (−∆)su is in Lp(R, ν) and, by (2.5.4), we see that (2.1.7) holds.
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Since C∞c (Rn) is dense in W 2,p(Rn, ν) (see [78]), there exists a sequence uk ∈ C∞c (Rn) such that

uk → u in W 2,p(Rn, ν). We consider the terms I and II as in (2.5.1) and, similarly,

(−∆)suk(x) =
1

Γ(−s)

∫ 1

0

(
et∆uk(x)− uk(x)

) dt

t1+s
+

1

Γ(−s)

∫ ∞
1

(
et∆uk(x)− uk(x)

) dt

t1+s

= Ik + IIk.

By (2.5.2),

‖Ik − I‖Lp(Rn,ν) ≤ C
s

|Γ(2− s)|
‖∆(uk − u)‖Lp(Rn,ν) → 0 as k →∞.

Similarly, by (2.5.3),

‖IIk − II‖Lp(Rn,ν) =
C(1− s)
Γ(2− s)

‖uk − u‖Lp(Rn,ν) → 0 as k →∞.

Therefore,

(−∆)suk(x)→ 1

Γ(−s)

∫ ∞
0

(
et∆u(x)− u(x)

) dt

t1+s
(2.5.5)

in Lp(Rn, ν) as k →∞.

Next, let ϕ ∈ C∞c (Rn) and note that (−∆)sϕ ∈ Ss. By Proposition 2.4.2,∣∣∣∣ ∫
Rn
uk(x)(−∆)sϕ(x) dx−

∫
Rn
u(x)(−∆)sϕ(x) dx

∣∣∣∣
≤ C

∫
Rn

|uk(x)− u(x)|
1 + |x|n+2s dx

≤ C ‖uk − u‖Lp(Rn,ν) → 0 as k →∞.

In addition, by (2.5.5),∣∣∣∣ ∫
Rn

(−∆)suk(x)ϕ(x) dx− 1

Γ(−s)

∫
Rn

∫ ∞
0

(
et∆u(x)− u(x)

) dt

t1+s
ϕ(x) dx

∣∣∣∣
≤ C

∫
Rn

∣∣∣∣(−∆)suk(x)− 1

Γ(−s)

∫ ∞
0

(
et∆u(x)− u(x)

) dt

t1+s

∣∣∣∣ 1

1 + |x|n+2s dx

≤ C
∥∥∥∥(−∆)suk(x)− 1

Γ(−s)

∫ ∞
0

(
et∆u(x)− u(x)

) dt

t1+s

∥∥∥∥
Lp(Rn,ν)

→ 0
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as k →∞. Therefore∫
Rn

(−∆)su(x)ϕ(x) dx =

∫
Rn
u(x)(−∆)sϕ(x) dx

= lim
k→∞

∫
Rn
uk(x)(−∆)sϕ(x) dx

= lim
k→∞

∫
Rn

(−∆)suk(x)ϕ(x) dx

=

∫
Rn

[
1

Γ(−s)

∫ ∞
0

(
et∆u(x)− u(x)

) dt

t1+s

]
ϕ(x) dx,

and so we obtain

(−∆)su(x) =
1

Γ(−s)

∫ ∞
0

(
et∆u(x)− u(x)

) dt

t1+s
for a.e. x ∈ Rn.

Step 3. The integral expression in (2.1.6) defines a function in Lp(Rn, ν) for all ε > 0.

For ε > 0, define the operator Tε on Lp(Rn, ν) by

Tεu(x) = cn,s

∫
|x−y|>ε

u(x)− u(y)

|x− y|n+2s dy. (2.5.6)

We claim that Tεu(x) ∈ Lp(Rn, ν) for all ε > 0. Indeed, for 1 < p < ∞ this is immediate by

Theorem 2.1.4: there exists C > 0 such that

‖Tεu‖Lp(Rn,ν) ≤ C
(∥∥M(D2u)

∥∥
Lp(Rn,ν)

+ ‖Mu‖Lp(Rn,ν)

)
<∞.

For p = 1, we write

Tεu(x) = cn,su(x)

∫
|x−y|>ε

1

|x− y|n+2s dy + cn,s

∫
|x−y|>ε

u(y)

|x− y|n+2s dy

= cn,s
Cnε

−2s

2s
u(x) + cn,s

∫
|x−y|>ε

u(y)

|x− y|n+2s dy.

We only need to study the second term above. By applying Lemma 2.4.1 with η(y) = χ{|y|≤ε}(y) +

|y|−n−2s χ{|y|>ε}(y) and the A1(Rn)-condition on ν, we find∥∥∥∥∥
∫
|x−y|>ε

u(y)

|x− y|n+2s dy

∥∥∥∥∥
L1(Rn,ν)

≤
∫
Rn
|u(y)|

∫
|x−y|>ε

ν(x)

|x− y|n+2s dx dy

≤
∫
Rn
|u(y)|(ν ∗ η)(y) dy

≤ Cn,s,ε
∫
Rn
|u(y)|Mν(y) dy

≤ Cn,s,ε,ν ‖u‖L1(Rn,ν) <∞.
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Step 4. The principal value in (2.1.6) converges in Lp(Rn, ν) to the function (−∆)su.

We write the semigroup formula (2.1.5) as

(−∆)su(x) =
1

Γ(−s)

∫ 1

0

(∫
Rn
Wt(x− y) (u(y)− u(x)) dy

)
dt

t1+s

+
1

Γ(−s)

∫ ∞
1

(∫
Rn
Wt(x− y) (u(y)− u(x)) dy

)
dt

t1+s

= I + II

and, similarly,

cn,s

∫
|x−y|>ε

u(x)− u(y)

|x− y|n+2s dy

=
1

Γ(−s)

∫
|x−y|>ε

(u(y)− u(x))

(∫ ∞
0

Wt(x− y)
dt

t1+s

)
dy

=
1

Γ(−s)

∫ 1

0

∫
|x−y|>ε

Wt(x− y) (u(y)− u(x)) dy
dt

t1+s

+
1

Γ(−s)

∫ ∞
1

∫
|x−y|>ε

Wt(x− y) (u(y)− u(x)) dy
dt

t1+s

= Iε + IIε.

From Theorem 2.4.1 it follows that

‖II − IIε‖Lp(Rn,ν)

=

∥∥∥∥∥ 1

Γ(−s)

∫ ∞
1

[(∫
|x−y|<ε

Wt(x− y)u(y) dy

)
+ u(x)

∫
|z|<ε

Wt(z) dz

]
dt

t1+s

∥∥∥∥∥
Lp(Rn,ν)

≤ C
∫ ∞

1

∥∥∥∥∥
∫
|x−y|<ε

Wt(x− y)u(y) dy

∥∥∥∥∥
Lp(Rn,ν)

+ ‖u‖Lp(Rn,ν)

∫
|z|<ε

Wt(z) dz

 dt

t1+s
→ 0

as ε→ 0+. We next show ‖I − Iε‖Lp(Rn,ν) → 0 as ε→ 0+ as well to conclude the proof. Indeed,

‖I − Iε‖Lp(Rn,ν) =

∥∥∥∥∥ 1

Γ(−s)

∫ 1

0

(∫
|y|<ε

Wt(y) (u(x− y)− u(x)) dy

)
dt

t1+s

∥∥∥∥∥
Lp(Rn,ν)
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By Taylor’s Remainder Theorem and (2.1.10),∣∣∣∣ ∫
|y|<ε

Wt(y) (u(x− y)− u(x)) dy

∣∣∣∣
≤
∫
|y|<ε

Wt(y)|y|2
(∫ 1

0
(1− r)

∣∣D2u(x− ry)
∣∣ dr) dy

≤ Ct
∫
|y|<ε

W2t(y)

(∫ 1

0
(1− r)

∣∣D2u(x− ry)
∣∣ dr) dy

= Ct

∫ 1

0
(1− r)

(∫
|y|<ε

W2t(y)
∣∣D2u(x− ry)

∣∣ dy) dr
= Ct

∫ 1

0
(1− r)

(∫
|y|<rε

W2tr2(y)
∣∣D2u(x− y)

∣∣ dy) dr.
In particular, since D2u ∈ Lp(Rn, ν), by Theorem 2.4.1,∣∣∣∣ ∫

|y|<ε
Wt(y) (u(x− y)− u(x)) dy

∣∣∣∣→ 0 as ε→ 0+ (2.5.7)

a.e. in Rn. We continue estimating by∣∣∣∣ ∫
|y|<ε

Wt(y) (u(x− y)− u(x)) dy

∣∣∣∣
≤ Ct

∫ 1

0
(1− r)

(∫
Rn
W2tr2(y)

∣∣D2u(x− y)
∣∣ dy) dr

≤ CtM(D2u)(x)

∫ 1

0
(1− r) dr = CtM(D2u)(x).

Whence, for 1 < p <∞, we have

|I − Iε| ≤ CM(D2u)(x)

∫ 1

0
t
dt

t1+s
≤ CM(D2u)(x) ∈ Lp(Rn, ν)

where C > 0 is independent of ε. Thus, by the Dominated Convergence Theorem and (2.5.7),

limε→0+ ‖I − Iε‖Lp(Rn,ν) = 0. When p = 1, by following the computations above and by Theorem
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2.4.1, we get

‖I−Iε‖L1(Rn,ν)

≤ C
∫
Rn

∫ 1

0
t

∫ 1

0
(1− r)

(∫
|y|<ε

W2tr2(x− y)
∣∣D2u(y)

∣∣ dy) dr dt

t1+s
ν(x) dx

= C

∫ 1

0

∫ 1

0
(1− r)

∫
|y|<ε

∣∣D2u(y)
∣∣ (∫

Rn
W2tr2(x− y)ν(x) dx

)
dy dr

dt

ts

≤ C
∫ 1

0

∫ 1

0
(1− r)

(∫
|y|<ε

∣∣D2u(y)
∣∣Mν(y)dy

)
dr
dt

ts

≤ C
∫ 1

0

∫ 1

0
(1− r)

(∫
|y|<ε

∣∣D2u(y)
∣∣ ν(y)dy

)
dr
dt

ts

= C

∫
|y|<ε

∣∣D2u(y)
∣∣ ν(y) dy → 0 as ε→ 0+.

Step 5. The principal value in (2.1.6) converges almost everywhere in Rn to (−∆)su.

It follows from Theorem 2.1.4 and the properties of M that the operator T ∗ defined by

T ∗u(t) = sup
ε>0
|Tεu(x)| for u ∈W 2,p(Rn, ν),

where Tε is defined as in (2.5.6), satisfies the estimates

‖T ∗u‖Lp(Rn,ν) ≤ C ‖u‖W 2,p(Rn,ν) for any u ∈W 2,p(Rn, ν), 1 < p <∞

and

ν
(
{x ∈ Rn : |T ∗u(x)| > λ}

)
≤ C

λ
‖u‖W 2,1(Rn,ν) for any u ∈W 2,1(Rn, ν), λ > 0

where C > 0 is independent of u. In particular, T ∗ is bounded from W 2,p(Rn, ν) into weak-

Lp(Rn, ν), for any 1 ≤ p <∞. With these estimates, as in Step 5 of the proof of Theorem 2.1.1(a),

we find that the set

E =

{
u ∈W 2,p(Rn, ν) : lim

ε→0+
Tεu(x) = (−∆)su(x) a.e.

}
is closed in W 2,p(Rn, ν). Since C∞c (Rn) ⊂ E, by density, we obtain E = W 2,p(Rn, ν).

Step 6. The limit as s→ 1− in (2.1.8) holds in Lp(R, ν).
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Fix ε > 0. By Theorem 2.4.1, there exists δ > 0 such that

∥∥et∆∆u−∆u
∥∥
Lp(Rn,ν)

< ε when |t| < δ.

We write

(−∆)su(x) =
1

Γ(−s)

∫ δ

0

(
et∆u(x)− u(x)

) dt

t1+s
+

1

Γ(−s)

∫ ∞
δ

(
et∆u(x)− u(x)

) dt

t1+s

= Iδ + IIδ.

Looking at the second term, by Theorem 2.4.1,

‖IIδ‖Lp(Rn,ν) ≤
1

|Γ(−s)|

∫ ∞
δ

(∥∥et∆u∥∥
Lp(Rn,ν)

+ ‖u‖Lp(Rn,ν)

) dt

t1+s

≤
C ‖u‖Lp(Rn,ν)

|Γ(−s)|

∫ ∞
δ

t−1−s dt = C ‖u‖Lp(Rn,ν) δ
−s (1− s)
|Γ(2− s)|

→ 0

as s→ 1−. Next,

‖Iδ−(−∆)u‖Lp(Rn,ν)

=

∥∥∥∥ 1

Γ(−s)

∫ δ

0

∫ t

0
∂re

r∆u(x)dr
dt

t1+s
+ ∆u(x)

∥∥∥∥
Lp(Rn,ν)

=

∥∥∥∥ 1

Γ(−s)

∫ δ

0

∫ t

0
er∆∆u(x)dr

dt

t1+s
+ ∆u(x)

∥∥∥∥
Lp(Rn,ν)

=

∥∥∥∥ 1

Γ(−s)

∫ δ

0

∫ t

0

(
er∆∆u(x)−∆u(x)

)
dr

dt

t1+s
+

(
(−s) δ1−s

Γ(2− s)
+ 1

)
∆u(x)

∥∥∥∥
Lp(Rn,ν)

≤ 1

|Γ(−s)|

∫ δ

0

∫ t

0

∥∥er∆∆u−∆u
∥∥
Lp(Rn,ν)

dr
dt

t1+s
+

∣∣∣∣(−s) δ1−s

Γ(2− s)
+ 1

∣∣∣∣ ‖∆u‖Lp(Rn,ν)

≤ ε δ1−s s

|Γ(2− s)|
+

∣∣∣∣(−s) δ1−s

Γ(2− s)
+ 1

∣∣∣∣ ‖∆u‖Lp(Rn,ν) → ε as s→ 1−.

Since ε > 0 was arbitrary, (2.1.8) follows in Lp(Rn, ν).

Step 7. The limits as s→ 1− in (2.1.8) and as s→ 0+ in (2.1.9) hold a.e. in Rn.

This is proved as in Step 5. By noticing that sup0<s<1 |(−∆)su(x)| can be bounded by means

of Theorem 2.1.4, one can check that the sets

E′ = {u ∈W 2,p(Rn, ν) : lim
s→1−

(−∆)su(x) = −∆u(x) a.e.}
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and

E′′ = {u ∈W 2,p(Rn, ν) : lim
s→0+

(−∆)su(x) = u(x) a.e.}

are closed in W 2,p(Rn, ν). Since C∞c (Rn) ⊂ E′ and C∞c (Rn) ⊂ E′′, by density, we conclude that

E′ = E′′ = W 2,p(Rn, ν).

Step 8. The limit as s→ 0+ in (2.1.9) holds in Lp(Rn, ν).

By Theorem 2.1.4, for any 0 < s < 1,

|(−∆)su(x)− u(x)|p ν(x) ≤
(
Cn(M(D2u)(x) +Mu(x)) + |u(x)|

)p
ν(x)

≤ Cn,p
(
(M(D2u)(x))p + (Mu(x))p

)
ν(x).

Therefore, by Step 7 and the Dominated Convergence Theorem, (2.1.9) holds in Lp(Rn, ν).

This completes the proof of Theorem 2.1.3, part (a).

2.5.2 Proof of Theorem 2.1.3 (b)

Suppose (−∆)su→ v in Lp(Rn, ν) as s→ 1−. Let ϕ ∈ C∞c (Rn) and observe that∫
Rn
vϕ dx = lim

s→1−

∫
Rn

(−∆)suϕdx

= lim
s→1−

∫
Rn
u(−∆)sϕdx

=

∫
Rn
u(−∆)ϕdx = (−∆u)(ϕ).

In the first line we used that, by Proposition 2.4.2 and the fact that ϕ ∈ C∞c (Rn),∣∣∣∣ ∫
Rn
v(x)ϕ(x) dx−

∫
Rn

(−∆)su(x)ϕ(x) dx

∣∣∣∣ ≤ ∫
Rn
|v(x)− (−∆)su(x)| Cϕ

1 + |x|n
dx

≤ Cϕ,n,p,ν ‖v − (−∆)su‖Lp(Rn,ν) → 0

as s→ 1−, while in the second to last identity we used the Dominated Convergence Theorem, the

fact that (−∆)sϕ ∈ Ss, and Proposition 2.4.2 in the case of L0.

Therefore, v = −∆u a.e. in Rn. Since v ∈ Lp(Rn, ν), we get that ∆u ∈ Lp(Rn, ν). Now we apply

the weighted Calderón–Zygmund estimates (see [27]). Hence, if 1 < p < ∞, then u ∈ W 2,p(Rn, ν)
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and, as a consequence of part (a), (2.1.8) holds. On the other hand, if p = 1, then D2u ∈ weak-

L1(Rn, ν).

2.5.3 Proof of Theorem 2.1.3 (c)

Using the exact same arguments as in part (b), we find that∫
Rn
vϕ dx = lim

s→0+

∫
Rn

(−∆)suϕdx

= lim
s→0+

∫
Rn
u(−∆)sϕdx =

∫
Rn
uϕdx.

Therefore, u = v = lims→0+(−∆)su a.e. in Rn and the result follows.
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CHAPTER 3. HARNACK INEQUALITY FOR FRACTIONAL

NONDIVERGENCE FORM ELLIPTIC EQUATIONS

3.1 Main results

We formally state the main results of this chapter.

Assume that aij = aij(x) are bounded, measurable functions on Rn and are uniformly elliptic:

there exist 0 < λ < Λ such that

λ |ξ|2 ≤ aij(x)ξiξj ≤ Λ |ξ|2 for all ξ ∈ Rn \ {0}, x ∈ Rn. (3.1.1)

For a bounded, Lipschitz domain Ω ⊂ Rn, let L be the operator defined by

L = −aij(x)∂ij , Dom(L) = {u ∈ C0(Ω) ∩W 2,n
loc (Ω) : Lu ∈ C0(Ω)}.

If aij ∈ Cα(Ω) ∩ C(Ω), 0 < α < 1, then the fractional operator Ls = (−aij(x)∂ij)
s given by

Lsu =
1

Γ(−s)

∫ ∞
0

(
e−tLu− u

) dt

t1+s
, 0 < s < 1,

is well-defined on Dom(L). Here, e−tLu denotes the uniformly bounded C0-semigroup generated

by L. See Section 3.2 for more details.

Theorem 3.1.1. Let 0 < s < 1. Assume that Ω ⊂ Rn is a bounded, Lipschitz domain and

that aij ∈ Cα(Ω) ∩ C(Ω) satisfy (3.1.1). There exist positive constants CH = CH(n, λ,Λ, s) > 1,

κ = κ(n, s) < 1, and K̂ = K̂(n, s) > 1 such that for every ball BR = BR(x0) satisfying BK̂R ⊂⊂ Ω

and every nonnegative u ∈ Dom(L) satisfying

(−aij(x)∂ij)
su = 0 in BK̂R, (3.1.2)

we have that

sup
BκR

u ≤ CH inf
BκR

u. (3.1.3)
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Furthermore, there exist positive constants α = α(n, λ,Λ, s) < 1, Ĉ = Ĉ(n, λ,Λ, s), and K̂0 =

K̂0(n, s) < K̂ such that for any u ∈ Dom(L) satisfying (3.1.2), we have that

|u(x0)− u(x)| ≤ Ĉ |x− x0|α (K̂0R)−α sup
Ω
|u| for every x ∈ BK̂0R

. (3.1.4)

To prove Theorem 3.1.1, we use a local, degenerate extension characterization (see Section 3.2).

The extension equation can be recast as an equation comparable to a linearized Monge–Ampère

equation, so we will use the following Monge–Ampère geometry.

Define the convex, C1 function Φ = Φ(x, z) : Rn+1 → R by

Φ(x, z) = ϕ(x) + h(z) where ϕ(x) =
1

2
|x|2 , h(z) =

s2

1− s
|z|

1
s .

The Monge–Ampère quasi-distance associated to Φ is defined by

δΦ((x0, z0), (x, z)) = Φ(x, z)− Φ(x0, z0)− 〈DΦ(x0, z0), (x, z)− (x0, z0)〉.

The Monge–Ampère sections associated to Φ are given by

SR(x0, z0) = {(x, z) : δΦ((x0, z0), (x, z)) < R}.

The Monge–Ampère measure associated to Φ is

µΦ(E) = |DΦ(E)| =
∫
E
h′′(z) dx dz

for all Borel sets E ⊂ Rn+1. For more details, see Section 3.3.

Theorem 3.1.2. Let 0 < s < 1. Assume that aij = aij(x) are bounded, measurable functions on

Rn and satisfy (3.1.1). There exist positive constants CH = CH(n, λ,Λ, s) > 1, κ1 = κ1(n, s) < 1,

and K̂1 = K̂1(n, s) > 1 such that for every section SR = SR(x0, z0) ⊂ Rn+1 and every nonnegative

solution U ∈ C2(SK̂1R
\{z = 0})∩C(SK̂1R

) such that U(x, z) = U(x,−z) and Uz ∈ C(SK̂1R
∩{z ≥

0}) to  aij(x)∂ijU + |z|2−
1
s ∂zzU = 0 in SK̂1R

\ {z = 0}

−∂z+U(x, 0) = 0 on SK̂1R
∩ {z = 0},

(3.1.5)
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we have that

sup
Sκ1R

U ≤ CH inf
Sκ1R

U. (3.1.6)

Consequently, there exist positive constants α1 = α1(n, λ,Λ, s) < 1/2 and Ĉ1 = Ĉ1(n, λ,Λ, s)

such that every solution U ∈ C2(SK̂1R
\ {z = 0}) ∩ C(SK̂1R

) such that U(x, z) = U(x,−z) and

Uz ∈ C(SK̂1R
∩ {z ≥ 0}) to (3.1.5), we have that

|U(x0, z0)− U(x, z)| ≤ Ĉ1(δΦ((x0, z0), (x, z)))α1(K̂1R)−α1 sup
SK̂1R

|U | (3.1.7)

for every (x, z) ∈ SK̂1R
.

The rest of the chapter is organized as follows. In Section 3.2, fractional powers of nondivergence

form operators are defined using the method of semigroups and the Poisson problem is characterized

using a local, degenerate extension equation. Section 3.3 contains preliminaries on the underling

Monge–Ampère structure of the problem. A sketch of the proof of a critical density estimate and

of local boundness are in Section 3.4. Finally, Section 3.5 develops the paraboloids associated to Φ

and contains the proofs three key lemmas that are used to prove Theorem 3.1.2 which, in turn, is

used to prove Theorem 3.1.1.

3.2 Fractional powers Ls

3.2.1 Semigroups

It is not immediately obvious how to define (−aij(x)∂ij)
s. For example, we saw in Chapter

2 that the fractional Laplacian (−∆)s can be defined using the Fourier transform. However, a

nondivergence form operator L = −aij(x)∂ij has no natural Hilbert space structure. We use the

method of semigroups to define Ls.

The relation

λs =
1

Γ(−s)

∫ ∞
0

(e−λt − 1)
dt

t1+s
for all λ > 0, 0 < s < 1,

suggests that we define Ls for L = −aij(x)∂ij by

Lsu =
1

Γ(−s)

∫ ∞
0

(
e−tLu− u

) dt

t1+s
, 0 < s < 1
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where v = e−tLu solves the heat equation generated by L with initial data u:
∂tv(x, t) = aij(x)∂ijv(x, t) for t > 0, x ∈ Ω

v(x, t) = 0 for t ≥ 0, x ∈ ∂Ω

v(x, 0) = u(x) for x ∈ Ω.

In order to make the definition of Ls more precise we will state the following definitions and

results as found in [62].

Definition 3.2.1. Let X be a Banach space. A one parameter family {Tt}0≤t<∞ of bounded linear

operators from X into X is a semigroup on X if

T0 = I and Tt1+t2 = Tt1 ◦ Tt2 for every t1, t2 ≥ 0.

The linear operator A defined by

Dom(A) =

{
x ∈ X : lim

t→0+

Ttx− x
t

exists in X

}
and

Ax = lim
t→0+

Ttx− x
t

for x ∈ Dom(A)

is the called the infinitesimal generator of Tt. We use the notation Tt = etA.

We say Tt is strongly continuous, also called a C0-semigroup, if

lim
t→0+

Ttx = x for all x ∈ X.

Theorem 3.2.1. Let Tt be a C0-semigroup and let A be its infinitesimal generator. If x ∈ Dom(A),

then Ttx ∈ Dom(A),

d

dt
Ttx = ATtx = TtAx, and Ttx− x =

∫ t

0
TτAxdτ.

Theorem 3.2.2. If Tt is a C0-semigroup, then there exist constants ω ≥ 0 and M ≥ 1 such that

‖Tt‖ ≤Meωt for 0 ≤ t <∞.

If ω = 0, we say that Tt is uniformly bounded and if moreover M = 1, we say that Tt is contractive.



66

Theorem 3.2.3 (Hille-Yosida). A linear operator A generates a C0-semigroup if and only if

1. A is closed and Dom(A) is dense in X

2. (ω,∞) ⊂ ρ(A), where ρ denotes the resolvent set of A, and

∥∥(λI −A)−n
∥∥ ≤ M

(λ− ω)n
for all λ > ω, n ∈ N.

If A is the infinitesimal generator of a uniformly bounded C0-semigroup on X, then, for x ∈

Dom(A), define the fractional operator As using the definition of Balakrishnan [7] by

Asx =
1

Γ(−s)

∫ ∞
0

(Ttx− x)
dt

t1+s
0 < s < 1,

where the integral is taken in the Bochner sense. For x ∈ Dom(A),

‖Asx‖X ≤ cs
(∫ 1

0
‖Ttx− x‖X

dt

t1+s
+

∫ ∞
1

(‖Ttx‖X + ‖x‖X)
dt

t1+s

)
= cs

(∫ 1

0

∥∥∥∥∫ t

0
Tτ (Ax) dτ

∥∥∥∥
X

dt

t1+s
+

∫ ∞
1

(‖Ttx‖X + ‖x‖X)
dt

t1+s

)
≤ cs

(∫ 1

0

∫ t

0
M ‖Ax‖X dτ

dt

t1+s
+

∫ ∞
1

(M + 1) ‖x‖X
dt

t1+s

)
≤ cs,M (‖Ax‖X + ‖x‖X) <∞

which shows that As : Dom(A)→ X is well-defined.

Example 3.2.1. For L = −∆, let X = C(Rn) ∩ L∞(Rn) and Dom(−∆) = C2(Rn) ∩ L∞(Rn).

Then, −∆ is the generator of a C0 semigroup. In particular, we know that Ttu = Wt ∗ u where W

is the Gauss-Weistrass heat kernel (see Section 2.4).

Define the Banach space C0(Ω) by

C0(Ω) = {u ∈ C(Ω) : u ≡ 0 on ∂Ω}.

The following result by Arendt–Schätzle is, in part, the motivation for choosing aij ∈ Cα(Ω) [6].

We also reference the reader to [47, Theorem 5.1.19] for similar results on semigroups generated by

−aij(x)∂ij with aij ∈ Cα(Ω).
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Theorem 3.2.4 (Proposition 4.7 in [6]). For a bounded, Lipschitz domain Ω ⊂ Rn, assume that

aij ∈ Cα(Ω) ∩ C(Ω) satisfy (3.1.1). The operator

L = −aij(x)∂ij , dom(L) = {u ∈ C0(Ω) ∩W 2,n
loc (Ω) : Lu ∈ C0(Ω)} (3.2.1)

generates a contractive C0-semigroup, denoted by Tt = e−tL, on C0(Ω) such that if u ≥ 0, then

e−tLu ≥ 0. Moreover, ∥∥e−tLu∥∥
C0(Ω)

≤Me−εt ‖u‖C0(Ω) , t ≥ 0 (3.2.2)

for some M > 0, ε > 0. The resolvent (λI − L)−1 is compact for all λ in ρ(L).

Hence, the following definition of (−aij(x)∂ij)
s is well-defined.

Definition 3.2.2. Let 0 < s < 1. Assume that Ω ⊂ Rn is bounded, Lipschitz domain and aij ∈

Cα(Ω) ∩ C(Ω) satisfy (3.1.1). Suppose that X = C0(Ω) and L is given by (3.2.1). We define the

fractional operator Ls : Dom(L)→ C0(Ω) by

Lsu =
1

Γ(−s)

∫ ∞
0

(e−tLu− u)
dt

t1+s
, 0 < s < 1. (3.2.3)

3.2.2 The extension problem

In view of (3.2.3) and the pointwise definition of fractional Laplacian (2.1.6), we see that

fractional powers of differential operators are nonlocal which brings additional difficulties when

proving regularity estimates. Caffarelli–Silvestre introduced an extension problem to characterize

(−∆)s as the Dirichlet-to-Neumann map for a local PDE [19]. In particular, they showed that if

U = U(x, z) : Rn × [0,∞)→ R is the solution to
∆xU + z2− 1

sUzz = 0 in Rn × (0,∞)

U(x, 0) = u(x) on Rn × {z = 0}

limz→∞ U(x, z) = 0 for x ∈ Rn,

(3.2.4)

then, for a multiplicative constant cs > 0,

cs(−∆)su(x) = −Uz+(x, 0) for x ∈ Rn.
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Note that −∂z+U is the exterior normal derivative on ∂(Rn × [0,∞)). Hence, to prove regularity

estimates for solutions to the nonlocal equation (−∆)su = f in Rn, one may study the local,

degenerate equation (3.2.4) and take the trace across {z = 0}. The extension equation is indeed

degenerate as the coefficient z2− 1
s cannot be controlled by above or below, depending on the value

of 0 < s < 1:

lim
z→0+

z2− 1
s =


∞ if 0 < s < 1/2

1 if s = 1/2

0 if 1/2 < s < 1

lim
z→∞

z2− 1
s =


0 if 0 < s < 1/2

1 if s = 1/2

∞ if 1/2 < s < 1.

The method of semigroups has been developed by Stinga–Torrea in [71, 72, 73] and Galé–

Miana–Stinga in [30] to characterize fractional powers of more general differential operators with

an extension equation in Hilbert and Banach spaces, respectively. The following is a particular case

of [30, Theorem 1.1].

Theorem 3.2.5 (See [30]). Let 0 < s < 1 and let X be a Banach space. Suppose that A generates

a uniformly bounded C0-semigroup Tt on X. For u ∈ X, a solution U ∈ C∞((0,∞); Dom(A)) ∩

C([0,∞);X) to  AU(z) + z2− 1
s ∂zzU(z) = 0 in {z > 0}

U(0) = u on {z = 0}
(3.2.5)

is given by

U(z) =
(2s)z

4sΓ(s)

∫ ∞
0

e−
s2

t
z

1
s Ttu

dt

t1+s

and satisfies

‖U(z)‖X ≤M ‖u‖X for some M > 0.

Furthermore, if u ∈ Dom(A), then Uz ∈ C([0,∞);X) and

−∂z+U(0) = csA
su, cs =

2sΓ(s)

4s |Γ(−s)|
> 0.

Corollary 3.2.1. Let 0 < s < 1. Assume that Ω ⊂ Rn is bounded, Lipschitz domain and aij ∈

Cα(Ω) ∩ C(Ω) satisfy (3.1.1). Suppose that X = C0(Ω) and L is given by (3.2.1). If u ∈ Dom(L),
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then a solution U ∈ C∞((0,∞); Dom(L)) ∩ C([0,∞);C0(Ω)) to aij(x)∂ijU + z2− 1
sUzz = 0 in Ω× {z > 0}

U(x, 0) = u(x) on Ω× {z = 0}.
(3.2.6)

is given by

U(x, z) =
(2s)z

4sΓ(s)

∫ ∞
0

e−
s2

t
z

1
s e−tLu(x)

dt

t1+s
(3.2.7)

and satisfies

‖U(·, z)‖C0(Ω) ≤M ‖u‖C0(Ω) for some M > 0.

Furthermore, Uz ∈ C([0,∞);C0(Ω)) and

−∂z+U(x, 0) = csL
su(x) ∈ C0(Ω).

Moreover, by interior Schauder estimates (see [31]), the solution U given by (3.2.7) is classical in

the sense that U ∈ C2(Ω× (0,∞)) ∩ C(Ω× [0,∞)).

Let u ∈ Dom(L) be a solution to Lsu = f in a ball B ⊂⊂ Ω where f ∈ C0(Ω). By Corollary

3.2.1, the function U given by (3.2.7) is a solution to aij(x)∂ijU + z2− 1
s ∂zzU = 0 in Ω× (0,∞)

−∂z+U = f on Ω× {z = 0}.
(3.2.8)

and, up to a multiplicative constant, U(x, 0) = u(x). Therefore, to prove estimates for u, it is

enough to study a priori estimate for solutions U to (3.2.8).

To study the trace across {z = 0}, we let Ũ be the even reflection of U :

Ũ(x, z) = U(x, |z|), for all (x, z) ∈ Ω× R.

As long as the context is clear, we will continue to use U in place of Ũ . Hence, for a Monge–

Ampère section S ⊂⊂ Ω × R (see Section 3.3), we prove Harnack inequality for nonnegative,

classical solutions U ∈ C2(Ω× {z 6= 0}) ∩ C(Ω× R), Uz ∈ C([0,∞);C0(Ω)) to aij(x)∂ijU + |z|2−
1
s ∂zzU = 0 in S ∩ {z 6= 0}

−∂z+U = f on S ∩ {z = 0}
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where −∂z+U = f is the exterior normal derivative on ∂(Ω × (0,∞)). Note that the Neumann

condition −∂z+U = f does not apply if S ∩ {z = 0} = ∅.

If f = 0 in B ⊂ Ω, then, by the symmetry of U across {z = 0}, we have that

−∂z−U(x, 0) = − lim
h→0−

U(x, h)− U(x, 0)

h

= − lim
h→0+

U(x,−h)− U(x, 0)

−h

= lim
h→0+

U(x, h)− U(x, 0)

h
= ∂z+U(x, 0) = 0.

3.3 Monge–Ampère setting

Given 0 < s < 1, we define the functions ϕ : Rn → R and h : R→ R by

ϕ(z) =
1

2
|x|2 and h(z) =

s2

1− s
|z|

1
s

and notice that ϕ ∈ C∞(R) and h ∈ C1(R) ∩ C2(R \ {0}) are strictly convex. Set

Φ(x, z) = ϕ(x) + h(z) for all (x, z) ∈ Rn+1.

We note that

h′(z) =
s

1− s
|z|

1
s
−2 z, h′′(z) = |z|

1
s
−2 , D2Φ(x, z) =

I 0

0 |z|
1
s
−2

 .

It is clear that

h′(−z) = −h′(z) and h′(0) = 0.

Definition 3.3.1. The Monge-Ampère measure associated to a strictly convex function ψ ∈ C1(Rn)

is given by

µψ(E) = |Dψ(E)| for every Borel set E ⊂ Rn.

Since Dϕ(x) = x, it clear that µϕ(E) = |E| is the Lebesgue measure of E.

Lemma 3.3.1. For a Borel set I ⊂ R,

µh(I) =

∫
I
h′′(z) dz.
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Consequently, for a Borel set E ⊂ Rn+1,

µΦ(E) =

∫
E
h′′(z) dz dx.

Proof. Consider an open (or closed) interval (−a, a) ⊂ R. Note that h′ is monotone increasing,

injective, and h′(z) = 0 if and only if z = 0. Since h is C2 and strictly convex in R \ {z = 0}, we

have that

µh((−a, a)) =
∣∣h′((−a, a))

∣∣
=
∣∣h′((−a, 0)) ∪ h′(0) ∪ h′((0, a))

∣∣
=
∣∣h′((−a, 0))

∣∣+
∣∣h′(0)

∣∣+
∣∣h′((0, a))

∣∣
=

∫ 0

−a
h′′(z) dz + 0 +

∫ a

0
h′′(z) dz

=

∫ a

−a
h′′(z) dz.

The result follows for any interval and hence for any Borel set I ⊂ R.

Definition 3.3.2. The Monge-Ampère (quasi)-distance associated to a strictly convex function

ψ ∈ C1(Rn) is given by

δψ(x0, x) = ψ(x)− ψ(x0)− 〈Dψ(x0), x− x0〉.

We use the terminology quasi-distance when there exists a K ≥ 1 such that

δψ(x1, x2) ≤ K (δψ(x1, x3) + δψ(x3, x2)) for all x1, x2, x3 ∈ Rn.

For our functions ϕ, h, and Φ, we have

δϕ(x0, x) =
1

2
|x|2 − 1

2
|x0|2 − 〈x0, x− x0〉 =

1

2
|x− x0|2

δh(z0, z) = h(z)− h(z0)− h′(z0)(z − z0)

δΦ((x0, z0), (x, z)) = δϕ(x0, x) + δh(z0, z).

We will show that δh, δϕ, and δΦ are indeed quasi-distances (see Lemma 3.3.4).
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Lemma 3.3.2. If ψ ∈ C1(Rn) is strictly convex, then δψ is continuous.

Proof. Suppose that xk → x0 and yk → y0 as k →∞. By the continuity of ψ and Dψ,

δψ(xk, yk) = ψ(yk)− ψ(xk)− 〈Dψ(xk), yk − xk〉

→ ψ(y0)− ψ(x0)− 〈Dψ(x0), y0 − x0〉 = δψ(x0, y0) as k →∞.

Definition 3.3.3. The Monge–Ampère section of radius r, centered at x0 associated to a strictly

convex function ψ ∈ C1(Rn) is given by

Sr(x0) = {x : δψ(x0, x) < r}.

When necessary, we use the notation Sψ(x0, r).

The supporting hyperplane to ψ at x0 is given by

`(x) = ψ(x0) + 〈Dψ(x0), x− x0〉.

By writing

Sr(x0) = {x : ψ(x) < r + ψ(x0) + 〈Dψ(x0), x− x0〉} = {x : ψ(x)− `(x) < r},

we can see that the Monge–Ampère sections for ψ centered at x0 are the sublevel sets of ψ − `. In

the case of ϕ, the sections correspond to Euclidean balls with the same center

SR(x0) = {x :
1

2
|x− x0|2 < R} = {x : |x− x0| <

√
2R} = B√2R(x0), (3.3.1)

The sections for h with radius r > 0 are one-dimensional, so they correspond to intervals in R.

Moreover, they are are comparable to intervals of radius rs (see Lemma 3.3.5).

Definition 3.3.4. We say that µψ is doubling with respect to the center of mass on the sections of

ψ if there is a constant Cd > 0 such that

µψ(SR(x)) ≤ Cdµψ
(

1

2
SR(x)

)
for all sections SR(x).
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We write µψ ∈ (DC)ψ. Here, we use the notation

αSR(x) = {α(y − x∗) + x∗ : y ∈ SR(x)}, α > 0

where x∗ is the center of mass of SR(x).

Definition 3.3.5. We say that ψ satisfies the engulfing property if there is a constant θ ≥ 1 such

that, for every section SR(x0), if x1 ∈ SR(x0), then SR(x0) ⊂ SθR(x1).

Theorem 3.3.1 (Theorem 5 in [29]). Let ψ : Rn → R be a differentiable, strictly convex function.

Then the following are equivalent

1. µψ ∈ (DC)ψ;

2. ψ satisfies the engulfing property;

3. µψ satisfies

cRn ≤ |SR(x)|µψ(SR(x)) ≤ CRn

for all sections SR(x) and some constants c, C > 0.

All statements are equivalent in the sense that the constants in each property only depend on each

other.

Forzani–Maldonado in [29] further remark that µψ ∈ (DC)ψ is quantitatively equivalent to δψ

satisfying the quasi-triangle inequality.

Lemma 3.3.3 (Lemma 6 in [29]). Fix m ∈ N. For each j = 1, . . . ,m, let ψj : Rnj → R be strictly

convex, differentiable functions. Set n =
∑m

j=1 nj and define

ψ(x) =

m∑
j=1

ψj(xj), x = (x1, . . . , xm) ∈ Rn, xj ∈ Rnj .

Then

Sψ(x,R) ⊂
m∏
j=1

Sψj (xj , R) ⊂ Sψ(x,mR)

for all x = (x1, . . . , xm) ∈ Rn and R > 0.
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In particular, if ψj satisfy the engulfing property with corresponding constants θj for all j =

1, . . .m, then φ satisfies the engulfing property with θ = mmaxj{θj}. Conversely, if ψ satisfies the

engulfing property for some θ > 1, then ψj satisfies the engulfing property with constant θ for all

j = 1, . . . ,m.

Consequently, we have that

SΦ((x, z), R) ⊂ Sϕ(x,R)× Sh(z,R) ⊂ SΦ((x, z), 2R) (3.3.2)

for all (x, z) ∈ Rn+1 and R > 0.

We will show that µϕ ∈ (DC)ϕ and µh ∈ (DC)h to obtain the following Lemma.

Lemma 3.3.4. 1. µΦ ∈ (DC)Φ with corresponding doubling constant Cd = Cd(n, s).

2. Φ satisfies the engulfing property with corresponding constant θ = θ(n, s).

3. µΦ satisfies

cRn+1 ≤ |SR(x, z)|µΦ(SR(x, z)) ≤ CRn+1

for all sections SR(x, z) and some positive constants C = C(n, s), c = c(n, s).

4. there exists a constant K = K(n, s) such that

δΦ((x1, z1), (x2, z2)) ≤ K
(

min{δΦ((x1, z2), (x3, z3)), δΦ((x3, z3), (x1, z1))}

+ min{δΦ((x2, z2), (x3, z3)), δΦ((x3, z3), (x2, z2))}
)
.

(3.3.3)

for all (x1, z1), (x2, z2), (x3, z3) ∈ Rn+1.

Proof. By (3.3.1), we can write

µϕ(Sϕ(x0, R)) =
∣∣∣B (x0,

√
2R
)∣∣∣ = 2n/2

∣∣∣B (x0,
√
R
)∣∣∣ = 2n/2µϕ

(
Sϕ

(
x0,

1

2
R

))
.

Hence ϕ ∈ (DC)ϕ with doubling constant Cϕd = Cϕd (n).

As discussed in [50, Section 7.1], h′′(z) is a Muckenhoupt A∞(R) weight for all 0 < s < 1.

Consequently, h′′ is doubling on the real line which is equivalent to µh ∈ (DC)h with doubling

constant Chd = Chd (s).
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It follows from (3.3.2) that µΦ ∈ (DC)Φ with doubling constant Cd = Cd(n, s). Items 2, 3, and

4 follow from Theorem 3.3.1 and the comment thereafter.

As a consequence of the doubling property (see [50, Equation 7.8]), there is a constant Kd =

Kd(n, s) such that

µΦ(S((x, z), r2) ≤ Kd

(
r2

r1

)ν
µΦ(S((x, z), r1) for all 0 < r1 < r2, (3.3.4)

where ν := log2Kd.

Lemma 3.3.5. There exist constants cs, Cs > 0, depending only on s, such that

Bcsrs(z0) ⊂ Sh(z0, r) ⊂ BCsrs(z0)

for all r > 0 and all z0 ∈ R. Consequently, there exist constants c′s, C
′
s > 0, depending only on s,

such that

2csr
s ≤ |Sh(z0, r)| ≤ 2Csr

s and c′sr
1−s ≤ µh(Sh(z0, r)) ≤ C ′sr1−s

for all sections Sr(z0).

Proof. For the function

ϕs(z) = s |z|1/s , z ∈ R,

there exist constants 0 < c ≤ 1 ≤ C <∞, depending only on s, such that

B(z0, cr
s) ⊂ Sϕs(z0, r) ⊂ B(z0, Cr

s), for all z0 ∈ R, r > 0.

See [49, Section 11]. It is easy to check that

Sϕs(z0, t) = Sh

(
z0,

s

1− s
t

)
.

Substitute t = 1−s
s r and take cs = c

(
1−s
s

)s
, Cs = C

(
1−s
s

)s
, so that

B (z0, csr
s) = B

(
z0, c

(
1− s
s

r

)s)
⊂ Sh(z0, r) ⊂ B

(
z0, C

(
1− s
s

r

)s)
= B (z0, Csr

s)

for all z0 ∈ R and all r > 0.
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For a section Sh(z0, r),

2csr
s = |Bcsrs(z0)| ≤ |Sh(z0, r)| ≤ |BCsrs(z0)| = 2Csr

s.

Since µh ∈ (DC)h, by Theorem 3.3.1, there exist constants c, C > 0, depending only on s, such

that

cr ≤ |Sh(z0, r)|µh(Sh(z0, r)) ≤ Cr.

Therefore,

µh(Sh(z0, r)) =
µh(Sh(z0, r)) |Sh(z0, r)|

|Sh(z0, r)|
≤ Cr

2csrs
= C ′sr

1−s

µh(Sh(z0, r)) =
µh(Sh(z0, r)) |Sh(z0, r)|

|Sh(z0, r)|
≥ cr

2Csrs
= c′sr

1−s.

Unless otherwise stated, we will always let Sr(x0, z0) denote a section association to Φ. We will

need the following lemmas written for the sections of Φ.

Lemma 3.3.6 (Theorem 3.3.10 in [34]). There exist constants C0 > 0, p ≥ 1, depending only on

n and s, such that for 0 < s1 < s2 ≤ 1, t > 0 and (x1, z1) ∈ SΦ((xv, zv), s1t), we have that

SΦ((x1, z1), C0(s2 − s1)pt) ⊂ SΦ((xv, zv), s2t).

Lemma 3.3.7 (Lemma 10.6 in [50]). Given SR(x0, z0) with SR(x0, z0) ∩ {z = 0} 6= ∅, there is

Rr ∈ (R, 2KR) such that

SR(x0, z0) ⊂ S2Rr(x0, 0) ⊂ S4Rr(x0, 0) ⊂ SβsR/2(x0, z0)

where K ≥ 1 is the quasi-triangle constant and βs = 4K(1 + 8K) is a constant depending only on

0 < s < 1.

Many of our proofs will rely on the fact that Φ(x, z) = ϕ(x) + h(z) has separated variables. It

is therefore essential to some of our arguments to consider Monge-Ampère cubes associated to Φ.
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Definition 3.3.6. The Monge–Ampère cube of radius r, centered at (x, z) ∈ Rn+1, associated to

Φ is given by

Qr(x, z) = Sr(x1)× · · · × Sr(xn)× Sr(z) ⊂ Rn+1

where x = (x1, . . . , xn) and Sr(xi) = Sϕ(xi, r) is a one-dimensional section in R associated to

ϕ : R→ R given by ϕ(xi) = 1
2(xi)

2.

It follows from Lemma 3.3.3 that

Sr(x, z) ⊂ Qr(x, z) ⊂ S(n+1)r(x, z) for all (x, z) ∈ Rn+1, r > 0.

We also note that

Qr(x, z) = Qr(x)× Sr(z).

3.4 Local boundedness and critical-density estimate

Theorem 3.4.1. Let 0 < s < 1. Assume that aij = aij(x) are bounded measurable functions on Rn

that satisfy (3.1.1). There exist positive constants K ′ = K ′(n, λ,Λ, s) > 0, κ′ = κ′(n, λ,Λ, s) < 1

such that for every p > 0, there exists positive constants C1,p, C2,p > 0, depending on p, n, λ,Λ, s,

such that for every section SR = SR(x0, z0) ⊂ Rn+1 and every classical supersolution U = U(x, z) =

U(x,−z) to  aij(x)∂ijU + |z|2−
1
s U ≤ 0 in SK′R \ {z = 0}

−∂z+U(x, 0) ≥ f(x) on SK′R ∩ {z = 0}

where f ∈ L∞(SK′R ∩ {z = 0}), we have

sup
Sκ′R

U ≤ C1,p

(
1

µΦ(SR)

∫
SR

Up dµΦ

)1/p

+ C2,pR
s ‖f‖L∞(SK′R∩{z=0}) .

Theorem 3.4.2. Let 0 < s < 1. Assume that aij = aij(x) are bounded measurable functions on

Rn that satisfy (3.1.1). There exist positive constants θ0 = θ0(n, λ,Λ, s) < 1, ε0 = ε(n, λ,Λ, s) < 1

and M = M(n, s) > 1 such that for every section SR = SR(x0, z0) ⊂ Rn+1 and every nonnegative,

classical viscosity supersolution U = U(x, z) = U(x,−z) to aij(x)∂ijU + |z|2−1/s ∂zzU ≤ 0, in SβsR \ {z = 0}

−Uz+(x, 0) ≥ f(x) on SβsR ∩ {z = 0}
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where f ∈ L∞(SβsR ∩ {z = 0}), the inequalities

Rs ‖f‖L∞(SβsR∩{z=0}) ≤ θ0 and inf
SR
U ≤ 1

imply

µΦ({(x, z) ∈ SβsR : U(x, z) < M}) ≥ ε0µΦ(SβsR).

Theorems 3.4.1 and 3.4.2 are proved exactly as in [50] for the fractional nonlocal linearized

Monge–Ampère equation with slight modifications involving the coefficients aij . Before providing

a sketch of the proof, we recall the definition of the convex envelope and its relation to the ABP

estimate.

Definition 3.4.1. We say that an affine function ` is a supporting hyperplane for U at (x0, z0) in

a set Ω̃ ⊂ Rn+1 if

`(x0, z0) = U(x0, z0) and `(x, z) ≤ U(x, z) for all (x, z) ∈ Ω̃.

The convex envelope of U in Ω̃ is

ΓU (x, z) = sup
`
{`(x, z) : ` ≤ U in Ω̃, ` is affine}.

The corresponding contact set for U in Ω̃ is

A0(U) = {(x, z) ∈ Ω̃ : U(x, z) = ΓU (x, z)}.

We remark that ΓU is indeed a convex function and that, for each (x0, z0) ∈ A0(U), there exists

a supporting hyperplane ` to U at (x0, z0).

The Aleksandrov-Bakelman-Pucci (ABP) estimate is a maximum principle which bounds a

subsolution H in Ω̃ by the Ln+1(Ω̃) norm of the right-hand side of the equation. We will need the

following variation which will be used to avoid the degeneracy at z = 0 in the extension equation.

Lemma 3.4.1 (Corollary 10.3 in [50]). Let Ω̃ ⊂ Rn+1 be open, convex, and bounded. Suppose that

H ∈ C(Ω̃) satisfies the following conditions

1. H ≥ 0 on ∂Ω̃
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2. there is an open set Ω̃′ ⊂ Ω̃ such that H ∈ C2(Ω̃′) and A0(−H−) ⊂ Ω̃′ where H− =

max{0,−H}.

Then

max
Ω̃

H ≤ cn|Ω̃|
1

n+1

(∫
A0(−H−)

∣∣detD2H(x, z)
∣∣ dx dz) 1

n+1

.

We sketch the proof of Theorems 3.4.1 and 3.4.2.

Proof. (Sketch.) Theorem 3.4.1 follows from Theorem 3.4.2 (see [50, Section 11]).

The proof of Theorem 3.4.2 follows exactly as in the proof of [50, Theorem 10.1]. If the section

S2R = S2R(x0, z0) is such that SR ∩ {z = 0} = ∅, then we define an auxiliary function

H(x, z) = U(x, z) + 4

(
δΦ((x0, z0), (x, z))

2R
− 1

)
, (x, z) ∈ S2R.

Using the ellipticity of aij , we can show that H is a supersolution with right-hand side 2
R(nΛ + 1)

and moreover that

0 ≤ det
(
D2H

)
≤ cn,λ,Λ(2R)−(n+1) detD2Φ.

By Lemma 3.4.1 with Ω̃ = Ω̃′ = S2R and with infSR U ≤ 1,

1 ≤
(

max
Ω

H

)n+1

≤ cn |S2R|
∫
A0(−H−)

∣∣detD2H(x, z)
∣∣ dx dz

≤ cn,λ,Λ |S2R| (2R)−(n+1)µΦ(A0(−H−)).

By Lemma 3.3.4 and by estimating

A0(−H−) ⊂ {(x, z) ∈ S2R : U(x, z) < 4},

we can conclude that

1 ≤ Ccn,λ,ΛµΦ(S2R)−1µΦ({(x, z) ∈ S2R : U(x, z) < 4})

which proves the estimate for ε1 = 1/(Ccn,λ,Λ), M1 = 4.

If the section S2R = S2R(x0, 0) is centered on {z = 0}, then we instead use the auxiliary function

H(x, z) = U(x, z) +Qs

(
δΦ((x0, 0), (x, z))

2R
− 1

)
− ‖f‖L∞(S2R) |z| −

1

qsRs
|z|+ ‖f‖L∞(S2R) qsR

s + 1
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for constants

qs =
2s(1− s)s

s2s
and Qs = 4qs ‖f‖L∞(S2R)R

s + 8.

Notice that δΦ((x0, 0), (x, z) and thus H are symmetric with respect to z.

We claim that Γ−H− cannot touch −H− on Z0 and that the contact set A0(−H−) lies at a

positive distance from the set {z = 0}. Indeed, if Γ(x2, 0) = −H−(x2, 0) for (x2, 0) ∈ S2R, then

0 ≤ Γ(x2, ε)− Γ(x2, 0)

ε

≤ (−H−)(x2, ε)− (−H−)(x2, 0)

ε

≤ U(x2, ε)− U(x2, 0)

ε
+
Qs
2R

δΦ((x0, 0), (x2, ε))− δΦ((x0, 0), (x2, 0))

ε
− ‖f‖L∞(SR) −

1

qsRs

As this holds for all ε > 0 such that (x2, ε) ∈ S2R,

0 ≤ Uz+(x2, 0) +
Qs
2R

∂zδΦ((x0, 0), (x2, z))
∣∣
z=0
− ‖f‖L∞(SR) −

1

qsRs

= −f(x2) + 0− ‖f‖L∞(SR) −
1

qsRs
< 0,

a contradiction. Next, suppose, by way of contradiction that for each n ∈ N, there exists zn ∈(
− 1
n ,

1
n

)
and xn such that (xn, zn) ∈ S2R and

Γ(xn, zn) = (−H−)(xn, zn).

Since xn ∈ Sϕ(x0, 2R), there is a subsequence xnk = xk such that xk → x̄. By the continuity of Γ

and −H−,

Γ(x̄, 0) = lim
k→∞

Γ(xk, zk) = lim
k→∞

(−H−)(xk, zk) = (−H−)(x̄, 0),

a contradiction. Therefore, the contact set must be a positive distance from {z = 0}.

By Lemma 3.4.1 with Ω̃′ = S2R \ {z = 0} and Ω̃ = S2R, we obtain(
max
S2R

H−
)n+1

≤ cn |S2R|
∫
A0(−H−)

∣∣detD2H(x, z)
∣∣ dx dz.

Carefully following a similar argument as above, we estimate

µΦ ({(x, z) ∈ S2R : U(x, z) < M2}) ≥ ε2µΦ(S2R)

where M2 = 4qs + 8 and ε2 = 1/(2C16n+1cn,λ,Λ).
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Lastly, we suppose that SβsR = SβsR(x0, z0) is such that SβsR ∩ {s = 0} 6= ∅ but z0 6= 0. By

Lemma 3.3.7, there is an R̂ = (2R)r ∈ (2R, 4KR) such that

S2R(x0, z0) ⊂ S2R̂(x0, 0) ⊂ S4R̂(x0, 0) ⊂ SβsR(x0, 0).

We can then apply the estimate from the case centered at z0 = 0 and use the doubling condition

to estimate

µΦ({(x, z) ∈ SβsR(x0, z0) : U(x, z) < M2}) ≥ ε2 (Kd (βs)
ν)−1 µΦ(SβsR(x0, z0))

Since βs > 2, Theorem 3.4.2 follows for any section SR(x0, z0) with ε0 = ε2 (Kd (βs)
ν)−1 and

M = M2 > 4.

3.5 Harnack inequality

3.5.1 Paraboloids and preliminaries

3.5.1.1 Paraboloids associated to Φ

We define paraboloids P of opening a > 0 by

P (x, z) = −aΦ(x, z) + 〈(y, w), (x, z)〉+ b

for some (y, w) ∈ Rn+1 and b ∈ R. We say that (xv, zv) is the vertex of P if DP (xv, zv) = 0.

We say that P touches a function U from below at (x0, z0) in a convex set Ω̃ ⊂ Rn+1 if

P (x0, z0) = V (x0, z0) and P (x, z) ≤ V (x, z) for all (x, z) ∈ Ω̃.

Lemma 3.5.1. A paraboloid P of opening a with vertex (xv, zv) can be written as

P (x, z) = −aδΦ((xv, zv), (x, z)) + c

for some constant c ∈ R. If P (x0, z0) = U(x0, z0) for a function continuous function U : Rn+1 → R,

then

P (x, z) = −aδΦ((xv, zv), (x, z)) + aδΦ((xv, zv), (x0, z0)) + U(x0, z0).
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Proof. Since

0 = DP (xv, zv) = −aDΦ(xv, zv) + (y, w),

we can write

P (x, z) = −aΦ(x, z) + a〈DΦ(xv, zv), (x, z)〉+ b.

Moreover, we have

P (x, z) = −aΦ(x, z) + a〈DΦ(xv, zv), (x, z)〉+ b

+ aΦ(xv, zv)− aΦ(xv, zv)− a〈DΦ(xv, zv), (xv, zv)〉+ a〈DΦ(xv, zv), (xv, zv)〉

= −a (Φ(x, z)− Φ(xv, zv)− 〈DΦ(xv, zv), (x, z)− (xv, zv)〉)

− Φ(xv, zv) + a〈DΦ(xv, zv), (xv, zv)〉+ b

= −aδΦ((xv, zv), (x, z)) + c.

Suppose that P (x0, z0) = U(x0, z0). Then

U(x0, z0) = −aδΦ((xv, zv), (x0, z0)) + c.

By solving for c, we conclude that

P (x, z) = −aδΦ((xv, zv), (x, z)) + aδΦ((xv, zv), (x0, z0)) + U(x0, z0).

Lemma 3.5.2. Suppose that P is a paraboloid of opening a > 0 that touches a continuous function

U from below at (x0, z0) in a convex set Ω̃ ⊂ Rn+1. For any ã ≥ a, there exists a paraboloid P̃ of

opening ã > 0 that touches U from below at (x0, z0) in Ω̃.
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Proof. Begin by writing

P (x, z) = −aδΦ((xv, zv), (x, z)) + aδΦ((xv, zv), (x0, z0)) + U(x0, z0)

= −a (Φ(x, z)− Φ(xv, zv)− 〈DΦ(xv, zv), (x, z)− (xv, zv)〉)

+ a (Φ(x0, z0)− Φ(xv, zv)− 〈DΦ(xv, zv), (x0, z0)− (xv, zv)〉) + U(x0, z0)

= −aΦ(x, z) + a〈DΦ(xv, zv), (x, z)〉+ aΦ(x0, z0)− a〈DΦ(xv, zv), (x0, z0)〉+ U(x0, z0)

= −a (Φ(x, z)− Φ(x0, z0)− 〈DΦ(x0, z0), (x, z)− (x0, z0)〉)

+ a〈DΦ(xv, zv), (x, z)− (x0, z0)〉+ a〈DΦ(x0, z0), (x, z)− (x0, z0)〉+ U(x0, z0)

= −aδΦ((x0, z0), (x, z)) + a〈DΦ(xv, zv)−DΦ(x0, z0), (x, z)− (x0, z0)〉+ U(x0, z0).

Define the paraboloid P̃ of opening ã by

P̃ (x, z) = −ãδΦ((x0, z0), (x, z)) + a〈DΦ(xv, zv)−DΦ(x0, z0), (x, z)− (x0, z0)〉+ U(x0, z0).

Since P̃ (x0, z0) = U(x0, z0) and

P̃ (x, z) ≤ −aδΦ((x0, z0), (x, z)) + a〈DΦ(xv, zv)−DΦ(x0, z0), (x, z)− (x0, z0)〉+ U(x0, z0)

= P (x, z) ≤ U(x, z),

for every (x, z) ∈ Ω̃, we conclude that P̃ touches U from below at (x0, z0) in Ω̃.

The next three lemmas provide some observations regarding how the symmetry of U effects the

paraboloids that touch U from below.

Lemma 3.5.3. Consider a continuous function U = U(x, z) = U(x,−z). Let P be a paraboloid of

opening a with vertex (xv, zv) that touches U from below at (x0, z0) in a convex set Ω̃ ⊂ Rn+1. If

z0 > 0, then zv ≥ 0, and if z0 < 0, then zv ≤ 0.

Proof. Assume that z0 > 0. Write

P (x, z) = −aδΦ((xv, zv), (x, z)) + aδΦ((xv, zv), (x0, z0)) + U(x0, z0)
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and note that

P (x0,−z0) = −aδΦ((xv, zv), (x0,−z0)) + aδΦ((xv, zv), (x0, z0)) + U(x0, z0)

= −aδh(zv,−z0) + aδh(zv, z0)) + U(x0,−z0).

Then

0 ≤ U(x0,−z0)− P (x0,−z0)

= aδh(zv,−z0)− aδh(zv, z0))

= a
(
h(−z0)− h(zv)− h′(zv)(−z0 − zv)

)
− a

(
h(z0)− h(zv)− h′(zv)(z0 − zv)

)
= a (h(−z0)− h(z0)) + 2ah′(zv)z0

= 2ah′(zv)z0.

Since z0 > 0, it follows that

0 ≤ h′(zv) =
s

1− s
|zv|

1
s
−2 zv.

Hence, zv ≥ 0, as desired. The case for z0 < 0 follows similarly.

Lemma 3.5.4. Let η ∈ R and let Ω̃ ⊂ Ω × R ⊂ Rn+1 be a convex set. Suppose that a continuous

function U = U(x, z) = U(x,−z) such that Uz ∈ C([0,∞);C(Ω)) is such that

−∂z+U ≥ η on Ω̃ ∩ {z = 0}.

If η > 0, then U cannot be touched from below in Ω̃ by the convex envelope or by any paraboloid

on the set Ω̃ × {z = 0}. If η ≤ 0 and P is a paraboloid of opening a > 0 with vertex (xv, zv) that

touches U from below in Ω̃ at (x0, 0), then |h′(zv)| ≤ |η| /a. Consequently, if η = 0, then zv = 0.

Proof. Let η > 0. Suppose, by way of contradiction, that the convex envelope Γ touches U from

below in Ω̃ at a point (x0, 0) ∈ Ω̃ ∩ {z = 0}. Let ε > 0. By convexity of Γ and symmetry of Γ

across {z = 0}, we have

Γ(x0, ε) + Γ(x0, ε)

2
=

Γ(x0,−ε) + Γ(x0, ε)

2
≥ Γ(x0, 0)
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which implies

0 ≤ Γ(x0, ε)− Γ(x0, 0)

ε
≤ U(x0, ε)− U(x0, 0)

ε
.

As this holds for all ε > 0,

0 ≤ ∂z+U(x0, 0) ≤ −η < 0

a contradiction. Thus, Γ cannot touch U from below in Ω̃ at (x0, 0).

Let η ∈ R and suppose that P is a paraboloid of opening a > 0 that touches U from below in

Ω̃ at (x0, 0). Write

P (x, z) = −aδΦ((xv, zv), (x, z)) + aδΦ((xv, zv), (x0, 0)) + U(x0, 0).

Let ε > 0. Since U − P attains a minimum of 0 at (x0, 0), we know that

(U(x0, ε)− P (x0, ε))− (U(x0, 0)− P (x0, 0))

ε
≥ 0.

Therefore, taking the limit as ε→ 0+, we obtain

0 ≤ ∂z+U(x0, 0)− ∂zP (x0, 0) ≤ η − ah′(zv). (3.5.1)

Similarly, for ε > 0,

(U(x0,−ε)− P (x0,−ε))− (U(x0, 0)− P (x0, 0))

−ε
=
−U(x0,−ε) + P (x0,−ε)

ε
≤ 0.

Taking the limit as ε→ 0+ and using the symmetry of the Neumann condition, we have that

0 ≥ ∂z−U(x0, 0)− ∂zP (x0, 0) ≥ −η − ah′(zv). (3.5.2)

Combining (3.5.1) and (3.5.2), we estimate

η ≤ −ah′(zv) ≤ −η.

If η > 0, then this is a contradiction, so we cannot touch U from below in Ω̃ by P at (x0, 0). If

η ≤ 0, then

−|η|
a
≤ h′(zv) ≤

|η|
a

as desired. If η = 0, then h′(zv) = 0 which implies that zv = 0.
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Lemma 3.5.5. Let Ω̃ ⊂ Rn+1 be a convex set that is symmetric with respect to {z = 0}. Consider

a continuous function U = U(x, z) = U(x,−z). If U can be touched from below in Ω̃ by a paraboloid

P of opening a > 0 with vertex (xv, zv) at (x0, z0), then U can be touched from below in Ω̃ by a

paraboloid of opening a with vertex (xv,−zv) at (x0,−z0).

Proof. Let P̃ (x, z) = P (x,−z). Then

P̃ (x, z) = P (x,−z) ≤ U(x,−z) = U(x, z) for all (x, z) ∈ Ω̃

and

P̃ (x0,−z0) = P (x0, z0) = U(x0, z0) = U(x0,−z0).

Thus, P̃ is a paraboloid of opening a > 0 that touches U from below in Ω̃ at (x0,−z0).

Lastly, since

∂zP̃ (x, z) = −∂zP (x,−z) = 0 when z = −zv,

the vertex of P̃ is (xv,−zv).

3.5.1.2 Lemmas for Harnack inequality

The proof of Theorem 3.1.2 relies on the following three key lemmas.

The first lemma is a measure estimate similar to the usual ABP estimate. We slide paraboloids

of fixed opening a > 0 from below until they touch the graph of U for the first time. The set of

contact points make up a universal proportion of the set of vertices.

Lemma 3.5.6. Let 0 < s < 1. Assume that aij = aij(x) are bounded, measurable functions on Rn

that satisfy (3.1.1). For a cube QR = QR(x̃, z̃) ⊂ Rn+1, suppose that U = U(x, z) = U(x,−z) is a

classical supersolution to aij(x)∂ijU + |z|2−
1
s ∂zzU ≤ 0 in QR ∩ {z 6= 0}

−∂z+U ≥ 0 on QR ∩ {z = 0}.

Fix a > 0. For each (xv, zv) ∈ B ⊂ QR, B a closed set, we slide paraboloids of opening a and vertex

(xv, zv) from below until they touch the graph of U for the first time in a set A ⊂ QR. Then A is
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compact and there is a positive constant c = c(n, λ,Λ) < 1 such that

µΦ(A) ≥ cµΦ(B).

Remark 3.5.1. Lemma 3.5.6 also holds for subsolutions when we slide paraboloids of opening

−a > 0 with vertices (xv, zv) ∈ B ⊂ QR from above until they touch the graph of U for the first

time in a set A ⊂ QR.

Before stating the second lemma, we need to define the following constants and sets.

First, we will define a constant K̂2 to be large enough so that if Qr(x0, z0) ⊂ QR(x̃, z̃), then

Q2(n+1)r(x0, z0) ⊂ QK̂2R
(x̃, z̃). For simplicity, consider when QR(x̃, z̃) ⊂ R2. The case in Rn+1 fol-

lows similarly. Let (x1, z1), (x2, z2) ∈ Qr(x0, z0) ⊂ QR(x̃, z̃). Then, by the quasi-triangle inequality,

δϕ(x1, x2) ≤ K (δϕ(x̃, x1) + δϕ(x̃, x2)) < 2KR

δh(z1, z2) ≤ K (δh(z̃, z1) + δh(z̃, z2)) < 2KR.

Therefore, r < 2KR. If (x, z) ∈ Q2r(x0, z0), then, by the quasi-triangle inequality,

δϕ(x̃, x) ≤ K (δϕ(x̃, x0) + δϕ(x0, x)) < K (R+ 2(n+ 1)r) < K(1 + 4K(n+ 1))R

δh(z̃, z) ≤ K (δh(z̃, z0) + δh(z0, z)) < K(1 + 4K(n+ 1))R.

We will take K̂2 = K̂2(n, s) to be

K̂2 = K(1 + 4K(n+ 1)). (3.5.3)

Let K̂3 = K̂3(n, s) be given by

K̂3 = 4K2K̂2. (3.5.4)

If QK̂2R
(x̃, z̃) ∩ {z = 0} 6= ∅, then by Lemma 3.3.7, we observe that

QK̂2R
(x̃, z̃) = QK̂2R

(x̃)× SK̂2R
(z̃) ⊂ Q2KK̂2R

(x̃)× S2KK̂2R
(0) = Q2KK̂2R

(x̃, 0)

and similarly

Q2KK̂2R
(x̃, 0) = Q2KK̂2R

(x̃)× S2KK̂2R
(0) ⊂ Q4K2K̂2R

(x̃)× S4K2K̂2R
(z̃) = QK̂3R

(x̃, z̃).
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We define a vertex set Bv ⊂ QK̂3R
(x̃, z̃) by

Bv =

 QK̂2R
(x̃, z̃) if z̃ = 0 or if QK̂2R

(x̃, z̃) ∩ {z = 0} = ∅

Q2KK̂2R
(x̃, 0) if z̃ 6= 0 and QK̂2R

(x̃, z̃) ∩ {z = 0} 6= ∅.

so that Bv is centered with respect to the set {z = 0} if QK̂2R
(x̃, z̃) ∩ {z = 0} 6= ∅.

Define a contact set Aa,R for U on QK̂2R
(x̃, z̃) by

Aa,R :=

{
(x, z) ∈ QK̂2R

(x̃, z̃) : U(x, z) ≤ aR and there is (xv, zv) ∈ Bv such that

U can be touched from below at (x, z) in QK̂3
(x̃, z̃)

by a paraboloid of opening a > 0 with vertex (xv, zv)

}
.

Define positive constants K0 > 1 and η < 1 by

K0 = 2K2 + 2K and η =
1

K2(2KK0 + 1)
(3.5.5)

where K is the quasi-distance constant in (3.3.3).

The second lemma uses a delicate barrier to localize the solution to a smaller section. We prove

that if U can be touched from below in a cube Qr by a paraboloid of opening a > 0, then in a

smaller cube Qηr, U can be touched from below by paraboloids of narrower opening Ca > 0.

Lemma 3.5.7. Let 0 < s < 1. Assume that aij = aij(x) are bounded, measurable functions on Rn

that satisfy (3.1.1). For a cube QR = QR(x̃, z̃) ⊂ Rn+1, suppose that U = U(x, z) = U(x,−z) is a

nonnegative, classical supersolution to aij(x)∂ijU + |z|2−
1
s ∂zzU ≤ 0 in QK̂3R

∩ {z 6= 0}

−∂z+U ≥ 0 on QK̂3R
∩ {z = 0}.

where K̂3 is as in (3.5.4). Fix a > 0. Let Qr(x0, z0) be such that

Qr(x0, z0) ⊂ QR and Qr(x0, z0) ∩Aa,R 6= ∅.

There exists positive constants C = C(n, λ,Λ, s) > 1 and c = c(n, λ,Λ, s) < 1 such that

µΦ(ACa,R ∩Qηr(x0, z0)) ≥ cµΦ(Qr(x0, z0)).

where η = η(n, s) < 1 is as in (3.5.5).
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The third lemma is a Calderón-Zygmund-type covering lemma that allows us to use Lemma

3.5.7 across the whole domain.

Lemma 3.5.8. Let K0 = K0(n, s) > 1 and η = η(n, s) < 1 be as in (3.5.5). Suppose the closed

sets Dk ⊂ Rn+1 satisfy the following properties:

1) D0 ⊂ D1 ⊂ · · · ⊂ Dk ⊂ QR/K0
(x̃, z̃), D0 6= ∅

2) for any (x, z), ρ such that

Qρ(x, z) ⊂ QR(x̃, z̃), Qηρ(x, z) ⊂ QR/K0
(x̃, z̃)

Qρ(x, z) ∩Dk 6= ∅,

we have

µΦ(Qηρ(x, z) ∩Dk+1) ≥ cµΦ(Qρ(x, z)).

Then

µΦ(QR/K0
\Dk) ≤ (1− c)kµΦ(QR/K0

).

3.5.2 Proof of Lemma 3.5.6

Proof of Lemma 3.5.6. We first show that A is closed. Let (xk, zk) ∈ A be such that (xk, zk) →

(x0, z0) as k →∞. There exist corresponding polynomials Pk of opening a with vertices (xkv , z
k
v ) ∈ B

such that Pk touches U from below in QR at (xk, zk). Since B ⊂ QR is closed, B is compact.

Thus, there is a subsequence, which we will still notate by k, and a point (x0
v, z

0
v) ∈ B such that

(xkv , z
k
v )→ (x0

v, z
0
v). By the continuity of δΦ and U , we have that

Pk(x, z) = −aδΦ((xkv , z
k
v ), (x, z)) + aδΦ((xkv , z

k
v ), (xk, zk)) + U(xk, zk)

→ −aδΦ((x0
v, z

0
v), (x, z)) + aδΦ((x0

v, z
0
v), (x0, z0)) + U(x0, z0)

Define the polynomial P of opening a by

P (x, z) = −aδΦ((x0
v, z

0
v), (x, z)) + aδΦ((x0

v, z
0
v), (x0, z0)) + U(x0, z0).
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Note that P (x0, z0) = U(x0, z0). Since Pk ≤ U in QR and Pk(x, z)→ P (x, z) for each (x, z) ∈ QR,

it must be that P ≤ U in QR. Therefore, P is a paraboloid of opening a with vertex (x0
v, z

0
v) ∈ B

that touches U from below in QR at (x0, z0). This shows that (x0, z0) ∈ A, so that A is closed and,

moreover, compact.

Let (x0, z0) ∈ A. There exists a paraboloid P of opening a and vertex (xv, zv) ∈ B that touches

U from below in QR at (x0, z0) which may be written as

P (x, z) = −aδΦ((xv, zv), (x, z)) + aδΦ((xv, zv), (x0, z0)) + U(x0, z0).

Let B0 ⊂ B be the set of vertices such that the corresponding touching paraboloids touch

on the set {z 6= 0}. Let A0 = A \ {z = 0} be the contact points of these paraboloids. Since

the set A ∩ {z = 0} is a set of measure zero, we know that µΦ(A0) = µΦ(A). Suppose that

(x0, 0) ∈ A∩{z = 0}. By Lemma 3.5.4, we know that zv = 0. Since B ∩{z = 0} has measure zero,

we also have that µΦ(B0) = µΦ(B).

Let (x0, z0) ∈ A0. Since U − P ≥ 0 in QR and U − P = 0 at (x0, z0), we know that U − P

attains a minimum at (x0, z0). Hence

DU(x0, z0) = DP (x0, z0) = −a (DΦ(x0, z0)−DΦ(xv, zv))

which implies

DΦ(xv, zv) = DΦ(x0, z0) +
1

a
DU(x0, z0) = D

(
Φ +

1

a
U

)
(x0, z0).

This is how the vertices (xv, zv) ∈ B0 are uniquely determined by the contact points (x0, z0) ∈ A0.

Define the map T : A0 → T (A0) = DΦ(B0) by

T (x0, z0) = D

(
Φ +

1

a
U

)
(x0, z0).

Fix ε > 0 and define a compact set Aε ⊂ A0 by

Aε = A0 \ {(x, z) : |z| < ε}.

Since Aε is a positive distance from the set {z = 0}, we have that |D2Φ(x0, z0)| is uniformly bounded

on Aε. Since |D2V (x0, z0)| is also uniformly bounded on Aε, we have that T : Aε → T (Aε) Lipschitz
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and injective on Aε. By the area formula for Lipschitz maps,∫
T (Aε)

dy dw =

∫
Aε

|det (DT (x, z))| dx dz

=

∫
Aε

∣∣∣∣det

(
D2

(
Φ +

1

a
U

)
(x, z)

)∣∣∣∣ dx dz.
Let (x0, z0) ∈ A0. We claim that there is a positive constant C = C(n, λ,Λ) such that

−aD2Φ(x0, z0) ≤ D2U(x0, z0) ≤ CaD2Φ(x0, z0), D2Φ(x0, z0) =

I 0

0 |z0|
1
s
−2

 . (3.5.6)

The first inequality is straightforward. Since P touches U from below in QR at (x0, z0), we know

that

D2U(x0, z0) ≥ D2P (x0, z0) = −aD2Φ(x0, z0).

Suppose, by way of contradiction, that D2U(x0, z0) > CaD2Φ(x0, z0) for all C > 0. Consequently,

D2U(x0, z0) > Ca

ek ⊗ ek 0

0 0

− a
I 0

0 |z0|
1
s
−2


where ek, k = 1, . . . , n are the standard basis vectors in Rn and ek ⊗ ek = eke

T
k . Since

Ã =

A(x0) 0

0 0

 ≥ 0 and D2U(x0, z0)− Ca

ek ⊗ ek 0

0 0

+ a

I 0

0 |z0|
1
s
−2

 ≥ 0,

it must be that

Ã

D2U(x0, z0)− Ca

ek ⊗ ek 0

0 0

+ a

I 0

0 |z0|
1
s
−2


 ≥ 0.

In particular,

trace

ÃD2U(x0, z0)− CaÃ

ek ⊗ ek 0

0 0

+ aÃ

I 0

0 |z0|
1
s
−2


 ≥ 0.

Rewriting this expression and using ellipticity, we obtain

aij(x0)∂ijU(x0, z0) ≥ (Ca)akk(x0)− (a)aii(x0) ≥ Caλ− anΛ. (3.5.7)
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Next, note that

D2U(x0, z0) ≥ Ca

0 0

0 |z0|
1
s
−2

− a
I 0

0 |z0|
1
s
−2

 .

From the definition of positive definite matrices,

∂zzU(x0, z0) ≥ Ca |z0|
1
s
−2 − a |z0|

1
s
−2 .

Therefore,

|z0|2−
1
s ∂zzU(x0, z0) > Ca− a. (3.5.8)

Combining (3.5.7) and (3.5.8), we have

0 ≥ aij(x0)∂ijU(x0, z0) + |z0|2−
1
s ∂zzU(x0, z0) > Caλ− anΛ + Ca− a

= a[C(λ+ 1)− (nΛ + 1)] > 0

for C = C(n, λ,Λ) large. This is a contradiction, so the claim holds.

From (3.5.6), we estimate

0 ≤ D2

(
Φ +

1

a
U

)
(x, z) = D2Φ(x0, z0) +

1

a
D2U(x0, z0) ≤ (C + 1)D2Φ(x0, z0)

for all (x0, z0) ∈ A0. Therefore,∫
T (Aε)

dy dw ≤
∫
Aε

det
(
(C + 1)D2Φ(x, z)

)
dx dz

= (C + 1)n+1

∫
Aε

det
(
D2Φ(x, z)

)
dx dz

= (C + 1)n+1µΦ(Aε)

≤ (C + 1)n+1µΦ(A0) = (C + 1)n+1µΦ(A).

Taking the limit as ε→ 0+,

µΦ(B) = µΦ(B0) =

∫
T (A0)

dy dw ≤ (C + 1)n+1µΦ(A),

which completes the proof of the Lemma with c = (C + 1)−n−1.
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3.5.3 Proof of Lemma 3.5.7

Lemma 3.5.9. Aa,R is closed in QK̂2R
(x̃, z̃).

Proof. Let (xk, zk) ∈ Aa,R be such that (xk, zk) → (x0, z0). Since U(xk, zk) ≤ aR and U is

continuous, it follows that U(x0, z0) ≤ aR. By the proof of Lemma 3.5.6 with B = Bv, we can

touch U from below in QK̂3R
at (x0, z0) by a paraboloid P of opening a with vertex (x0

v, z
0
v) ∈ Bv.

Therefore, (x0, z0) ∈ Aa,R which shows that Aa,R is closed in QK̂2R
(x̃, z̃).

We will need the following three lemmas to prove lemma 3.5.7.

3.5.3.1 The function Q

Lemma 3.5.10. Let 0 < s < 1 and z0 ∈ R. Define the function Q(z, z0) = R× R→ [0,∞) by

Q(z, z0) =
(h′(z)− h′(z0))2

δh(z0, z)h′′(z)
.

If z0 = 0, then Q(z, 0) = 1/(1− s).

Suppose z0 > 0 is fixed.

• If 0 < s < 1/2, then Q(z, z0) is a decreasing in {z > 0} and Q ≥ 1 for z > 0.

• If s = 1/2, then Q(z, z0) = 2.

• If 1/2 < s < 1, then Q(0, z0) = 0 and Q(z, z0) is increasing in {z > 0}.

Suppose z0 < 0 is fixed.

• If 0 < s < 1/2, then Q(z, z0) is increasing in {z < 0} and Q ≥ 1 for z < 0.

• If s = 1/2, then Q(z, z0) = 2.

• If 1/2 < s < 1, then Q(0, z0) = 0 and Q(z, z0) is decreasing in {z < 0}.

Proof. If z0 = 0 and 0 < s < 1, then

Q(z) =
(h′(z))2

h(z)h′′(z)
=

s2

(1−s)2 z
2
s
−2

s2

1−sz
1
s z

1
s
−2

=
1

1− s
.
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If s = 1/2 and z0 ∈ R, then

Q(z) =
(z − z0)2

1
2 |z − z0|2 · 1

= 2 ≥ 1.

Let z0 ∈ R and 0 < s < 1. Since

h′(−z) =
s

1− s
|−z|

1
s
−2 (−z) = − s

1− s
|z|

1
s
−2 z = −h′(z)

and

δh(−z0,−z) = h(−z)− h(−z0)− h′(−z0)(−z − (−z0))

= h(z)− h(z0) + h′(z0)(z − z0)

= δh(z0, z),

we observe that

Q(−z,−z0) =
(h′(−z)− h′(−z0))2

δh(−z0,−z)h′′(−z)

=
(−h′(z) + h′(z0))2

δh(z0, z)h′′(z)

=
(h′(z)− h′(z0))2

δh(z0, z)h′′(z)
= Q(z, z0).

Assume for any z̃0 > 0 fixed that Q(z, z̃0) is decreasing in {z > 0}. If z0 < 0 is fixed and z2 < z1 < 0.

Then, for z̃0 = −z0, we have that

Q(z1, z0) = Q(−z1,−z0) > Q(−z2,−z0) = Q(z2, z0).

Therefore, Q(z, z0) is increasing in {z < 0}. Similarly, if for any z̃0 > 0 fixed, we have that Q(z, z̃0)

is increasing in {z > 0}, then, for z0 < 0 fixed, we have that Q(z, z0) is decreasing in {z < 0}.

Therefore, it is enough to prove the lemma for z0, z > 0.
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Fix z0 > 0. For 0 < s < 1, observe that

lim
z→0+

Q(z, z0) =
(h(0)− h′(z0))2

h(0)− h(z0)− h′(z0)(0− z0)
lim
z→0+

z2− 1
s

=
s

(1− s)2
z

1
s
−2

0 lim
z→0+

z2− 1
s

=


2 if s = 1/2

∞ if s < 1/2

0 if s > 1/2.

and, by L’Höpital’s rule,

lim
z→z0

Q(z, z0) =
1

h′′(z0)
lim
z→z0

(h′(z)− h′(z0))2

h(z)− h(z0)− h′(z0)(z − z0)

=
1

h′′(z0)
lim
z→z0

2(h′(z)− h′(z0))h′′(z)

h′(z)− h′(z0)

=
1

h′′(z0)
lim
z→z0

2h′′(z) = 2.

Let 0 < s < 1 be such that s 6= 1/2. To study when Q(·, z0) is increasing/decreasing, we first

compute

∂zQ(z, z0) =
(h′(z)− h′(z0))h′′(z)

(δh(z0, z)h′′(z))2(
2δh(z0, z)h

′′(z)− (h′(z)− h′(z0))2 − δh(z0, z)(h
′(z)− h′(z0))

h′′′(z)

h′′(z)

)
.

Assume for now that 0 < z < z0, so (h′(z)− h′(z0)) < 0. We will study the term

I + II + III := 2δh(z0, z)h
′′(z)− (h′(z)− h′(z0))2 − δh(z0, z)(h

′(z)− h′(z0))
h′′′(z)

h′′(z)
.

We will write this out explicitly in terms of z, z0, and s as

I = 2δh(z0, z)h
′′(z)

= 2

(
s2

1− s
z

2
s
−2 − s2

1− s
z

1
s
0 z

1
s
−2 − s

1− s
z

1
s
−1

0 z
1
s
−1 +

s

1− s
z

1
s
0 z

1
s
−2

)
II = −(h′(z)− h′(z0))2

= − s2

(1− s)2
z

2
s
−2 +

s2

(1− s)2
z

1
s
−1z

1
s
−1

0 − s2

(1− s)2
z

2
s
−2

0
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III = −δh(z0, z)(h
′(z)− h′(z0))

h′′′(z)

h′′(z)

= − s3

(1− s)2

(
1

s
− 2

)
z

2
s
−2 +

s3

(1− s)2

(
1

s
− 2

)
z

1
s
−1

0 z
1
s
−1 +

s3

(1− s)2

(
1

s
− 2

)
z

1
s
0 z

1
s
−2

− s3

(1− s)2

(
1

s
− 2

)
z

2
s
−1

0 z−1 +
s2

(1− s)2

(
1

s
− 2

)
z

1
s
−1

0 z
1
s
−1 − s2

(1− s)2

(
1

s
− 2

)
z

2
s
−2

0

s

1− s

− s2

(1− s)2

(
1

s
− 2

)
z

1
s
0 z

1
s
−2 +

s2

(1− s)2

(
1

s
− 2

)
z

2
s
−1

0 z−1.

We add these together and combine like terms to obtain

I + II + III = − s

1− s
z

2
s
−2

0 +
s

1− s
z

1
s
0 z

1
s
−2 − s(1− 2s)

1− s
z

1
s
−1

0 z
1
s
−1 +

s(1− 2s)

1− s
z

2
s
−1

0 z−1.

Therefore, I + II + III > 0 if and only if

− s

1− s
z

2
s
−2

0 +
s

1− s
z

1
s
0 z

1
s
−2 − s(1− 2s)

1− s
z

1
s
−1

0 z
1
s
−1 +

s(1− 2s)

1− s
z

2
s
−1

0 z−1 > 0.

Multiplying both sides by z0z(1− s)/s > 0, this is equivalent to

ψ(z) := −z
2
s
−1

0 z + z
1
s

+1

0 z
1
s
−1 − (1− 2s)z

1
s
0 z

1
s + (1− 2s)z

2
s
0 > 0.

Observe that ψ(z0) = 0 and

ψ(0) = (1− 2s)z
2
s
0

 > 0 if 0 < s < 1/2

< 0 if 1/2 < s < 1.

Suppose that 0 < s < 1/2. We will show that ψ is decreasing for all z > 0. First, compute

ψ′(z) = −z
2
s
−1

0 +

(
1

s
− 1

)
z

1
s

+1

0 z
1
s
−2 − (1− 2s)

s
z

1
s
0 z

1
s
−1.

Therefore, ψ′(z) < 0 if and only if

−z
2
s
−1

0 +

(
1

s
− 1

)
z

1
s

+1

0 z
1
s
−2 − (1− 2s)

s
z

1
s
0 z

1
s
−1 < 0.

Multiplying both sides by z
−1/s
0 (1− s)/s > 0 and rearranging, this is equivalent to

z1
0z

1
s
−2 <

(
s

1− s

)
z

1
s
−1

0 +

(
1− 2s

1− s

)
z

1
s
−1
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which is true by Young’s inequality:

ab ≤ ap

p
+
bq

q
, where p, q > 1,

1

p
+

1

q
= 1, a, b ≥ 0.

Indeed, take

a = z0, b = z
1
s
−2, p =

1

s
− 1 =

1− s
s

> 1, q =
1− s
1− 2s

> 1.

Since ψ is decreasing for z > 0, ψ(0) > 0, and ψ(z0) = 0, we conclude that

ψ > 0 for 0 < z < z0 and ψ < 0 for z > z0.

Equivalently,

I + II + III > 0 for 0 < z < z0 and I + II + III < 0 for z > z0.

Since

∂zQ(z, z0) =
(h′(z)− h′(z0))h′′(z)

(δh(z0, z)h′′(z))2
(I + II + III)

and

h′(z)− h′(z0) < 0 for 0 < z < z0 and h′(z)− h′(z0) > 0 for z > z0,

we conclude that ∂zQ(z, z0) < 0 for all z > 0. Thus, when 0 < s < 1/2, we have that Q(z, z0) is

decreasing for z > 0.

Next, assume that 1/2 < s < 1. We will show that ψ is increasing for all z > 0. By similar

considerations as above, ψ′(z) > 0 if and only if

z1− 1
s z

1
s
−2

0 ≤
(

1− s
s

)
z−1 +

(
2s− 1

s

)
z−1

0

which is true by Young’s inequality with

a = z1− 1
s , b = z

1
s
−2

0 , p =
s

1− s
> 1, q =

s

2s− 1
> 1.

Since ψ is increasing for z > 0, ψ(0) < 0, and ψ(z0) = 0, we conclude that

ψ < 0 for 0 < z < z0 and ψ > 0 for z > z0.
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Equivalently,

I + II + III < 0 for 0 < z < z0 and I + II + III > 0 for z > z0.

Since

∂zQ(z, z0) =
(h′(z)− h′(z0))h′′(z)

(δh(z0, z)h′′(z))2
(I + II + III)

and

h′(z)− h′(z0) < 0 for 0 < z < z0 and h′(z)− h′(z0) > 0 for z > z0,

we conclude that ∂zQ(z, z0) > 0 for all z > 0. Thus, when 1/2 < s < 1, we conclude that Q(z, z0)

is increasing for z > 0.

Lastly, for any 0 < s < 1, we observe that

lim
z→∞

Q(z, z0) = lim
z→∞

(h′(z)− h′(z0))2

(h(z)− h(z0)− h′(z0)(z − z0))h′′(z)

= lim
z→∞

(h′(z)− h′(z0))2

(h(z)− h(z0)− h′(z0)(z − z0))h′′(z)

z2− 2
s

z2− 2
s

= lim
z→∞

(
s

1−s − h
′(z0)z1− 1

s

)2

s2

1−s − h(z0)z−
1
s − h′(z0)

(
z1− 1

s − z0z
− 1
s

) =
1

1− s
> 0.

Therefore, when 0 < s < 1/2, since Q(z, z0) is decreasing for z > 0, we conclude that

Q(z, z0) ≥ 1

1− s
> 1.

3.5.3.2 Construction of a subsolution

The next lemma is the construction of a barrier φ which will be used to localize the solution U .

For a set S, we introduce the notation

S+ = S ∩ {z ≥ 0} and S− = S ∩ {z ≤ 0}.

If z0 ≥ 0, then we will work in the partial ring [Sr(x0, z0) \ Sγr(x0, z0)]+. If z0 < 0, then we will

work in the partial ring [Sr(x0, z0) \ Sγr(x0, z0)]−. We will use the condensed notation

[Sr(x0, z0) \ Sγr(x0, z0)]± =

 [Sr(x0, z0) \ Sγr(x0, z0)]+ if z0 ≥ 0

[Sr(x0, z0) \ Sγr(x0, z0)]− if z0 < 0.
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Lemma 3.5.11. Fix 0 < γ < 1 and 0 < s < 1. Let Sr(x0, z0) ⊂ Rn+1.

If z0 ≥ 0, then there there exist a classical subsolution φ = φ(x, z) to aij(x)∂ijφ+ |z|2−
1
s ∂zzφ > a(nΛ + 1) in [S2r(x0, z0) \ Sγr(x0, z0)]+ ∩ {z 6= 0}

−∂z+φ(x, 0) < 0 on [S2r(x0, z0) \ Sγr(x0, z0)]+ ∩ {z = 0}.
(3.5.9)

If z0 ≤ 0, then there exist a classical subsolution φ = φ(x, z) to aij(x)∂ijφ+ |z|2−
1
s ∂zzφ > a(nΛ + 1) in [S2r(x0, z0) \ Sγr(x0, z0)]− ∩ {z 6= 0}

−∂z−φ(x, 0) > 0 on [S2r(x0, z0) \ Sγr(x0, z0)]− ∩ {z = 0}.
(3.5.10)

In each case, φ > 0 in [Sr(x0, z0) \ Sγr(x0, z0)]±, φ ≤ 0 on [∂S2r(x0, z0)]±, and there is a constant

C = C(n, λ,Λ, γ) > 0 such that φ ≤ Car on [∂Sγr(x0, z0)]±.

Proof. We begin by considering the function (δΦ((x0, z0), (x, z)))−α for a large constant α =

α(n, λ,Λ, s) > 0. Let Q(z, z0) be the function defined in Lemma 3.5.10. For a point (x, z) ∈

[S2r(x0, z0) \ Sγr(x0, z0)]± \ {z = 0}, we have that

aij(x)∂ij(δΦ((x0, z0), (x, z)))−α + |z|2−
1
s ∂zz(δΦ((x0, z0), (x, z)))−α

= α(δΦ((x0, z0), (x, z)))−α−2[
(α+ 1)

(
aij(x)(x− x0)i(x− x0)j + |z|2−

1
s (h′(z)− h′(z0))2

)
−
(
aii(x) + 1

)
δΦ((x0, z0), (x, z))

]
≥ α(δΦ((x0, z0), (x, z)))−α−2[

(α+ 1)
(
λ |x− x0|2 + |z|2−

1
s (h′(z)− h′(z0))2

)
− (nΛ + 1) δΦ((x0, z0), (x, z))

]
= α(δΦ((x0, z0), (x, z)))−α−2[

(α+ 1)
(
2λδϕ(x0, x) +

(h′(z)− h′(z0))2

h′′(z)δh(z0, z)
δh(z0, z)

)
− (nΛ + 1) (δϕ(x0, x) + δh(z0, z))

]
= α(δΦ((x0, z0), (x, z)))−α−2[

(2λ(α+ 1)− (nΛ + 1)) δϕ(x0, x) + (Q(z, z0)(α+ 1)− (nΛ + 1)) δh(z0, z)

]
.
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If z0 = 0 or if 0 < s ≤ 1/2, then Q(z, z0) ≥ 1 in [S2r(x0, z0) \ Sγr(x0, z0)]± \ {z = 0}. Therefore,

aij(x)∂ij(δΦ((x0, z0), (x, z)))−α + |z|2−
1
s ∂zz(δΦ((x0, z0), (x, z)))−α

≥ α(δΦ((x0, z0), (x, z)))−α−2[
(2λ(α+ 1)− (nΛ + 1)) δϕ(x0, x) + ((α+ 1)− (nΛ + 1)) δh(z0, z)

]
.

(3.5.11)

However, if 1/2 < s < 1 and z0 6= 0, then, as seen in Lemma 3.5.10, we cannot bound Q from

below. Hence, we will build a subsolution for 0 < s ≤ 1/2 and for 1/2 < s < 1 separately.

Case 1: z0 > 0 and 0 < s < 1/2

Define

φ(x, z) =


α−1a(2r)α+1[(δΦ((x0, z0), (x, z)))−α − r−α] if z ∈ [S2r(x0, z0) \ Sγr(x0, z0)]+

α−1a2α+1(γ−α − 1)r if z ∈ [Sγr(x0, z0)]+.

Note that φ ≤ 0 when

δΦ((x0, z0), (x, z)))−α ≤ r−α

and φ < 0 when

δΦ((x0, z0), (x, z)))−α > r−α.

That is, φ ≤ 0 in [S2r(x0, z0) \ Sr(x0, z0)]+ and φ > 0 in [Sr(x0, z0)]+.

Let (x, z) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]+ \ {z = 0}. From (3.5.11), we find that

aij(x)∂ijφ(x, z) + |z|2−
1
s ∂zzφ(x, z)

≥ a(2r)α+1(δΦ((x0, z0), (x, z)))−α−2[
(2λ(α+ 1)− (nΛ + 1)) δϕ(x0, x) + ((α+ 1)− (nΛ + 1)) δh(z0, z)

]
.

Choose α = α(γ, n, λ,Λ) large so that

2λ(α+ 1)− (nΛ + 1) > 2γ−1(nΛ + 1) and (α+ 1)− (nΛ + 1) > 2γ−1(nΛ + 1).
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If γr/2 < δϕ(x0, x) < 2r, then

aij(x)∂ijφ(x, z) + |z|2−
1
s ∂zzφ(x, z)

≥ a(2r)α+1(δΦ((x0, z0), (x, z)))−α−2

[
2γ−1(nΛ + 1)δϕ(x0, x) + 0

]
> a(2r)α+1(δΦ((x0, z0), (x, z)))−α−2

[
2γ−1(nΛ + 1)

γr

2

]
= a(nΛ + 1)(2r)α+2(δΦ((x0, z0), (x, z)))−α−2

≥ a(nΛ + 1).

If δϕ(x0, x) ≥ γr/2, then γr/2 < δh(z0, z) < 2r and we estimate

aij(x)∂ijφ(x, z) + |z|2−
1
s ∂zzφ(x, z)

≥ a(2r)α+1(δΦ((x0, z0), (x, z)))−α−2

[
0 + 2γ−1 (nΛ + 1) δh(z0, z)

]
> a(2r)α+1(δΦ((x0, z0), (x, z)))−α−2

[
2γ−1 (nΛ + 1) 2γ

]
≥ a(nΛ + 1).

Therefore, for all (x, z) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]+ \ {z = 0},

aij(x)∂ijφ(x, z) + |z|2−
1
s ∂zzφ(x, z) > a(nΛ + 1).

We next check the Neumann condition for sections that Sr(x0, z0) that intersect {z = 0}. Let

(x, 0) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]+ ∩ {z = 0} and observe that

∂zφ(x, 0) = −a(2r)α+1(δΦ((x0, z0), (x, z))−α−1(h′(z)− h′(z0))
∣∣
z=0

= a(2r)α+1(δΦ((x0, z0), (x, 0))−α−1h′(z0)

≥ ah′(z0) > 0

since z0 > 0. Therefore, φ defined in [S2r(x0, z0) \ Sγr(x0, z0)]+ is a subsolution to (3.5.9). We

remark that if z0 = 0, then we do not obtain a strict inequality in the Neumann condition. The

construction of a subsolution for z0 = 0 is similar to case in which 1/2 < s < 1. We will address

this later (see Case 3).
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Lastly, for (x, z) ∈ [∂Sγr(x0, z0)]±, we have that

φ(x, z) = α−1a2α+1(γ−1 − 1)r = Car.

where C = C(γ, n, λ,Λ) > 0.

Case 2: z0 ≥ 0 and 1/2 < s < 1

We will use the ideas of Caffarelli–Gutiérrez [16, Theorem 2] (see also the work of Le [43,

Theorem 4.2]) to bypass the points where |z|2−
1
s is small with respect to the size of the section

S2r(z0) = Sh(z0, 2r).

Let ε > 0 be small and define Hε by

Hε =
{
z ∈ S2r(z0) : |z|2−

1
s ≤ ε

2s−1
1−s r2s−1

}
=
{
z ∈ S2r(z0) : |z| ≤ ε

s
1−s rs

}
.

We first show that Hε is small. Indeed, by Lemma 3.3.5,

µh(Hε) =

∫
Hε

h′′(z) dz ≤
∫ ε

s
1−s rs

−ε
s

1−s rs
h′′(z) dz

= 2h′
(
ε

s
1−s r

s
)

= Cεr1−s = Cεµh(S2r(z0))

for a constant C = C(s).

We will construct a function hε in [S2r(z0)]+ that to bypass the points in Hε. Let H̃ε be an

open set such that

Hε ⊂ H̃ε ⊂ S2r(z0), µΦ(H̃ε \Hε) ≤ ε µh(S2r(z0)),

and let ψ = ψ(z) be a smooth function satisfying

ψ = 1 in Hε, ψ = ε in S2r(z0) \ H̃ε, ε ≤ ψ ≤ 1 in S2r(z0).

We use the notation

[S2r(z0)]+ = (zL, zR), where 0 ≤ zL < z0 < zR.

Note that zL = 0 if 0 ∈ S2r(z0).
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In [S2r(z0)]+, let hε = hε(z) be the convex solution to
h′′ε = 2(nΛ + 1)ψh′′ in [S2r(z0)]+

hε(zR) = 0

h′ε(zL) = εr1−s.

We remark that hε ∈ C∞([S2r(z0)]+) ∩ C1([S2r(z0)]+). Since hε is strictly convex in [S2r(z0)]+, it

follows that h′ε > 0 in [S2r(z0)]+. Moreover, by the maximum principle hε achieves its maximum

at z = zR, so that hε ≤ 0 in [S2r(z0)]+.

We apply the ABP Lemma to obtain

|hε| ≤ C diam([S2r(z0)]+)

∫
[S2r(z0)]+

h′′ε(z) dz

= C diam([S2r(z0)]+)

∫
[S2r(z0)]+

2(nΛ + 1)ψ(z)h′′(z) dz

≤ C diam(S2r(z0))

∫
S2r(z0)

ψ dµh.

where C = C(n,Λ) > 0. We estimate

diam(S2r(z0)) ≤ diam(BCs(2r)s(z0)) = 2Cs(2r)
s = C

∣∣Bcs(2r)s(z0)
∣∣ ≤ C |S2r(z0)|

and ∫
S2r(z0)

ψ dµh =

∫
Hε

ψ dµh +

∫
H̃ε\Hε

ψ dµh +

∫
S2r(z0)\H̃ε

ψ dµh

≤
∫
Hε

dµh +

∫
H̃ε\Hε

dµh +

∫
S2r(z0)\H̃ε

ε dµh

= µh(Hε) + µh(H̃ε \Hε) + εµh(S2r(z0) \ H̃ε)

≤ Cεµh(S2r(z0)) + εµh(S2r(z0)) + εµh(S2r(z0))

= Cεµh(S2r(z0)).

Hence, we obtain

|hε| ≤ Cε |S2r(z0)|µh(S2r(z0)) ≤ C1εr

for a constant C1 = C1(n,Λ, s).
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Next, let δ > 0. For z ∈ [S2r(z0)]+,

∣∣h′ε(z)∣∣ = h′ε(z) =

∫ z

zL+δ
h′′ε(w) dw + h′ε(zL + δ)

=

∫ z

zL+δ
2(nΛ + 1)ψh′′(w) dw + h′ε(zL + δ)

≤ 2(nΛ + 1)

∫
S2r(z0)

ψ dµh + h′ε(zL + δ)

≤ 2(nΛ + 1)Cεµh(S2r(z0)) + h′ε(zL + δ)

≤ Cεr1−s + h′ε(zL + δ).

Taking the limit as δ → 0,

h′ε(z) ≤ Cεr1−s + h′ε(zL) = Cεr1−s + εr1−s = C2εr
1−s

for a constant C2 = C2(n,Λ, s).

Suppose that γr/2 < δh(z0, z) < 2r. By the convexity of δh(z0, z), we obtain

0 = δh(z0, z0) ≥ δh(z0, z) + ∂zδh(z0, z) · (z0 − z).

Since S2r(z0) ⊂ BCs(2r)s(z0), this implies

|∂zδh(z0, z)| ≥
δh(z0, z)

|z − z0|
≥ γr/2

2Cs(2r)s
= C3r

1−s (3.5.12)

for a constant C3 = C3(γ, s). Choose ε = ε(γ, n,Λ, s) > 0 small so that C2ε < C3. Then,

∣∣∂zδh(z0, z)− h′ε(z)
∣∣ ≥ |∂zδh(z0, z)| −

∣∣h′ε(z)∣∣ ≥ (C3 − C2ε)r
1−s > 0

and

(∂zδh(z0, z)− h′ε(z))2 ≥ (C3 − C2ε)
2r2−2s = C4r

2−2s (3.5.13)

for a constant C4 = C4(γ, n,Λ, s) > 0.

For a large constant α = α(γ, n, λ,Λ, s) > 0, we define the function φ̃ on [S2r(x0, z0) \

Sγr(x0, z0)]+ by

φ̃(x, z) = (δΦ((x0, z0), (x, z))− hε(z))−α.
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Let (x, z) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]+ \ {z = 0}. Since hε ≤ 0, we first note that

γr < δΦ((x0, z0), (x, z)) ≤ δΦ((x0, z0), (x, z))− hε(z) < 2r + C1εr = (2 + C1ε)r.

The equation for φ̃ in [S2r(x0, z0) \ Sγr(x0, z0)]+ \ {z = 0} is given by

aij(x)∂ijφ̃+ |z|2−
1
s ∂zzφ̃

= α(δΦ((x0, z0), (x, z))− hε(z))−α−2(
(α+ 1)

[
aij(x)(x− x0)i(x− x0)j + |z|2−

1
s (∂z(δΦ((x0, z0), (x, z)))− h′ε(z))2

]
− (δΦ((x0, z0), (x, z))− hε(z))

[
aii(x) + 1− |z|2−

1
s h′′ε(z)

])
= α(δΦ((x0, z0), (x, z))− hε(z))−α−2(

(α+ 1)

[
aij(x)(x− x0)i(x− x0)j + |z|2−

1
s (∂z(δΦ((x0, z0), (x, z)))− h′ε(z))2

]
− (δΦ((x0, z0), (x, z))− hε(z))

[
aii(x) + 1− 2(nΛ + 1)ψ

])
.

Using ellipticity, we estimate

aij(x)∂ijφ̃+ |z|2−
1
s ∂zzφ̃

≥ α(δΦ((x0, z0), (x, z))− hε(z))−α−2(
(α+ 1)

[
λ |x− x0|2 + |z|2−

1
s (∂z(δΦ((x0, z0), (x, z)))− h′ε(z))2

]
− (δΦ((x0, z0), (x, z))− hε(z))

[
nΛ + 1− 2(nΛ + 1)ψ

])
= α(δΦ((x0, z0), (x, z))− hε(z))−α−2(

(α+ 1)

[
2λδϕ(x0, x) + |z|2−

1
s (∂z(δΦ((x0, z0), (x, z)))− h′ε(z))2

]
− (δΦ((x0, z0), (x, z))− hε(z))(1− 2ψ)(nΛ + 1)

)
.
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Suppose that z ∈ Hε. Since ψ(z) = 1, we drop the nonnegative term with (α+ 1) to obtain

aij(x)∂ijφ̃+ |z|2−
1
s ∂zzφ̃

≥ α(δΦ((x0, z0), (x, z))− hε(z))−α−2

(
(δΦ((x0, z0), (x, z))− hε(z))(nΛ + 1)

)
= α(nΛ + 1)(δΦ((x0, z0), (x, z))− hε(z))−α−1

≥ α(nΛ + 1)(2 + C1ε)
−α−1r−α−1.

Next, suppose that z /∈ Hε. Since ψ(z) > 0 and |z|2−
1
s > ε

2s−1
1−s r2s−1, we estimate

aij(x)∂ijφ̃+ |z|2−
1
s ∂zzφ̃

≥ α(δΦ((x0, z0), (x, z))− hε(z))−α−2(
(α+ 1)

[
2λδϕ(x0, x) + ε

2s−1
1−s r2s−1(∂z(δΦ((x0, z0), (x, z))− hε(z)))2

]
− (δΦ((x0, z0), (x, z))− hε(z))(nΛ + 1)

)
.

If γr/2 < δϕ(x0, x) < 2r, then

2λδϕ(x0, x) + ε
2s−1
1−s r2s−1(∂z(δΦ((x0, z0), (x, z)))− hε(z)))2 ≥ 2λδϕ(x0, x) > λγr.

Choose α = α(γ, n, λ,Λ, s) large enough to guarantee that

(α+ 1)λγ − (nΛ + 1)(2 + C1ε) > (nΛ + 1)(2 + C1ε).

Then, we have that

aij(x)∂ijφ̃+ |z|2−
1
s ∂zzφ̃

≥ α(δΦ((x0, z0), (x, z))− hε(z))−α−2

(
(α+ 1)λγr − (nΛ + 1)(2r + C1ε)r

)
> α(δΦ((x0, z0), (x, z))− hε(z))−α−2(nΛ + 1)(2 + C1ε)r

≥ α(nΛ + 1)(2 + C1ε)
−α−2r−α−2(2 + C1ε)r

= α(nΛ + 1)(2 + C1ε)
−α−1r−α−1.
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If δϕ(x0, x) ≤ γr/2, then γr/2 < δh(z0, z) < 2r and, by (3.5.13), we obtain

2λδϕ(x0, x) + ε
2s−1
1−s r2s−1(∂z(δΦ((x0, z0), (x, z)))− hε(z)))2

≥ ε
2s−1
1−s r2s−1(∂z(δΦ((x0, z0), (x, z)))− h′ε(z))2

≥ ε
2s−1
1−s r2s−1C4r

2−2s = C4ε
2s−1
1−s r.

Let α = α(γ, n, λ,Λ, s) > 0 be large so that

(α+ 1)C4ε
2s−1
1−s − (nΛ + 1)(2 + C1ε) > (nΛ + 1)(2 + C1ε).

Then, we have that

aij(x)∂ijφ̃+ |z|2−
1
s ∂zzφ̃

≥ α(δΦ((x0, z0), (x, z))− hε(z))−α−2

(
(α+ 1)C4ε

2s−1
1−s r − (nΛ + 1)(2 + C1ε)r

)
> α(δΦ((x0, z0), (x, z))− hε(z))−α−2(nΛ + 1)(2 + C1ε)r

≥ α(nΛ + 1)(2 + C1ε)
−α−1r−α−1.

Hence, for all (x, z) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]+ \ {z = 0}, there is an α = α(γ, n, λ,Λ, s) > 0

such that

aij(x)∂ijφ̃+ |z|2−
1
s ∂zzφ̃ > α(nΛ + 1)(2 + C1ε)

−α−1r−α−1.

We define the barrier φ on [S2r(x0, z0) \ Sγr(x0, z0)]+ by

φ(x, z) =
a

α
(2 + C1ε)

α+1rα+1
(
(δΦ((x0, z0), (x, z))− hε(z))−α − (1 + C1ε)

−αr−α
)
.

For (x, z) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]+ \ {z = 0}, it follows that

aij(x)∂ijφ+ |z|2−
1
s ∂zzφ =

a

α
(2 + C1ε)

α+1rα+1
(
aij(x)∂ijφ̃+ |z|2−

1
s ∂zzφ̃

)
>
a

α
(2 + C1ε)

α+1rα+1α(n+ 1)(2 + C1ε)
−α−1r−α−1

= a(nΛ + 1),

as desired.
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We next check the Neumann condition for sections that S2r(x0, z0) that intersect {z = 0}. Let

(x, 0) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]+ ∩ {z = 0} and observe that

∂zφ(x, 0) = −a(2 + C1ε)
α+1rα+1(δΦ((x0, z0), (x, z))− hε(z))−α−1(h′(z)− h′(z0)− h′ε(z))

∣∣
z=0

= a(2 + C1ε)
α+1rα+1(δΦ((x0, z0), (x, 0))− hε(0))−α−1(h′(z0) + εr1−s)

≥ a(h′(z0) + εr1−s) > 0

since z0 ≥ 0. Therefore, φ defined in [S2r(x0, z0) \ Sγr(x0, z0)]+ is a subsolution to (3.5.9).

For (x, z) ∈ [Sr(x0, z0) \ Sγr(x0, z0)]+, since

γr < δΦ((x0, z0), (x, z))− hε(z) < (1 + C1ε)r,

we have that φ > 0 in [Sr(x0, z0) \ Sγr(x0, z0)]+. Choose ε small so that 2 > 1 +C1ε. Then, φ ≤ 0

on [∂S2r(x0, z0)]+. Indeed, for (x, z) ∈ [∂S2r(x0, z0)]+, we have that

−hε(z) ≥ 0 > (1 + C1ε− 2)r

which implies

δΦ((x0, z0), (x, z))− hε(z) = 2r − hε(z) > (1 + C1ε)r.

Thus, φ(x, z) ≤ 0.

Lastly, let (x, z) ∈ [∂Sγr(x0, z0)]+ and observe that

φ(x, z) =
a

α
(2 + C1ε)

α+1rα+1
(
(γr − hε(z))−α − (1 + C1ε)

−αr−α
)

≤ a

α
(2 + C1ε2)α+1rα+1

(
(γr + 0)−α − 0

)
=
γ−α

α
(2 + C1ε)

α+1ar

= Car

for C = C(γ, n, λ,Λ, s) > 0.

Case 3: z0 = 0 and 0 < s ≤ 1/2

We saw in Case 1 that the inequality for the Neumann condition was not strict when z0 = 0.

Hence, we need to add a function hε to the distance function to adjust the barrier as we did in

Case 2. Since 0 < s < 1/2, we will take Hε = ∅.
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Let (x, z) ∈ [S2r(x0, 0) \ Sγr(x0, 0)]+. Since z ∈ S2r(0), we know that

s2

1− s
|z|

1
s = δh(0, z) < 2r.

Therefore,

|z| < C1r
s, C1 :=

(
1− s
s2

2

)s
.

Since 2− 1
s < 0, we also know that

|z|2−
1
s > C

2s−1
s

1 r2s−1. (3.5.14)

Define hε in [S2r(0)]+ by

hε(z) = εr1−sz − εC1r.

For all z ∈ [S2r(0)]+, we have that hε ≤ 0, that

|hε(z)| = εC1r − εr1−sz ≤ C1εr,

and that

h′ε(z) = εr1−s > 0, h′′ε(z) = 0.

Choose ε2 = ε2(γ, s) such that ε2 < C3 where C3 is the constant from (3.5.12). For z > 0 such

that γr/2 < δh(0, z) < 2r, we estimate, as in (3.5.13), to obtain

(∂zδh(z0, z)− h′ε(z))2 ≥ (C3 − ε2)2r2−2s = C4r
2−2s (3.5.15)

for a constant C4 = C4(γ, n,Λ, s) > 0.

Let that (x, z) ∈ [S2r(x0, 0) \ Sγr(x0, 0)]+. Since −hε ≥ 0, we have that

γr < δΦ((x0, 0), (x, z)) ≤ δΦ((x0, 0), (x, z))− hε(z) < 2r + εC1r = (2 + εC1)r. (3.5.16)

We define a function φ̃ on [S2r(x0, 0) \ Sγr(x0, 0)]+ by

φ̃(x, z) = (δΦ((x0, 0), (x, z))− hε(z))−α.
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Let in (x, z) ∈ [S2r(x0, 0) \ Sγr(x0, 0)]+ \ {z = 0} and estimate the equation for φ̃ using (3.5.14)

aij(x)∂ijφ̃+ |z|2−
1
s ∂zzφ̃

= α(δΦ((x0, z0), (x, z))− hε(z))−α−2(
(α+ 1)

[
aij(x)(x− x0)i(x− x0)j + |z|2−

1
s (∂z(δΦ((x0, z0), (x, z)))− h′ε(z))2

]
− (δΦ((x0, z0), (x, z))− hε(z))

[
aii(x) + 1

])
≥ α(δΦ((x0, z0), (x, z))− hε(z))−α−2(

(α+ 1)

[
2λδϕ(x0, x) + C

2s−1
s

1 r2s−1(∂z(δΦ((x0, z0), (x, z)))− h′ε(z))2

]
− (δΦ((x0, z0), (x, z))− hε(z))(nΛ + 1)

)
.

If γr/2 < δϕ(x0, x) < 2r, then

2λδϕ(x0, x) + C
2s−1
s

1 r2s−1(∂z(δΦ((x0, z0), (x, z)))− h′ε(z))2 ≥ 2λδϕ(x0, x) > λγr.

Choose α = α(γ, n, λ,Λ, s) large enough to guarantee that

(α+ 1)λγ − (nΛ + 1)(2 + C1ε) > (nΛ + 1)(2 + C1ε).

Then, we have that

aij(x)∂ijφ̃+ |z|2−
1
s ∂zzφ̃

≥ α(δΦ((x0, z0), (x, z))− hε(z))−α−2

(
(α+ 1)λγr − (nΛ + 1)(2 + C1ε)r

)
> α(δΦ((x0, z0), (x, z))− hε(z))−α−2(nΛ + 1)(2 + C1ε)r

≥ α(nΛ + 1)(2 + C1ε2)−α−2r−α−2(2 + C1ε)r

= α(nΛ + 1)(2 + C1ε)
−α−1r−α−1.

If δϕ(x0, x) ≤ γr/2, then γr/2 < δh(z0, z) < 2r and, by (3.5.15), we obtain

2λδϕ(x0, x) + C
2s−1
s

1 r2s−1(∂z(δΦ((x0, z0), (x, z)))− hε(z)))2

≥ C
2s−1
s

1 r2s−1(∂z(δΦ((x0, z0), (x, z)))− h′ε(z))2

≥ C
2s−1
s

1 r2s−1C4r
2−2s = C4C

2s−1
s

1 r.
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Let α = α(γ, n, λ,Λ, s) > 0 be large so that

(α+ 1)C4C
2s−1
s

1 − (nΛ + 1)(2 + C1ε) > (nΛ + 1)(2 + C1ε).

Then, we have that

aij(x)∂ijφ̃+ |z|2−
1
s ∂zzφ̃

≥ α(δΦ((x0, z0), (x, z))− hε(z))−α−2

(
(α+ 1)C4C

2s−1
s

1 r − (nΛ + 1)(2r + C1ε)r

)
> α(δΦ((x0, z0), (x, z))− hε(z))−α−2(nΛ + 1)(2 + C1ε)r

≥ α(nΛ + 1)(2 + C1ε)
−α−1r−α−1.

Hence, for all (x, z) ∈ [S2r(x0, 0) \ Sγr(x0, 0)]+ \ {z = 0}, there is an α = α(γ, n, λ,Λ, s) > 0

such that

aij(x)∂ijφ̃+ |z|2−
1
s ∂zzφ̃ > α(nΛ + 1)(2 + C1ε)

−α−1r−α−1.

We define the barrier φ on [S2r(x0, 0) \ Sγr(x0, 0)]+ by

φ(x, z) =
a

α
(2 + C1ε)

α+1rα+1
(
(δΦ((x0, 0), (x, z))− hε(z))−α − (1 + C1ε)

−αr−α
)
.

For (x, z) ∈ [S2r(x0, 0) \ Sγr(x0, 0)]+ \ {z = 0}, it follows that

aij(x)∂ijφ+ |z|2−
1
s ∂zzφ > a(nΛ + 1).

For (x, 0) ∈ [S2r(x0, 0) \ Sγr(x0, 0)]+ ∩ {z = 0} and observe that

∂zφ(x, 0) = −a(2 + C1ε)
α+1rα+1(δΦ((x0, z0), (x, z))− hε(z))−α−1(h′(z)− h′(0)− h′ε(z))

∣∣
z=0

= a(2 + C1ε)
α+1rα+1(δΦ((x0, 0), (x, 0))− hε(0))−α−1εr1−s

≥ aεr1−s > 0.

Therefore, φ defined in [S2r(x0, z0) \ Sγr(x0, z0)]+ is a subsolution to (3.5.9).

One can check that φ > 0 in [Sr(x0, 0) \ Sγr(x0, 0)]+ and that φ ≤ 0 on [∂S2r(x0, 0)]+ when

ε = ε(γ, s) is small enough to guarantee that 2 > 1 + C2ε. Moreover, there is a constant C =

C(γ, n, λ,Λ, s) > 0 such that

φ(x, z) ≤ Car on [∂Sγr(x0, 0)]+.
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Case 4: z0 ≤ 0 and 0 < s < 1

Note that if (x, z) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]−, then (x,−z) ∈ [S2r(x0,−z0) \ Sγr(x0,−z0)]+.

Define ψ in [S2r(x0, z0) \ Sγr(x0, z0)]− to be the even reflection across {z = 0} of the solution φ to

(3.5.9) in [S2r(x0,−z0) \ Sγr(x0,−z0)]+:

ψ(x, z) = φ(x,−z), for (x, z) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]−.

Since D2ψ(x, z) = D2ψ(x,−z), we know, for (x, z) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]− \ {z = 0}, that

aij(x)∂ijψ(x, z) + |z|2−
1
s ∂zzψ(x, z) = aij(x)∂ijφ(x,−z) + |z|2−

1
s ∂zzψ(x,−z)

> a(nΛ + 1).

For (x, 0) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]− ∩ {z = 0}, we estimate

−∂z−ψ(x, 0) = − lim
h→0−

ψ(x, h)− ψ(x, 0)

h

= − lim
h→0−

φ(x,−h)− φ(x, 0)

h

= lim
h→0+

φ(x, h)− φ(x, 0)

h
= ∂z+ψ(x, 0) > 0.

Therefore, ψ is a subsolution to (3.5.10). It is straightforward to check that ψ > 0 in [Sr(x0, z0) \

Sγr(x0, z0)]− and that ψ ≤ 0 on [∂S2r(x0, z0)]−.

Lastly, if (x, z) ∈ [∂Sγr(x0, z0)]−, then (x,−z) ∈ [∂Sγr(x0,−z0)]+. This gives the desired

estimate

ψ(x, z) = φ(x,−z) ≤ Car for (x, z) ∈ [∂Sγr(x0, z0)]−.

3.5.3.3 Localization

Lemma 3.5.12. Let 0 < s < 1 and fix 0 < γ < 1. Assume that aij = aij(x) are bounded, measur-

able functions on Rn and satisfy (3.1.1). Let K̂3 be as in (3.5.4). For a cube QR = QR(x̃, z̃) ⊂ Rn+1,

suppose that U = U(x, z) = U(x,−z) is a nonnegative, classical supersolution to aij(x)∂ijU + |z|2−
1
s ∂zzU ≤ 0 in QK̂3R

∩ {z 6= 0}

−∂z+U ≥ 0 on QK̂3R
∩ {z = 0}.
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Assume that Qr(x0, z0) ⊂ QR. Suppose that U is touched from below in QK̂3R
by paraboloid P of

opening a > 0 at (x1, z1) ∈ [Sr(x0, z0)]±∩Aa,R. Then, there exists a constant C = C(γ, n, λ,Λ, s) >

0 and a point (x2, z2) ∈ [Sγr(x0, z0)]± such that

U(x2, z2)− P (x2, z2) ≤ Car.

Proof. Assume that z0, z1 ≥ 0. The case in which z0, z1 ≤ 0 follows similarly, using symmetry.

We also assume that (x1, z1) ∈ [Sr(x0, z0) \ Sγr(x0, z0)]+. Indeed, if (x1, z1) ∈ [Sγr(x0, z0)]+,

U(x1, z1)− P (x1, z1) = 0 ≤ Car

for all C > 0, so we take (x2, z2) = (x1, z1).

Let W = U − P . For (x, z) ∈ QK̂3R
\ {z = 0}, we have that

aij(x)∂ijP (x, z) + |z|2−
1
s ∂zzP (x, z) = −a(aii(x) + 1) ≥ −a(nΛ + 1)

which implies

aij(x)∂ijW (x, z) + |z|2−
1
s ∂zzW (x, z) ≤ a(nΛ + 1).

Since z1 ≥ 0, by Lemmas 3.5.3 and 3.5.4, we know that zv ≥ 0. Therefore,

−∂z+W (x, 0) ≥ 0 + ah′(zv) ≥ 0.

Let φ be the subsolution found in Lemma 3.5.11. By choice of K̂2 (3.5.3), we have that

Qr(x0, z0) ⊂ QR implies

S2r(x0, z0) ⊂ Q2r(x0, z0) ⊂ QK̂2R
⊂ QK̂3R

Therefore, W − φ is a supersolution to aij(x)∂ij(W − φ) + |z|2−
1
s ∂zz(W − φ) < 0 in [S2r(x0, z0) \ Sγr(x0, z0)]+ ∩ {z 6= 0}

−∂z+(W − φ)(x, 0) > 0 on [S2r(x0, z0) \ Sγr(x0, z0)]+ ∩ {z = 0}.
(3.5.17)
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Let (x2, z2) ∈ [S2r(x0, z0) \ Sγr(x0, z0)]+ be such that

W (x2, z2)− φ(x2, z2) = min
[S2r(x0,z0)\Sγr(x0,z0)]+

(W − φ).

By the Maximum Principle (see for instance [31, Theorem 3.1]), the minimum of W − φ occurs on

the boundary ∂[S2r(x0, z0) \ Sγr(x0, z0)]+. That is,

(x2, z2) ∈ [∂S2r(x0, z0)]+ ∪ [∂Sγr(x0, z0)]+ ∪ [(S2r(x0, z0) \ Sγr(x0, z0)) ∩ {z = 0}].

Since (x1, z1) ∈ [Sr(x0, z0)]+, we know that φ(x1, z1) > 0 which implies

W (x1, z1)− φ(x1, z1) = 0− φ(x1, z1) < 0.

Moreover, since φ ≤ 0 on [∂S2r(x0, z0)]+, we have that

W (x, z)− φ(x, z) ≥ 0 on [∂S2r(x0, z0)]+.

Therefore, the minimum is strictly negative and cannot occur on [∂S2r(x0, z0)]+.

If [S2r(x0, z0)]+∩{z = 0} 6= ∅, then suppose, by way of contradiction, that the minimum occurs

on [S2r(x0, z0) \ Sγr(x0, z0)]+ ∩ {z = 0}, i.e. z2 = 0. Then

−∂z+(W − φ)(x2, 0) ≤ 0,

which contradicts (3.5.17). Therefore, it must be that the minimum occurs at (x2, z2) ∈ [∂Sγr(x0, z0)]+ ⊂

[Sγr(x0, z0)]+. It follows from Lemma 3.5.11 that φ(x2, z2) ≤ Car. Since W (x2, z2)−φ(x2, z2) < 0,

this implies

U(x2, z2)− P (x2, z2) < φ(x2, z2) ≤ Car.

3.5.3.4 Proof of lemma

Proof of Lemma 3.5.7. Without loss of generality, let

(x1, z1) ∈ Qr(x0, z0) ∩Aa,R 6= ∅.

Otherwise, replace r by r + ε and take the limit as ε→ 0 at the end.
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Since (x1, z1) ∈ Aa,R, there is a paraboloid P of opening a > 0 with vertex (xv, zv) ∈ Bv such

that P touches U from below in QK̂3R
at (x1, z1). We write P as

P (x, z) = −aδΦ((xv, zv), (x, z)) + aδΦ((xv, zv), (x1, z1)) + U(x1, z1).

We may assume that z0, z1 ≥ 0 or that z0, z1 ≤ 0. Indeed, suppose that z0 ≥ 0 and z1 < 0. If

QK̂2R
∩ {z = 0} = ∅, this is a contradiction. Suppose that QK̂2R

∩ {z = 0} 6= ∅. By Lemma 3.5.5,

P̄ (x, z) = P (x,−z) touches U from below in QK̂3R
at (x1,−z1) with vertex (xv,−zv) ∈ Bv. Since

δh(z0,−z1) = h(−z1)− h(z0)− h′(z0)(−z1 − z0)

= h(z1)− h(z0) + h′(z0)z1 + h′(z0)z0

< h(z1)− h(z0)− h′(z0)z1 + h′(z0)z0 since z0 ≥ 0 and z1 < 0 < −z1

= h(z1)− h(z0)− h′(z0)(z1 − z0)

= δh(z0, z1) < r

It follows that (x1,−z1) ∈ Qr(x0, z0)∩Aa,R. We proceed with the proof of the lemma using P̄ and

−z1 > 0 in place of P and z1 < 0. The argument for z0 ≤ 0 and z1 > 0 follows similarly.

Note that (x1, z1) ∈ Qr(x0, z0) ⊂ S(n+1)r(x0, z0) and let γ = η/(2θ2). By Lemma 3.5.12, there

is a point (x2, z2) ∈ Sγr/(n+1)(x0, z0) ⊂ Sγr(x0, z0) and a constant C = C(n, λ,Λ, s) > 0 such that

U(x2, z2)− P (x2, z2) ≤ Car.

Let α = η/(2θ3) < 1 and let C ′ = C ′(n, λ,Λ, s) > 1 be a large constant, to be determined.

Slide, from below, the family of paraboloids

P̃ (x, z) = P (x, z)− C ′aδΦ((x̄v, z̄v), (x, z)) + d, for (x̄v, z̄v) ⊂ Sαr(x2, z2) (3.5.18)

until they touch the graph of U in QK̂3R
for the first time. Without tracking the constant term,

we expand a paraboloid P̃ by

P̃ (x, z) = P (x, z)− C ′aδΦ((x̄v, z̄v), (x, z)) + d

= −aδΦ((xv, zv), (x, z)) + aδΦ((xv, zv), (x1, z1)) + U(x1, z1)− C ′aδΦ((x̄v, z̄v), (x, z)) + d

= −aδϕ(xv, x)− C ′aδϕ(x̄v, x)− aδh(zv, z)− C ′aδh(z̄v, z) + d′.
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Suppose that ξ ∈ R is such that

h′(ξ) =
h′(zv) + C ′h′(z̄v)

C ′ + 1
.

in the variable z, we write

−aδh(zv, z)− C ′aδh(z̄v, z)

= −a
(
h(z)− h(zv)− h′(zv)(z − zv)

)
− C ′a

(
h(z)− h(z̄v)− h′(z̄v)(z − z̄v)

)
= −(C ′ + 1)ah(z) + ah(zv) + ah′(zv)z − ah′(zv)zv + C ′ah(z̄v) + C ′ah′(z̄v)z − C ′ah′(z̄v)z̄v

= −(C ′ + 1)ah(z) +
(
ah′(zv) + C ′ah′(z̄v)

)
z + d′

= −(C ′ + 1)a

(
h(z) +

h′(zv) + C ′h′(z̄v)

C ′ + 1
z

)
+ d′

= −(C ′ + 1)a
(
h(z)− h′(ξ)z

)
+ d′

= −(C ′ + 1)a
(
h(z)− h(ξ)− h′(ξ)(z − ξ)

)
+ d′′

= −(C ′ + 1)aδh(ξ, z) + d′′.

Since

Dϕ(xv) + C ′Dϕ(x̄v)

C ′ + 1
=
xv + C ′x̄v
C ′ + 1

= Dϕ

(
xv + C ′x̄v
C ′ + 1

)
,

in the variable x, we similarly write

−aδϕ(xv, x)− C ′aδϕ(x̄v, x) = −(C ′ + 1)aδϕ(
xv + C ′x̄v
C ′ + 1

, x) + d′′′.

Therefore

P̃ (x, z) = −(C ′ + 1)aδΦ

((
xv + C ′x̄v
C ′ + 1

, ξ

)
, (x, z)

)
+ d

′′′′
.

Hence, the opening of P̃ is (C ′ + 1)a and the vertex is of the form(
xv + C ′x̄v
C ′ + 1

, ξ

)
where h′(ξ) =

h′(zv) + C ′h′(z̄v)

C ′ + 1
.

Let B denote the set of vertices for the family of P̃ ’s and A denote the set of touching points.

Since P̃ (x2, z2) ≤ U(x2, z2), we have that

P (x2, z2)− C ′aδΦ((x̄v, z̄v), (x2, z2)) + d ≤ U(x2, z2).
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By the engulfing property, Sαr(x2, z2) ⊂ Sαθr(x̄v, z̄v), so that

δ((x̄v, z̄v), (x2, z2)) < αθr.

Therefore,

d ≤ U(x2, z2)− P (x2, z2) + C ′aδ((x̄v, z̄v), (x2, z2)) ≤ Car + C ′αθar.

Since (x2, z2) ∈ Sαθr(x̄v, z̄v) ⊂ S2αθr(x̄v, z̄v), we again use the engulfing property to see that

S2αθr(x̄v, z̄v) ⊂ S2αθ2r(x2, z2).

Suppose that (x, z) ∈ QK̂3R
is such that δΦ((x2, z2), (x, z)) ≥ 2αθ2r. Then δΦ((x̄v, z̄v), (x, z)) ≥

2αθr and

P̃ (x, z) ≤ P (x, z)− C ′a(2αθr) +
(
Car + C ′αθar

)
= P (x, z) +

(
C − C ′θα

)
ar < P (x, z) ≤ U(x, z)

when C ′ is such that C ′ > C/(θα). Hence, the contact points for P̃ are inside S2αθ2r(x2, z2).

Recall that (x2, z2) ∈ Sγr(x0, z0). Since γ = αθ, we use the engulfing property to obtain

Sγr(x0, z0) = Sαθr(x0, z0) ⊂ Sαθ2r(x2, z2)

⊂ S2αθ2r(x2, z2) ⊂ S2αθ3r(x0, z0) = Sηr(x0, z0).

(3.5.19)

Therefore, the contact points for P̃ are inside Sηr(x0, z0) ⊂ Qηr(x0, z0). That is, A ⊂ Qηr(x0, z0).

For sufficiently large C ′, we estimate

P̃ (x, z) ≤ P (x, z) + d

= −aδΦ((xv, zv), (x, z)) + aδΦ((xv, zv), (x1, z1)) + U(x1, z1) + d

≤ aδΦ((xv, zv), (x1, z1)) + U(x1, z1) + d

≤ aδΦ((xv, zv), (x1, z1)) + aR+ (Car + C ′αθar)

≤ aK (δΦ((x̃, z̃), (xv, zv)) + δΦ((x̃, z̃), (x1, z1))) + aR+ (CaR+ C ′αθaR)

≤ aK(K̂3R+R) + aR+ (CaR+ C ′αθaR)

=
(

(K̂3 + 1)K + 1 + C + C ′αθ
)
aR ≤ (C ′ + 1)aR.

This shows that A ⊂ A(C′+1)a,R.
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Therefore, by Lemma 3.5.6,

µΦ(A(C′+1)a,R ∩Qηr(x0, z0)) ≥ µΦ(A ∩Qηr(x0, z0)) = µΦ(A) ≥ cµΦ(B). (3.5.20)

We claim that

cµΦ(B) ≥ c′µΦ(Qr(x0, z0))

for a small constant c′ = c′(n, λ,Λ, s) < 1.

We can express the set B as

B =

{
(x, z) : x =

xv + C ′x̄v
C ′ + 1

, h′(z) =
h′(zv) + C ′h′(z̄v)

C ′ + 1
, (x̄v, z̄v) ∈ Sαr(x2, z2)

}
.

We will first show that

µΦ(B) ≥
(

C ′

C ′ + 1

)n+1

µΦ(Sαr
2

(x2, z2)).

First, note that

Sαr/2(x2, z2) ⊂ Sϕ
(
x2,

αr

2

)
× Sh

(
z2,

αr

2

)
⊂ Sαr(x2, z2).

Define the sets Bx and Bz by

Bx =

{
x =

xv + C ′x̄v
C ′ + 1

: x̄v ∈ Sϕ
(
x2,

αr

2

)}
Bz =

{
z = h−1

(
h′(zv) + C ′h′(z̄v)

C ′ + 1

)
: z̄v ∈ Sh

(
z2,

αr

2

)}
.

Therefore, Bx ×Bz ⊂ B and

µΦ(B) =

∫
B
h′′(z) dz ≥

∫
Bx

∫
Bz

h′′(z) dz dx =

∫
Bx

dx

∫
Bz

h′′(z) dz.

By change of variables, we have that∫
Bx

dx =

(
C ′

C ′ + 1

)n ∫
Sϕ(x2,

αr
2 )

dx̄v.

Notice that

{z̄v : h′(z̄v) = − 1

C ′
h′(zv)} = {z̄v = 0}.
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Then, by change of variables, we have that∫
Bz

h′′(z) dz

=

∫
Bz\{z=0}

h′′(z) dz

=

∫
Sh(z2,αr2 )\{z̄v=0}

h′′
(

(h′)−1

(
h′(zv) + C ′h′(z̄v)

C ′ + 1

))
∂z(h

′)−1

∣∣∣∣
h′(zv)+C′h′(z̄v)

C′+1

(
C ′

C ′ + 1

)
h′′(z̄v)dz̄v

=
C ′

C ′ + 1

∫
Sh(z2,αr2 )\{z̄v=0}

h′′
(

(h′)−1

(
h′(zv) + C ′h′(z̄v)

C ′ + 1

))
h′′(z̄v)

h′′
(

(h′)−1
(
h′(zv)+C′h′(z̄v)

C′+1

))dz̄v
=

C ′

C ′ + 1

∫
Sh(z2,αr2 )\{z̄v=0}

h′′(z̄v)dz̄v

=
C ′

C ′ + 1

∫
Sh(z2,αr2 )

h′′(z̄v)dz̄v.

Combing these estimates, we obtain

µΦ(B) ≥
(

C ′

C ′ + 1

)n+1 ∫
Sϕ(x2,

αr
2 )×Sh(z2,αr2 )

h′′(z) dz dx

≥
(

C ′

C ′ + 1

)n+1 ∫
Sαr

2
(x2,z2)

h′′(z) dz dx =

(
C ′

C ′ + 1

)n+1

µΦ(Sαr
2

(x2, z2))

as desired.

By the doubling estimate (3.3.4), we estimate

µΦ(Sγθr(x2, z2)) ≤ Kd

(
γθr

αr/2

)ν
µΦ(Sαr

2
(x2, z2)) = Kd

(
2θγ

α

)ν
µΦ(Sαr

2
(x2, z2))

and

µΦ(S(n+1)r(x0, z0)) ≤ Kd

(
(n+ 1)r

γr

)ν
µΦ(Sγr(x0, z0)) = Kd

(
n+ 1

γ

)ν
µΦ(Sγr(x0, z0)).
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Since (x2, z2) ∈ Sγr(x0, z0), the engulfing property gives Sγr(x0, z0) ⊂ Sγθr(x2, z2). Hence, we have

cµΦ(B) ≥ c
(

C ′

C ′ + 1

)n+1

µΦ(Sαr
2

(x2, z2))

≥ c
(

C ′

C ′ + 1

)n+1 1

Kd

(
α

2θγ

)ν
µΦ(Sγθr(x2, z2))

≥ c
(

C ′

C ′ + 1

)n+1 1

Kd

(
α

2θγ

)ν
µΦ(Sγr(x0, z0))

≥ c
(

C ′

C ′ + 1

)n+1 1

Kd

(
α

2θγ

)ν 1

Kd

(
γ

n+ 1

)ν
µΦ(S(n+1)r(x0, z0))

= c

(
C ′

C ′ + 1

)n+1 1

K2
d

(
α

2θ(n+ 1)

)ν
µΦ(S(n+1)r(x0, z0))

≥ c′µΦ(Qr(x0, z0)).

This completes the proof of the claim.

From (3.5.20), we conclude that

µΦ(A(C′+1)a,R ∩Qηr(x0, z0)) ≥ c′µΦ(Qr(x0, z0)).

3.5.4 Proof of Lemma 3.5.8

We will need the following variation of [23, Theorem 1.2] for cubes.

Theorem 3.5.1. Let E ⊂ Rn+1 be a bounded subset and {Qrx,z(x, z)} be a covering of E. There

exists a countable family {Qri(xi, zi)} of disjoint cubes such that the family {QK0ri(xi, zi)} covers

E. The constant K0 > 3K, where K is the quasi-distance constant.

Corollary 3.5.1. Let E ⊂ Rn+1 be a bounded subset and assume that for each x ∈ E, we associate

a cube {Qrx,z(x, z)}. Then, we can find a countable number of these sections Qri(xi, zi) such that

E ⊂
∞⋃
i=1

Qri(xi, z0), with Qri/K0
(xi, zi) disjoint.

Proof of Lemma 3.5.8. Let (x0, z0) ∈ QR/K0
(x̃, z̃) \Dk and let r be given by

r = inf{r0 : Qr0(x0, z0) ∩Dk 6= ∅}. (3.5.21)
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By Corollary 3.5.1, there is a countable collection of these cubes {Qri(xi, zi)} such that

QR/K0
\Dk ⊂

⋃
i

Qri(xi, zi), with Qri/K0
(xi, zi) disjoint.

Then,

µΦ(QR/K0
\Dk) ≤ µΦ

(⋃
i

Qri(xi, zi) ∩QR/K0

)
≤
∑
i

µΦ(Qri(xi, zi) ∩QR/K0
).

We claim, for any (x0, z0) ∈ QR/K0
\Dk, that and r given by (3.5.21),

µΦ(Qr(x0, z0) ∩QR/K0
) ≤ 1

c
µΦ(Qr/K0

(x0, z0) ∩Dk+1).

Suppose for now that the claim holds. Then

µΦ(QR/K0
\Dk) ≤ µΦ

(⋃
i

Qri(xi, zi) ∩QR/K0

)

≤
∑
i

µΦ(Qri(xi, zi) ∩QR/K0
)

≤
∑
i

1

c
µΦ(Qri/K0

(xi, zi) ∩Dk+1)

=
1

c
µΦ

(⋃
i

Qri/K0
(xi, zi) ∩ (Dk+1 \Dk)

)

≤ 1

c
µΦ(Dk+1 \Dk).

Since

QR/K0
\Dk = (QR/K0

\Dk+1) ∪ (Dk+1 \Dk),

we have that

µΦ(QR/K0
\Dk+1) = µΦ(QR/K0

\Dk)− µΦ(Dk+1 \Dk)

≤ µΦ(QR/K0
\Dk)− cµΦ(QR/K0

\Dk)

= (1− c)µΦ(QR/K0
\Dk).
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We iterate to obtain

µΦ(QR/K0
\Dk) ≤ (1− c)µΦ(QR/K0

\Dk−1)

≤ (1− c)2µΦ(QR/K0
\Dk−2)

...

≤ (1− c)kµΦ(QR/K0
\D0)

≤ (1− c)kµΦ(QR/K0
)

and complete the proof of the lemma.

It is left to prove the claim. We will present the proof for n = 1 for which we have that

Qt(x, z) = St(x)× St(z) ⊂ R2.

The more general case following similarly.

First, let (x1, z1), (x2, z2) ∈ QR/K0
(x̃, z̃). Then

δϕ(x1, x2) ≤ K (δϕ(x̃, x1) + δϕ(x̃, x2)) < K

(
R

K0
+

R

K0

)
=

2KR

K0
.

Similarly, δh(z1, z2) < 2KR/K0. Therefore, r < 2KR/K0.

Let (x, z) ∈ Qr(x0, z0). By the quasi-triangle inequality (3.3.3) and choice of K0 (3.5.5),

δϕ(x̃, x) ≤ K (δϕ(x̃, x0) + δϕ(x0, x))

< K

(
R

K0
+ r

)
< K

(
R

K0
+

2KR

K0

)
=
K + 2K2

K0
R ≤ R.

Similarly, one can show that δh(z̃, z) < R. Therefore, we have that Qr(x0, z0) ⊂ QR(x̃, z̃).

Without loss of generality, assume that x0 ≤ x̃ and z0 ≤ z̃. We will break into cases based on

how far (x̃, z̃) is from (x0, z0).

Case 1. Suppose that (x̃, z̃) ∈ Qr/K0
(x0, z0).

We will show that Qr(x0, z0) satisfies the hypothesis of property 2):

Qr(x0, z0) ⊂ QR(x̃, z̃), Qηr(x0, z0) ⊂ QR/K0
(x̃, z̃), Qr(x0, z0) ∩Dk 6= ∅.
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We have already shown that Qr(x0, z0) ⊂ QR(x̃, z̃), and by the definition of r, we know that

Qr(x0, z0)∩Dk 6= ∅. Thus, it is left to show that Qηr(x0, z0) ⊂ QR/K0
(x̃, z̃). Let (x, z) ∈ Qηr(x0, z0).

By the quasi-triangle inequality (3.3.3) and by our choice of K0 and η (3.5.5),

δϕ(x̃, x) ≤ K (δϕ(x0, x̃) + δϕ(x0, x))

< K

(
r

K0
+ ηr

)
≤ K

(
1

K0
+ η

)
2KR

K0
≤ R

K0
.

We can similarly show that δh(z̃, z) < R/K0. Hence, Qηr(x0, z0) ⊂ QR/K0
(x̃, z̃).

Therefore, by property 2), we know that

µΦ(Qηr(x0, z0) ∩Dk+1) ≥ cµΦ(Qr(x0, z0)).

Since η ≤ 1/K0, we obtain the desired estimate

µΦ(Qr/K0
(x0, z0) ∩Dk+1) ≥ µΦ(Qηr(x0, z0) ∩Dk+1)

≥ cµΦ(Qr(x0, z0))

≥ cµΦ(Qr(x0, z0) ∩QR/K0
(x̃, z̃)).

Case 2. Suppose that x̃ /∈ Sr/K0
(x0), z̃ ∈ Sr/K0

(z0).

From our previous work, we deduce that

Sr(z0) ⊂ SR(z̃), Sηr(z0) ⊂ SR/K0
(z̃).

We will find an x1 between x0 and x̃ and a positive constant β < 1 such that

Sβr(x1) ⊂ Sr/K0
(x0) ∩ SR/K0

(x̃).

Let x1 > x0 be such that δϕ(x0, x1) = r/(2KK0). We first show that Sr/(2KK0)(x1) ⊂ Sr/K0
(x0).

Indeed, for x ∈ Sr/(2KK0)(x1), we have that

δϕ(x0, x) ≤ K (δϕ(x0, x1) + δϕ(x1, x)) < K

(
r

2KK0
+

r

2KK0

)
=

r

K0
.
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Since

r

2KK0
= δϕ(x0, x1) ≤ Kδϕ(x1, x0) ≤ K2δϕ(x0, x1) = K2 r

2KK0
,

we know that

r

2K2K0
≤ δϕ(x1, x0) ≤ r

2K0
.

Thus, x0 /∈ Sr/(2K2K0)(x1). Since the sections Sr/(2K2K0)(x1) and Sr/K0
(x0) are one-dimensional

intervals, we can write them as

Sr/(2K2K0)(x1) = (xL, xR) where xL < x1 < xR

Sr/K0
(x0) = (x0

L, x
0
R) where x0

L < x0 < x0
R.

Since x̃ /∈ Sr/K0
(x0) and x0 < x̃, we know that

x0
L < x0 < x0

R < x̃.

Since x0 < x1 and Sr/(2K2K0)(x1) ⊂ Sr/K0
(x0), we have that

x0 < xL < x1 < xR < x0
R < x̃.

Thus, for any x ∈ Sr/(2K2K0)(x1), we know that x0 < x < x̃. By the convexity of ϕ,

ϕ(x)− ϕ(x0)

x− x0
< ϕ′(x̃)

which implies

δϕ(x̃, x) = ϕ(x)− ϕ(x̃)− ϕ′(x̃)(x− x̃)

< ϕ(x0)− ϕ(x̃)− ϕ′(x̃)(x0 − x̃)

= δϕ(x̃, x0)

<
R

K0

for any x ∈ Sr/(2K2K0)(x1). Hence, Sr/(2K2K0)(x1) ⊂ SR/K0
(x̃) and we proven the claim for

β = 1/(2KK0).
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Define

ρ =

(
K +

1

2K0

)
r.

We claim that Qr(x0, z0) ⊂ Qρ(x1, z0). Clearly Sr(z0) ⊂ Sρ(z0). Let x ∈ Sr(x0). Then,

δϕ(x1, x) ≤ K (δϕ(x0, x1) + δϕ(x1, x))

≤ K
(

r

2KK0
+ r

)
= ρ.

Hence, Sr(x0) ⊂ Sρ(x1). Therefore,

Qr(x0, z0) = Sr(x0)× Sr(z0) ⊂ Sρ(x1)× Sρ(z0) = Qρ(x1, z0).

Since Qr(x0, z0) ∩Dk 6= ∅, we know that Qρ(x1, z0) ∩Dk 6= ∅.

We will show that Qρ(x1, z0) satisfies the assumptions on property 2):

Qρ(x1, z0) ⊂ QR(x̃, z̃), Qηρ(x1, z0) ⊂ QR/K0
(x̃, z̃), Qηρ(x1, z0) ⊂ Qr/K0

(x0, z0).

First, let us check that Qρ(x1, z0) ⊂ QR(x̃, z̃). Take (x, z) ∈ Qρ(x1, z0). Observe that

δϕ(x̃, x) ≤ K (δϕ(x̃, x1) + δϕ(x1, x))

< K

(
R

K0
+ ρ

)
= K

(
R

K0
+

(
K +

1

2K0

)
r

)
< K

(
R

K0
+

(
K +

1

2K0

)
2KR

K0

)
=

(
1 + 2K +

1

K0

)
KR

K0
≤ R

by choice of K0 (3.5.5). We can similarly show that δh(z̃, z) < R. Hence, Qρ(x1, z0) ⊂ QR(x̃, z̃).

Next, we check that Qηρ(x1, z0) ⊂ Qr/K0
(x0, z0). By choice of η (3.5.5), we know that Sηρ(x1) ⊂

Sr/(2K2K0)(x1). Since Sr/(2K2K0)(x1) ⊂ Sr/K0
(x0), we obtain

Qηρ(x1, z0) = Sηρ(x1)× Sηρ(z0)

⊂ Sr/(2K2K0)(x1)× Sr/(2K2K0)(z0)

⊂ Sr/K0
(x0)× Sr/K0

(z0) = Qr/K0
(x0, z0).
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Lastly, we check that Qηρ(x1, z0) ⊂ QR/K0
(x̃, z̃). Indeed, for z ∈ Sηρ(z0),

δh(z̃, z) ≤ K (δh(z0, z̃) + δh(z0, z))

< K

(
r

K0
+ ηρ

)
= K

(
1

K0
+ η

(
K +

1

2K0

))
r

< K

(
1

K0
+ η

(
K +

1

2K0

))
2KR

K0
≤ R

K0
.

by choice of K0 and η (3.5.5). Therefore, Sηρ(z0) ⊂ SR/K0
(z̃). Since Sηρ(x1) ⊂ Sr/(2K2K0)(x1) ⊂

SR/K0
(x̃), we obtain

Qηρ(x1, z0) = Sηρ(x1)× Sηρ(z0)

⊂ SR/K0
(x̃)× SR/K0

(z̃) = QR/K0
(x̃, z̃).

We have shown that Qρ(x1, z0) satisfies the conditions of property 2). Therefore,

µΦ(Qηρ(x1, z0) ∩Dk+1) ≥ cµΦ(Qρ(x0, z1)).

Since ηρ ≤ r/(2K2K0) ≤ r/K0, we have that

Qηρ(x1, z0) = Sηρ(x1)× Sηρ(z0)

⊂ Sr/(2K2K0)(x1)× Sηρ(z0)

⊂ Sr/K0
(x0)× Sr/K0

(z0) = Qr/K0
(x0, z0).

Therefore, we obtain the desired estimate

µΦ(Qr/K0
(x0, z0) ∩Dk+1) ≥ µΦ(Qηρ(x1, z0) ∩Dk+1)

≥ cµΦ(Qρ(x0, z1))

≥ cµΦ(Qr(x0, z0)).

Case 3. Suppose that x̃ ∈ Sr/K0
(x0), z̃ 6∈ Sr/K0

(z0).

This follows as in Case 2 by switching the x̃ and z̃ coordinates.

Case 4. Suppose that x̃ /∈ Sr/K0
(x0), z̃ /∈ Sr/K0

(z0).

This follows by combining Cases 2 and 3.
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3.5.5 Proof of Theorem 3.1.2

We will first prove the following variation of Harnack inequality then show that Theorem 3.1.2

follows.

Theorem 3.5.2. Let 0 < s < 1. Assume that aij = aij(x) are bounded, measurable functions on Rn

and satisfy (3.1.1). Let K̂3 be as in (3.5.4). There exist a positive constants CH = CH(n, λ,Λ, s) > 1

and κ2 = κ2(n, λ,Λ, s) < 1, such that for a cube QR = QR(x̃, z̃) ⊂ Rn+1 and every nonnegative,

classical solution U = U(x, z) = U(x,−z) to aij(x)∂ijU + |z|2−
1
s ∂zzU = 0 in QK̂3R

\ {z = 0}

−∂z+U(x, 0) = 0 on QK̂3R
∩ {z = 0},

we have that

sup
Qκ2R

U ≤ CHU(x̃, z̃).

Proof. Let a > 0 be such that

aR

2K0
= U(x̃, z̃).

Slide the paraboloid

P (x, z) = −aδΦ((x̃, z̃), (x, z)) + C

from below in QK̂3R
until it touches the graph of U , at say (x0, z0). We may write

P (x, z) = −aδΦ((x̃, z̃), (x, z)) + aδΦ((x̃, z̃), (x0, z0)) + U(x0, z0).

We claim that (x0, z0) ∈ SR/K0
. Indeed, if δΦ((x̃, z̃), (x0, z0)) > R/K0, then

aR

2K0
> U(x̃, z̃) ≥ P (x̃, z̃) = aδΦ((x̃, z̃), (x0, z0)) + U(x0, z0) >

aR

K0
,

which is a contradiction. Hence, (x0, z0) ∈ SR/K0
⊂ QR/K0

and

Aa,R ∩QR/K0
6= ∅.

Define

Dk := AaCk,R ∩QR/K0
, k ≥ 0
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where C is the constant from Lemma 3.5.7. As a consequence of Lemma 3.5.2, we have

∅ 6= D0 ⊂ D1 ⊂ D2 ⊂ · · · ⊂ Dk,

so that, by Lemma 3.5.7,

µΦ(Dk ∩QηR/K0
) = µΦ(AaCk,R ∩QηR/K0

) ≥ cµΦ(QR/K0
).

By Lemma 3.5.8,

µΦ(QR/K0
\Dk) ≤ (1− c)kµΦ(QR/K0

), (3.5.22)

and from the definition of AaCk,R,

U(x, z) ≤ aRCk for (x, z) ∈ Dk.

Define

ρk = c0(1− c)k/ν , c0 =
C2θ2(n+ 1)

K0

(
2K2

d

c

)1/ν

.

where Kd is the doubling constant and ν = log2(Kd). For convenience in the notation, let

β =
1

3K0
.

Suppose there exists a point (xk, zk) ∈ QβR/(n+1) ⊂ SβR such that

U(xk, zk) ≥ aRCk+1, k ≥ k0

where k0 = k0(n, λ,Λ, s) is a large constant, to be determined. We claim that there is a point

(xk+1, zk+1) ∈ ∂SρkR(xk, zk) such that

U(xk+1, zk+1) ≥ aRCk+2.

Suppose, by way of contradiction, that U < aRCk+2 on ∂SρkR(xk, zk). In the cylinder, {(x, z) :

δΦ((xk, zk), (x, z)) ≤ ρkR}, slide paraboloids of the form

P (x, z) =
2aKCk+2

ρk
δΦ((xv, zv), (x, z)) + cv, (xv, zv) ∈ S ρkR

θC2
(xk, zk)
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from above until they touch the graph of U for the first time. Let A denote the set of contact

points.

Slide the paraboloids further until they touch U at (xk, zk). Write these paraboloids as

P̃ (x, z) =
2aKCk+2

ρk
δΦ((xv, zv), (x, z))−

2aKCk+2

ρk
δΦ((xv, zv), (xk, zk)) + U(xk, zk).

Since (xv, zv) ∈ S ρkR
θC2

(xk, zk), we use the engulfing property to obtain

S ρkR
θC2

(xk, zk) ⊂ S ρkR
C2

(xv, zv).

In particular, we know δΦ((xv, zv), (xk, zk)) ≤ ρkR
C2 . Therefore,

P̃ (x, z) ≥ 2aKCk+2

ρk
δΦ((xv, zv), (x, z))−

2aKCk+2

ρk

ρkR

C2
+ aRCk+1

=
2aKCk+2

ρk
δΦ((xv, zv), (x, z)) + aRCk (C − 2K)

≥ 2aKCk+2

ρk
δΦ((xv, zv), (x, z)) + 2aRCk.

Therefore, the height of U at the contact points is above 2aRCk which shows

A ⊂ {(x, z) ∈ SρkR(xk, zk) : U ≥ 2aRCk}. (3.5.23)

We will show that the contact points for the family of P̃ ’s are interior points of SρkR(xk, zk).

Let (x̄, z̄) be a contact point for P̃ . Assume, by way of contradiction, that

δΦ((xk, zk), (x̄, z̄)) = ρkR.

By the quasi-triangle inequality (3.3.3),

ρkR ≤ K (δΦ((xk, zk), (xv, zv)) + δΦ((xv, zv), (x̄, z̄)))

< K

(
ρkR

θC2
+ δΦ((xv, zv), (x̄, z̄))

)
so that

δΦ((xv, zv), (x̄, z̄)) >
ρkR

K
− ρkR

θC2
.
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Therefore,

P̃ (x̄, z̄) ≥ 2aKCk+2

ρk
δΦ((xv, zv), (x̄, z̄)) + aRCk (C − 2K)

>
2aKCk+2

ρk

(
ρkR

K
− ρkR

θC2

)
+ aRCk (C − 2K)

= 2aRCk+2 + 2aRCk
(
C − 2K − K

θ

)
> 2aRCk+2,

which contradicts our assumption that U < aRCk+2 on ∂SρkR(xk, zk). Therefore, it must be that

the contact points are interior points of SρkR(xk, zk).

By Remark 3.5.1, it follows that

µΦ(A) ≥ cµφ(S ρkR
C2θ

(xk, zk)).

Since β < 1/K0, we have that

QβR/(n+1)(x̃, z̃) ⊂ SβR(x̃, z̃) ⊂ SR/K0
(x̃, z̃) ⊂ QR/K0

(x̃, z̃).

Since (xk, zk) ∈ QβR/(n+1)(x̃, z̃) ⊂ SR/K0
(x̃, z̃), we use the engulfing property to obtain

SR/K0
(x̃, z̃) ⊂ SθR/K0

(xk, zk).

As a consequence of the doubling property (3.3.4),

SθR/K0
(xk, zk) ≤ Kd

(
θR/K0

ρkR/(C2θ)

)ν
µφ(S ρkR

C2θ

(xk, zk))

= Kd

(
C2θ2

ρkK0

)ν
µφ(S ρkR

C2θ

(xk, zk))

and

µΦ(SR(n+1)/K0
) ≤ Kd

(
R(n+ 1)/K0

R/K0

)ν
µΦ(SR/K0

)

= Kd (n+ 1)ν µΦ(SR/K0
).
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Thus, we use the above estimates to obtain

µΦ(A) ≥ cµφ(S ρkR
C2θ

(xk, zk))

≥ cK−1
d

(
ρkK0

C2θ2

)ν
µΦ(SθR/K0

(xk, zk))

≥ cK−1
d

(
ρkK0

C2θ2

)ν
µΦ(SR/K0

(x̃, z̃))

≥ cK−1
d

(
ρkK0

C2θ2

)ν
K−1
d (n+ 1)−ν µΦ(SR(n+1)/K0

(x̃, z̃))

= 2(1− c)kµΦ(SR(n+1)/K0
(x̃, z̃))

≥ 2(1− c)kµΦ(QR/K0
(x̃, z̃)).

(3.5.24)

We next show that SrkR(xk, zk) ⊂⊂ SR/K0
⊂ QR/K0

for k ≥ k0.

Since (xk, zk) ∈ SβR(x̃, z̃), we know by Lemma 3.3.6 that there exist constants C0 > 0 and

p > 1 such that

S((xk, zk), ρkR) = S

(
(xk, zk), C0

(
ρk
C0

)
R

)
= S

(
(xk, zk), C0

(
β +

(
ρk
C0

)1/p

− β

)p
R

)

⊂ S

(
(x̃, z̃),

(
β +

(
ρk
C0

)1/p
)
R

)
.

Choose k0 large so that

∞∑
j=k0

(
ρj
C0

)1/p

=
1

C
1/p
0

∞∑
j=k0

ρ
1/p
j <

1

2K0
− 1

3K0
=

1

2K0
− β.

Therefore,

SρkR(xk, zk) ⊂ SR/(2K0)(x̃, z̃) ⊂⊂ SR/K0
(x̃, z̃) ⊂ QR/K0

(x̃, z̃). (3.5.25)

Since U(x, z) ≤ aRCk for all (x, z) ∈ Dk, we know that

Dk ⊂ {(x, z) : U(x, z) ≤ aRCk} ∩QR/K0

so that

{(x, z) : U(x, z) > aRCk} ∩QR/K0
⊂ QR/K0

\Dk.
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Therefore, by (3.5.22), (3.5.23), (3.5.24), and (3.5.25),

µΦ({U(x, z) > aRCk} ∩QR/K0
) ≤ µΦ(QR/K0

(x̃, z̃) \Dk)

≤ (1− c)kµΦ(QR/K0
)

≤ 1

2
µΦ(A)

=
1

2
µΦ(A ∩QR/K0

)

≤ 1

2
µΦ({U ≥ 2aRCk} ∩QR/K0

)

≤ 1

2
µΦ({U > aRCk} ∩QR/K0

),

a contradiction. This proves the claim.

We now use the claim to prove Harnack inequality. We want to show that

sup
QβR/(n+1)

U ≤ aRCk0+1.

Suppose, by way of contradiction, that there is a point (xk0 , zk0) ∈ QβR/(n+1) such that

sup
QβR/(n+1)

U ≥ U(xk0 , zk0) > aRCk0+1.

By the claim, there is a point (xk0+1, zk0+1) ∈ ∂Sρk0
R(xk0 , zk0) such that

U(xk0+1, zk0+1) > aRCk0+2.

Repeating this process, we can find a sequence (xk+1, zk+1) ∈ ∂SρkR(xk, zk) such that

U(xk, zk) > aRCk+1 for k ≥ k0.

Notice that

S((xk, zk), ρkR) = S

(xk, zk), C0

β +
k∑

j=k0

(
ρj
C0

)1/p

− β −
k−1∑
j=k0

(
ρj
C0

)1/p
p

R


⊂ S

(x̃, z̃),

β +

k∑
j=k0

(
ρj
C0

)1/p
R


⊂ S

(
(x̃, z̃),

R

2K0

)
⊂ Q

(
(x̃, z̃),

R

2K0

)
.

Therefore, (xk, zk) ∈ QR/(2K0) for all k ≥ k0.
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We have shown that U is unbounded in QR/(2K0), a contradiction. Letting κ2 = β/(n+ 1), we

conclude that

sup
Qκ2R

U ≤ Ck0+1aR

= Ck0+1(2K0)U(x̃, z̃) = CHU(x̃, z̃)

where CH = CH(n, λ,Λ, s) > 1.

Proof of Theorem 3.1.2. Let K̂2 and K̂3 be as in (3.5.3) and (3.5.4), respectively.

Let K̂1 = K̂1(n, s) > 1 and κ1 = κ1(n, s) < 1 be such that

1 < (n+ 1)θK̂3 ≤ K̂1 and θκ1 < κ2 < 1.

Let (x̃, z̃) ∈ Sκ1R(x0, z0). By the engulfing property,

Sκ1R(x0, z0) ⊂ Sθκ1R(x̃, z̃) ⊂ Qθκ1R(x̃, z̃) ⊂ Qκ2R(x̃, z̃).

Again applying the engulfing property, we have

QK̂3R
(x̃, z̃) ⊂ S(n+1)K̂3R

(x̃, z̃) ⊂ S(n+1)θK̂3R
(x0, z0) ⊂ SK̂1R

(x0, z0) ⊂⊂ Ω× R.

By Theorem 3.5.2, we get

sup
Sκ1R

(x0,z0)
U ≤ sup

Qκ2R
(x̃,z̃)

U ≤ CHU(x̃, z̃)

Taking the infimum over all (x̃, z̃) ∈ Sκ1R(x0, z0), the desired Harnack inequality (3.1.6) holds.

It remains to prove the Hölder estimate (3.1.7). The proof follows by a standard argument (see,

for example, [31, Section 8.9]). We provide the details for completeness. Let 0 < r ≤ K̂1R and

define

M(r) = sup
Sr(x0,z0)

U and m(r) = inf
Sr(x0,z0)

U.

Apply (3.1.6) to M(r)− U ≥ 0 in Sr(x0, z0) to obtain

sup
Sκ1r(x0,z0)

(M(r)− U) ≤ CH inf
Sκ1r(x0,z0)

(M(r)− U).
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Therefore,

M(r)−m(κ1r) ≤ CH (M(r)−M(κ1r)) . (3.5.26)

Similarly, applying (3.1.6) to U −m(r) ≥ 0 in Sr(x0, z0), we obtain

sup
Sκ1r(x0,z0)

(U −m(r)) ≤ CH inf
Sκ1r(x0,z0)

(U −m(r)),

so that

M(κ1r)−m(r) ≤ CH (m(κ1r)−m(r))) . (3.5.27)

Let ω(r) = M(r)−m(r). Adding (3.5.26) and (3.5.27) together, we get

ω(r) + ω(κ1r) ≤ CH (ω(r)− ω(κ1r))

Rearranging, we obtain

ω(κ1r) ≤ γω(r), γ =
CH − 1

CH + 1
< 1.

Note that γ = γ(n, λ,Λ, s).

By [31, Lemma 8.23], for any µ ∈ (0, 1), there are constants Ĉ1 = Ĉ1(n, λ,Λ, s) > 0 and

α1 = (1− µ) log γ/ log κ such that

ω(r) ≤ C
(

r

K̂1R

)α1

ω(K̂1R) ≤ 2Crα1(K̂1R)−α1 sup
SK̂1R

(x0,z0)
|U | .

Choose µ so that α1 < 1/2.

By taking r = δΦ((x0, z0), (x, z)) and Ĉ1 = 2C, we estimate

|U(x0, z0)− U(x, z)| ≤ ω(r) ≤ Ĉ1(δΦ((x0, z0), (x, z)))α1(K̂1R)−α1 sup
SK̂1R

(x0,z0)
|U |

for all (x, z) ∈ SK̂1R
(x0, z0).

3.5.6 Proof of Theorem 3.1.1

Proof of Theorem 3.1.1. Let U be the solution to (3.2.6) given by (3.2.7) in Ω × R ⊂ Rn+1. By

Theorem 3.2.4, since u ≥ 0, we know that e−tLu ≥ 0. It follows from (3.2.7) that U ≥ 0.
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Let κ = κ(n, s) < 1 and K̂ = K̂(n, s) > 1 be such that

κ <
√
κ1 and

√
2K̂1 < K̂.

We recall from (3.3.1) that

Br(x0) = Sr2/2(x0) for any r > 0.

Taking r =
√
κ1R, we obtain

BκR(x0)× [Sκ1R2/2(x0, 0) ∩ {z = 0}] ⊂ B√κ1R(x0)× Sκ1R2/2(x0, 0)

= Sκ1R2/2(x0, 0)× Sκ1R2/2(x0, 0)

⊂ Sκ1R2(x0, 0).

(3.5.28)

Taking r =
√

2K̂1R, we obtain

SK̂1R2(x0, 0) ⊂ SK̂1R2(x0)× SK̂1R2(0)

= B√
2K̂1R

(x0)× SK̂1R2(0)

⊂ BK̂R(x0)× SK̂1R2(0) ⊂⊂ Ω× R.

Let Ũ be the even extension of U so that Ũ(x, z) = Ũ(x,−z). We apply Theorem 3.1.2 to Ũ to

obtain the following Harnack inequality

sup
Sκ1R

2 (x0,0)
Ũ ≤ CH inf

Sκ1R
2 (x0,0)

Ũ .

By (3.5.28), we have that

sup
Bκr(x0)

u = sup
BκR(x0)×[Sκ1R

2/2(x0,0)∩{z=0}]
Ũ

≤ sup
Sκ1R

2 (x0,0)
Ũ

≤ CH inf
Sκ1R

2 (x0,0)
Ũ

≤ CH inf
BκR(x0)×[Sκ1R

2/2(x0,0)∩{z=0}]
Ũ = CH inf

Bκr(x0)
u

which proves (3.1.3).
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It remains to prove the Hölder estimate (3.1.4). By (3.1.7), we obtain the estimate

∣∣∣Ũ(x0, 0)− Ũ(x, z)
∣∣∣ ≤ Ĉ1δΦ((x0, 0), (x, z))α1

(
K̂1R

2
)−α1

sup
SK̂1R

2 (x0,0)
Ũ

for every (x, z) ∈ SK̂1R2(x0, 0). Since

B√
K̂1R

(x0)× SK̂1R2/2(0) = SK̂1R2/2(x0)× SK̂1R2/2(0) ⊂ SK̂1R2(x0, 0),

we have, for any x ∈ B√K1R
(x0), that

|u(x0)− u(x)| =
∣∣∣Ũ(x0, 0)− Ũ(x, 0)

∣∣∣
≤ Ĉ1δΦ((x0, 0), (x, 0))α1

(
K̂1R

2
)−α1

sup
SK̂1R

(x0,0)

∣∣∣Ũ ∣∣∣
≤ Ĉ1

2
|x− x0|2α1

(√
K̂1R

)−2α1

sup
BK̂R(x0)×SK̂1R

2 (0)

∣∣∣Ũ ∣∣∣ .
For each fixed z ≥ 0, by (3.2.2), we take the supremum in x to get

‖U(·, z)‖L∞(BK̂R(x0)) =

∥∥∥∥ (2s)z

4sΓ(s)

∫ ∞
0

e−
s2

t
z

1
s e−Ltu(·) dt

t1+s

∥∥∥∥
L∞(BK̂R(x0))

≤ (2s)z

4sΓ(s)

∫ ∞
0

e−
s2

t
z

1
s
∥∥e−Ltu∥∥

L∞(Ω)

dt

t1+s

≤ (2s)z

4sΓ(s)

∫ ∞
0

e−
s2

t
z

1
sM ‖u‖L∞(Ω)

dt

t1+s
= M ‖u‖L∞(Ω) .

Letting K̂0 =
√
K̂1, Ĉ = MĈ1/2, and α = 2α1, we conclude that

|u(x0)− u(x)| ≤ Ĉ |x− x0|α (K̂0R)−α sup
Ω
|u| for all x ∈ BK̂0R

(x0).



137

REFERENCES
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