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The Laplace operator

Let Ω ⊂ RN be an open set and u : Ω→ R a smooth function. The
Laplacian ∆u of u is defined by

∆u =
N∑
j=1

∂2u(x)

∂x2
j

.

∆ is the typical local operator, that is, for every u

supp[∆u] ⊂ supp[u].

To define boundary conditions for ∆ one needs to introduce the
Sobolev spaces.
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Classical first order Sobolev spaces

Let Ω ⊂ RN be a bounded open set with boundary ∂Ω. We let

W 1,2(Ω) =

{
u ∈ L2(Ω),

∫
Ω

|∇u|2 dx <∞
}

and W 1,2
0 (Ω) = D(Ω)

W 1,2(Ω)
.

By definition, W 1,2
0 (Ω) ⊆W 1,2(Ω).

If Ω is bounded, then W 1,2
0 (Ω) ( W 1,2(Ω).

Notice that functions in W 1,2
0 (Ω) are zeros on ∂Ω (in some sense).
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Integration by parts formula for ∆

Let Ω ⊂ RN be bounded, smooth with boundary ∂Ω. Let u ∈W 1,2(Ω)
be such that ∆u ∈ L2(Ω) and ∂νu := ∇u · ν exists in L2(∂Ω).

Then for every v ∈W 1,2(Ω), we have

−
∫

Ω

v∆u dx =

∫
Ω

∇u · ∇v dx −
∫
∂Ω

v∂νu dσ. (1.1)

If v ∈W 1,2
0 (Ω), then (1.1) becomes

−
∫

Ω

v∆u dx =

∫
Ω

∇u · ∇v dx .
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The Dirichlet BC for ∆

If Ω is smooth, then ∆D is the operator defined by

D(∆D) = W 2,2(Ω) ∩W 1,2
0 (Ω), ∆Du = −∆u.

For every Ω, ∆D is the operator associated with the form

ED(u, v) =

∫
Ω

∇u · ∇v dx , u, v ∈W 1,2
0 (Ω)

in the sense that

D(∆D) =
{
u ∈W 1,2

0 (Ω), ∃ f ∈ L2(Ω), ED(u, v) = (f , v)L2(Ω)

∀v ∈W 1,2
0 (Ω)

}
, ∆Du = f .

We have: D(∆D) = {u ∈W 1,2
0 (Ω) : ∆u ∈ L2(Ω)}, ∆Du = −∆u.
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The Neumann BC for ∆

If Ω is smooth, ∆N is the operator defined by

D(∆N) =
{
u ∈W 2,2(Ω) : ∂νu = 0 on ∂Ω

}
, ∆Nu = −∆u.

For every Ω, ∆N is the operator associated with the form

EN(u, v) =

∫
Ω

∇u · ∇v dx , u, v ∈W 1,2(Ω)

in the sense that

D(∆N) =
{
u ∈W 1,2(Ω), ∃ f ∈ L2(Ω), EN(u, v) = (f , v)L2(Ω)

∀v ∈W 1,2(Ω)
}
, ∆Nu = f .

Assume that Ω has a Lipschitz boundary. Then

D(∆N) =
{
u ∈W 1,2(Ω) : ∆u ∈ L2(Ω), ∂νu = 0 on ∂Ω

}
.
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Spectrum of ∆D and ∆N

Let Ω ⊂ RN be any bounded domain.

∆D has a discrete spectrum formed of eigenvalues satisfying

0 < λD1 ≤ λD2 ≤ · · · ≤ λDn ≤ · · · , lim
n→∞

λDn =∞.

If Ω is Lipschitz, then ∆N has a discrete spectrum formed of
eigenvalues satisfying

0 = λN1 ≤ λN2 ≤ · · · ≤ λNn ≤ · · · , lim
n→∞

λNn =∞.
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The heat equation

Let A = −∆D or A = −∆N .

For every u0 ∈ L2(Ω), the Cauchy problem (or heat equation)

∂tu = Au in Ω× (0,∞), u(·, 0) = u0 in Ω (1.2)

is well posed.

The solution u of (1.2) is given by

u(t, x) = etAu0(x),

where the family of operators T (t) := etA : L2(Ω)→ L2(Ω) is the
so called semigroup generated by the operator A. That is,
T (t + s) = T (t)T (s), ∀ t, s ≥ 0 and T (0) = I .
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The Dirichlet-to-Neumann operator

Let Ω ⊂ RN be bounded, Lipschitz with boundary ∂Ω. Given g ∈ L2(∂Ω)
and λ ∈ R \ σ(∆D) (where σ(∆D)=Spectrum of ∆D), let u ∈W 1,2(Ω)
be the unique solution of the Dirichlet problem

−∆u = λu in Ω, u = g on ∂Ω. (1.3)

The operator D1,λ defined on L2(∂Ω) by
D(D1,λ) =

{
g ∈ L2(∂Ω), ∃ u ∈W 1,2(Ω) solution of (1.3),

∂νu exists in L2(∂Ω)
}
,

D1,λg = ∂νu

(1.4)

is called the Dirichlet-to-Neumann operator.
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Remark

Some properties of D1,λ have been used to give another proof of

λNn+1 ≤ λDn for all n ∈ N.

The operator D1,0 has been defined on very rough domains by
Arendt & ter Elst: JDE (2011).

D1,0 has been defined on exterior domains by Arendt & ter Elst: PA
(2015).

For every u0 ∈ L2(∂Ω), the Cauchy problem

∂tu + D1,λu = 0 on ∂Ω× (0,∞), u(x , 0) = u0 on ∂Ω,

is well-posed. The solution is also given by u(x , t) = e−tD1,λu0(x)
and the family of operators (e−tD1,λ)t≥0 satisfies the semigroup
properties.
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Derivation of singular integrals: Long jump random walks

Let K : RN → [0,∞) be an even function such that∑
k∈ZN

K(k) = 1. (2.1)

Given a small h > 0, we consider a random walk on the lattice hZN .

We suppose that at any unit time τ (which may depend on h) a
particle jumps from any point of hZN to any other point.

The probability for which a particle jumps from a point hk ∈ hZN

to the point hk̃ is taken to be K(k − k̃) = K(k̃ − k). Note that,
differently from the standard random walk, in this process the
particle may experience arbitrarily long jumps, though with small
probability.
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Long jump random walks: Continue

Let u(x , t) be the probability that our particle lies at x ∈ hZN at
time t ∈ τZ.

Then u(x , t + τ) is the sum of all the probabilities of the possible
positions x + hk at time t weighted by the probability of jumping
from x + hk to x . That is,

u(x , t + τ) =
∑
k∈ZN

K(k)u(x + hk, t).

Using (2.1) we have the evolution law:

u(x , t + τ)− u (x , t) =
∑
k∈ZN

K(k) [u(x + hk , t)− u(x , t)] . (2.2)
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Long jump random walks: Continue

In particular, in the case when τ = h2s and K is homogeneous (i.e.,
K(y) = |y |−(N+2s) for y 6= 0, K(0) = 0, and 0 < s < 1), (2.1) holds
and K(k)/τ = hNK(hk).

Therefore, we can rewrite (2.2) as follows:

u(x , t + τ)− u(x , t)

τ
= hN

∑
k∈ZN

K(hk) [u(x + hk, t)− u(x , t)] .

(2.3)

Notice that the term on the right-hand side of (2.3) is just the
approximating Riemann sum of∫

RN

K(y) [u(x + y , t)− u(x , t)] dy .
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Long jump random walks: Continue

Thus letting τ = h2s → 0+ in (2.3), we obtain

∂tu(x , t) =

∫
RN

u(x + y , t)− u(x , t)

|y |N+2s
dy . (2.4)

The integral in (2.4) has a singularity at y = 0. However when
0 < s < 1 and u is smooth, we have

lim
ε↓0

∫
RN\B(0,ε)

u(x + y , t)− u(x , t)

|y |N+2s
dy (2.5)

= lim
ε↓0

∫
RN\B(x,ε)

u(z , t)− u(x , t)

|z − x |N+2s
dz

= − (CN,s)−1 (−∆)su(x , t),

for a proper normalizing constant CN,s > 0.
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Long jump random walks: Continue

This shows that a simple random walk with possibly long jumps
produces, at the limit a singular integral with a homogeneous kernel.
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The fractional Laplace operator: Using Fourier Analysis

Let 0 < s < 1. Using Fourier analysis, we have that the fractional
Laplace operator (−∆)s can be defined as the pseudo-differential
operator with symbol |ξ|2s . That is,

(−∆)su = CN,sF−1
(
|ξ|2sF(u)

)
,

where F and F−1 denotes the Fourier transform and the inverse Fourier
transform, respectively, and C (N, s) is an appropriate constant.
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The fractional Laplace operator: Using Singular Integrals

Let 0 < s < 1 and

L1
s (RN) :=

{
u : RN → R measurable ,

∫
RN

|u(x)|
(1 + |x |)N+2s

dx <∞
}
.

For u ∈ L1
s (RN) and ε > 0 we let

(−∆)sεu(x) = CN,s

∫
{y∈RN : |x−y |>ε}

u(x)− u(y)

|x − y |N+2s
dy , x ∈ RN .

The fractional Laplacian (−∆)su of u is defined for x ∈ RN by,

(−∆)su(x) = CN,sP.V.

∫
RN

u(x)− u(y)

|x − y |N+2s
dy = lim

ε↓0
(−∆)sεu(x)

provided that the limit exists, where CN,s :=
s22sΓ

(
N+2s

2

)
π

N
2 Γ(1− s)

.

Mahamadi Warma (UPR-Rio Piedras)This author is partially supported by the AFOSRWhat are the classical BC for the fractional Laplacian?



The Laplace operator with boundary conditions
The fractional Laplacian

The Dirichlet and Neumann B.C. for (−∆)s and (−∆)sΩ
A fractional Dirichlet-to-Neumann operator

References

The two fractional Laplace operators
Fractional order Sobolev spaces

The fractional Laplace operator: Caffarelli-Silvestre extension

Let 0 < s < 1. For u : RN → R, consider the extension
w : RN × [0,∞)→ R that satisfies the Dirichlet problem{

∆xw + 1−2s
y wy + wyy = 0 in RN × (0,∞),

w(x , 0) = u(x).

Then the fractional Laplace operator can be defined as

(−∆)su(x) = −ds lim
y→0+

y1−2swy (x , y),

where the constant ds is given by

ds := 22s−1 Γ(s)

Γ(1− s)
.
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All the definitions coincide

Let 0 < s < 1. Then

(−∆)su(x) =CN,sF−1
(
|ξ|2sF(u)

)
=CN,sP.V.

∫
RN

u(x)− u(y)

|x − y |N+2s
dy

=− ds lim
y→0+

y1−2swy (x , y),

where w : RN × [0,∞)→ R is a solution of the Dirichlet problem{
∆xw + 1−2s

y wy + wyy = 0 in RN × (0,∞),

w(x , 0) = u(x).

(−∆)s is the typical nonlocal operator. That is,
supp[(−∆)su] * supp[u].
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The regional fractional Laplace operator

Let Ω ⊂ RN be an open set. For 0 < s < 1, u ∈ L1
s (Ω) and ε > 0 we let

(−∆)sΩ,εu(x) = CN,s

∫
{y∈Ω |x−y |>ε}

u(x)− u(y)

|x − y |N+2s
dy , x ∈ Ω.

The regional fractional Laplacian (−∆)sΩu of u is defined for x ∈ Ω by,

(−∆)sΩu(x) = CN,sP.V.

∫
Ω

u(x)− u(y)

|x − y |N+2s
dy = lim

ε↓0
(−∆)sΩ,εu(x)

provided that the limit exists. Note that (−∆)sΩ depends on Ω.

(−∆)sΩ is a nonlocal operator.
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The operators (−∆)s and (−∆)sΩ are different

For every u ∈ D(Ω), we have

(−∆)su(x) = CN,sP.V.

∫
RN

u(x)− u(y)

|x − y |N+2s
dy

= CN,sP.V.

∫
Ω

u(x)− u(y)

|x − y |N+2s
dy + u(x)CN,s

∫
RN\Ω

dy

|x − y |N+2s
dy

That is for u ∈ D(Ω), we have, (−∆)su = (−∆)sΩu + VΩ(x)u,
where the potential VΩ is given by

v(x) := CN,s

∫
RN\Ω

dy

|x − y |N+2s
dy .

The potential VΩ(x) is difficult to manipulate.
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The limit as s ↑ 1

Let Ω ⊂ RN a bounded open set. Then ∀ u, v ∈ D(Ω),

lim
s↑1

∫
Ω

v(−∆)sΩudx = lim
s↑1

∫
RN

v(−∆)sudx = −
∫

Ω

v∆udx =

∫
Ω

∇u · ∇vdx .

Proof

First, let u ∈ D(Ω), since lims↑1(1− s)Γ(1− s) = 1, we get that

lim
s↑1

∫
Ω

u(−∆)sΩudx

= lim
s↑1

s22s−1Γ
(
N+2s

2

)
π

N
2 (1− s)Γ(1− s)

(1− s)

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x − y |N+2s
dxdy

=

∫
Ω

|∇u|2dx = −
∫

Ω

u∆udx .
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Proof Cont.

Proceeding similarly, we also have that for u ∈ D(Ω),

lim
s↑1

∫
RN

u(−∆)sudx =

∫
RN

|∇u|2dx = −
∫
RN

u∆udx = −
∫

Ω

u∆udx .

Replacing u by u + v for u, v ∈ D(Ω), we get the equality for every
u, v ∈ D(Ω).
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Objectives in the rest of the talk

Find a right formulation for the Dirichlet problems associated with
the operators (−∆)s and (−∆)sΩ.

Find the right definition of Dirichlet and Neumann boundary
conditions for the operators (−∆)s and (−∆)sΩ.

Find a right definition of a fractional Dirichlet-to-Neumann type
operator associated with (−∆)s or/and (−∆)sΩ .
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Fractional order Sobolev Spaces

Let Ω ⊂ RN be an arbitrary open set and s ∈ (0, 1).

We denote

W s,2(Ω) :=
{
u ∈ L2(Ω) :

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x − y |N+2s
dx dy <∞

}
.

We let

W s,2
0 (Ω) = D(Ω)

W s,2(Ω)
.

We define

W s,2
0 (Ω) =

{
u ∈W s,2(RN) : u = 0 a.e. on RN \ Ω

}
.

There is no obvious inclusion between W s,2
0 (Ω) and W s,2

0 (Ω).
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Theorem: Grisvard (book 1985) & W. (Potential Analysis 2015)

Let Ω ⊂ RN be a bounded open set with boundary ∂Ω.

If Ω is Lipschitz then

W s,2(Ω) = W s,2
0 (Ω)⇐⇒ 0 < s ≤ 1

2
.

Let C ⊂ [0, 1] be the Cantor set and let Ω := (0, 1) \ C . Let
dimH(∂Ω) be the Hausdorff dimension of ∂Ω. Note that

0 < dimH(∂Ω) = d :=
ln(2)

ln(3)
< 1.

Then

W s,2(Ω) = W s,2
0 (Ω)⇐⇒ 0 < s ≤ 1

2
(1− d).
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The two fractional Laplace operators
Fractional order Sobolev spaces

Sobolev embedding

Let Ω ⊂ RN be an arbitrary bounded open set and 0 < s < 1. Let

q :=
2N

N − 2s
if N > 2s and 1 ≤ q <∞ if N = 2s.

Then the following assertions hold.

If N ≥ 2s, then W s,2
0 (Ω) ↪→ Lq(Ω).

If N < 2s, then W s,2
0 (Ω) ↪→ C 0,s− N

2 (RN).

If Ω is Lipschitz and N ≥ 2s, then W s,2(Ω) ↪→ Lq(Ω).

If Ω is Lipschitz and N < 2s, then W s,2(Ω) ↪→ C 0,s− N
2 (Ω).
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The Dirichlet problem for (−∆)s

Let Ω ⊂ RN be smooth with boundary ∂Ω.

If g ∈ C (RN) then the Dirichlet problem

(−∆)su = 0 in Ω, u = g on ∂Ω, (3.1)

is not well-posed. The well-posed Dirichlet problem is given by

(−∆)su = 0 in Ω, u = g on RN \ Ω. (3.2)

This follows from the fact that

(−∆)su(x) = CN,s

∫
Ω

u(x)− u(y)

|x − y |N+2s
dy + CN,,s

∫
RN\Ω

u(x)− u(y)

|x − y |N+2s
dy .

If g ∈W s,2(RN) \ Ω then the Dirichlet problem (3.2) is well-posed.
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The Dirichlet problem for (−∆)sΩ

Let Ω ⊂ RN be bounded and Lipschitz with boundary ∂Ω.

If 1
2 < s < 1 and g ∈ C (∂Ω), then the Dirichlet problem

(−∆)sΩu = 0 in Ω, u = g on ∂Ω, (3.3)

is well-posed.

If 1
2 < s < 1 and g ∈W s− 1

2 ,2(∂Ω), then the Dirichlet problem (3.3)
is well-posed.

We will see later why the restriction 1
2 < s < 1?

Mahamadi Warma (UPR-Rio Piedras)This author is partially supported by the AFOSRWhat are the classical BC for the fractional Laplacian?



The Laplace operator with boundary conditions
The fractional Laplacian

The Dirichlet and Neumann B.C. for (−∆)s and (−∆)sΩ
A fractional Dirichlet-to-Neumann operator

References

The Dirichlet problem for (−∆)s and (−∆)sΩ
The Dirichlet boundary condition
The Neumann B.C. for (−∆)s and (−∆)sΩ

The Dirichlet B.C. for (−∆)s

Let Ω ⊂ RN open and E with D(E) = W s,2
0 (Ω) be given by

E(u, v) =
CN,s

2

∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x − y |N+2s
dx dy .

Let (−∆)sD be the operator on L2(Ω) associated with E . Then

D((−∆)sD) =
{
u ∈W s,2

0 (Ω) : (−∆)su ∈ L2(Ω)
}
, (−∆)sDu = (−∆)su.

Here the Dirichlet B.C. is characterized by

u = 0 on RN \ Ω.
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The Dirichlet B.C. for (−∆)sΩ

Let Ω ⊂ RN open and ED with D(ED) = W s,2
0 (Ω) be given by

ED(u, v) =
CN,s

2

∫
Ω

∫
Ω

(u(x)− u(y))(v(x)− v(y))

|x − y |N+2s
dx dy .

Let (−∆)sΩ,D be the operator on L2(Ω) associated with ED . Then

D((−∆)sΩ,D) =
{
u ∈W s,2

0 (Ω) : (−∆)sΩu ∈ L2(Ω)
}
,

(−∆)sΩ,Du = (−∆)sΩu.

Here the Dirichlet B.C. is characterized by

u = 0 on ∂Ω.
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The operators (−∆)sD and (−∆)sΩ,D are different

Assume Ω ⊂ RN is bounded. Then the following hold.

(−∆)sD has a compact resolvent with eigenvalues satisfying

0 < λDs,1 ≤ λDs,2 ≤ · · · ≤ λDs,n ≤ · · ·

(−∆)sΩ,D has a compact resolvent with eigenvalues satisfying

0 < λΩ,D
s,1 ≤ λ

Ω,D
s,2 ≤ · · · ≤ λ

Ω,D
s,n ≤ · · ·

(−∆)sD and (−∆)sΩ,D are different in the sense that they have
different eigenvalues and eigenfunctions. In particular

0 < λΩ,D
s,1 < λDs,1.

Mahamadi Warma (UPR-Rio Piedras)This author is partially supported by the AFOSRWhat are the classical BC for the fractional Laplacian?



The Laplace operator with boundary conditions
The fractional Laplacian

The Dirichlet and Neumann B.C. for (−∆)s and (−∆)sΩ
A fractional Dirichlet-to-Neumann operator

References

The Dirichlet problem for (−∆)s and (−∆)sΩ
The Dirichlet boundary condition
The Neumann B.C. for (−∆)s and (−∆)sΩ

What is needed to define Neumann B.C?

One needs a notion of fractional normal derivative.

One needs an integration by parts formula, that is, a Green type
formula for the fractional Laplace operator (−∆)s and/or the
regional fractional Laplace operator (−∆)sΩ.
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The nonlocal fractional normal derivative (Gunzburger et al)

Let Ω ⊂ RN be bounded and Lipschitz. For 0 < s < 1 let

W s,2
Ω :=

{
u : RN → R measurable, ‖u‖W s,2

Ω
<∞

}
,

where

‖u‖2
W s,2

Ω

:=‖u‖2
L2(Ω) +

∫ ∫
R2N\(RN\Ω)2

|u(x)− u(y)|2

|x − y |N+2s
dxdy .

Notice that W s,2
Ω ↪→W s,2(Ω).

For u ∈W s,2
Ω we define the nonlocal fractional normal derivative as

Nsu(x) = CN,s

∫
Ω

u(x)− u(y)

|x − y |N+2s
dy , x ∈ RN \ Ω. (3.4)
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Integration by part formula for (−∆)s (Dipierro, Ros-Oton and Valdinoci)

Let Ω ⊂ RN be bounded and Lipschitz. For 0 < s < 1 and
u, v ∈ C 2(RN),∫

Ω

v(−∆)su dx =
CN,s

2

∫ ∫
R2N\(RN\Ω)2

(u(x)− u(y))(v(x)− v(y))

|x − y |N+2s
dxdy

−
∫
RN\Ω

vNsu dx . (3.5)
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The Neumann B.C. for (−∆)s

Let Es,N with D(Es,N ) := W s,2
Ω be given by

Es,N (u, v) :=
CN,s

2

∫ ∫
R2N\(RN\Ω)2

(u(x)− u(y))(v(x)− v(y))

|x − y |N+2s
dxdy .

Let (−∆)sN be the self-adjoint operator on L2(Ω) associated with Es,N .
Using (3.5) we have that{
D((−∆)sN ) =

{
u ∈W s,2

Ω , (−∆)su ∈ L2(Ω), Nsu = 0 on RN \ Ω
}
,

(−∆)sN u = (−∆)su.

The Neumann B.C. is characterized by Nsu = 0 on RN \ Ω. The
operator Ns is nonlocal too.
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The limit as s ↑ 1

Let Ω ⊂ RN be bounded, Lipschitz. Then for all u, v ∈ C 2
0 (RN),

lim
s↑1

CN,s

2

∫ ∫
R2N\(RN\Ω)2

(u(x)− u(y))(v(x)− v(y))

|x − y |N+2s
dxdy

− lim
s↑1

∫
RN\Ω

vNsu dx

=

∫
Ω

∇u · ∇v dx −
∫
∂Ω

∂u

∂ν
v dσ.
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A local fractional normal derivative (Q.Y. Guan & Z.M. Ma: 2006)

Let Ω ⊂ RN be a bounded open set of class C 1,1. Let 1
2 < s ≤ 1 and

C 2
2s(Ω) :=

{
u : u(x) = f (x)ρ(x)2s−1 + g(x), ∀ x ∈ Ω,

for some f , g ∈ C 2(Ω)
}
,

where ρ(x) := dist(x , ∂Ω), x ∈ Ω. For u ∈ C 2
2s(Ω) and z ∈ ∂Ω, we define

the (local) fractional normal derivative N 2−2su of u by

N 2−2su(z) = lim
t↓0

du(z + ν(z)t)

dt
t2−2s (3.6)

= lim
t↓0

u(z + ν(z)t)− u(z)

t2s−1
,

where ν(z) denotes the outer normal vector to Ω at the point z .
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Some properties of the fractional normal derivative

Let 1
2 < s ≤ 1 and Ω ⊂ RN be a bounded open set of class C 1,1.

If 1
2 < s < 1 and u ∈ C 1(Ω), then N 2−2su(z) = 0 ∀ z ∈ ∂Ω.

If s = 1 and u ∈ C 1(Ω), then N 0u(z) = ∂νu(z).

If 1
2 < s < 1 and u ∈ C 2

2s(Ω), then

N 2−2su(z) = lim
Ω3x→z

u(x)− u(z)

ρ2s−1(x)
, ∀ z ∈ ∂Ω.
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Integration by parts formula (Q.Y. Guan & Z.M. Ma: 2006) +(W. 2015))

Let 1
2 < s < 1 and Ω ⊂ RN of class C 1,1. Then for every u ∈ C 2

2s(Ω) and
v ∈W s,2(Ω), one has (−∆)sΩu ∈ L2(Ω), N 2−2su ∈ L2(∂Ω) and∫

Ω

v(−∆)sΩu dx =
CN,s

2

∫
Ω

∫
Ω

(v(x)− v(y))(u(x)− u(y))

|x − y |N+2s
dxdy

− Bs

∫
∂Ω

vN 2−2su dσ, (3.7)

where Bs is a constant depending only on s.

If u ∈ C 1(Ω), then in (3.7) there is no boundary term. This is
surprising! But there is an explanation due to the nonlocality.

Formula (3.7) is not true if one replaces (−∆)sΩu by (−∆)su.
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The Neumann B.C. for (−∆)sΩ

Let 1
2 < s < 1 and EΩ,N with D(EΩ,N) = W s,2(Ω) be given by

EΩ,N(u, v) =
CN,s

2

∫
Ω

∫
Ω

(u(x)− u(y))(v(x)− v(y))

|x − y |N+2s
dx dy .

Let (−∆)sΩ,N be the operator on L2(Ω) associated with EΩ,N . Then

D((−∆)sΩ,N)) =
{
u ∈W s,2(Ω) : (−∆)sΩu ∈ L2(Ω),N 2−2su = 0 on ∂Ω

}
(−∆)sΩ,Nu = (−∆)sΩu.

The Neumann B.C. is characterized by N 2−2su = 0 on ∂Ω. The
operator N 2−s is local.
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The limit as s ↑ 1

Let Ω ⊂ RN bounded Lipschitz. ∀ u ∈ C 2(Ω), v ∈W 1,2(Ω) we have

lim
s↑1

∫
Ω

v(−∆)sΩudx =

∫
Ω

∇u∇vdx = −
∫

Ω

v∆udx +

∫
∂Ω

∂u

∂ν
vdσ.

Proof

We have W 1,2(Ω) ↪→W s,2(Ω). Let u ∈ C 2(Ω). Then N 2−2su = 0.

lim
s↑1

∫
Ω

u(−∆)sΩudx =
1

2
lim
s↑1

CN,s

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x − y |N+2s
dxdy

=
1

2
lim
s↑1

s22sΓ
(
N+2s

2

)
(1− s)

π
N
2 (1− s)Γ(1− s)

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x − y |N+2s
dxdy

=

∫
Ω

|∇u|2dx = −
∫

Ω

u∆udx +

∫
∂Ω

∂u

∂ν
udσ.
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Proof Cont.

It follows that for every u, v ∈ C 2(Ω), we have

lim
s↑1

∫
Ω

v(−∆)sΩudx = −
∫

Ω

v∆udx +

∫
∂Ω

∂u

∂ν
vdσ.

Now we obtain the identity for u ∈ C 2(Ω) and v ∈W 1,2(Ω) by density.
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Why 1
2 < s < 1?

Let Ω ⊂ RN be a bounded domain with Lipschitz boundary ∂Ω.

If 0 < s ≤ 1
2 , then Dirichlet and Neumann B.C. for (−∆)sΩ coincide.

That is,

D((−∆)sΩ,D) = D((−∆)sΩ,N) and (−∆)sΩ,Du = (−∆)sΩ,Nu.

This follows from the fact that W s,2(Ω) = W s,2
0 (Ω) ⇔ 0 < s ≤ 1

2 .

For these reasons we assume without any restriction that 1
2 < s < 1.
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A fractional D-to-N operator for (−∆)sΩ: Definition

Let σ((−∆)sΩ,D) denote the spectrum (which is discrete) of (−∆)sΩ,D .

Let 1
2 < s < 1 and λ ∈ R \ σ((−∆)sΩ,D). Then, given g ∈ L2(∂Ω), there

exists u ∈W s,2(Ω) solution of the Dirichlet problem

(−∆)sΩu = λu in Ω, u = g on ∂Ω. (4.1)

The fractional D-to-N operator Ds,λ is defined on L2(∂Ω) by
D(Ds,λ) =

{
g ∈ L2(∂Ω), ∃ u ∈W s,2(Ω) solution of (4.1),

N 2−2su exists in L2(∂Ω)
}
,

Ds,λu = CsN 2−2su.
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Sign of the first eigenvalue of Ds,λ

Let λ ∈ R \ σ((−∆)sΩ,D) and let η1,s(λ) be the first eigenvalue of Ds,λ.
Then the following assertions hold.

If λ < 0 then η1,s(λ) > 0.

if λ > 0 then η1,s(λ) < 0.

η1,s(0) = 0.
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Theorem (W. CPAA, 2015)

Let 1
2 < s < 1, n ∈ N, λΩ,D

n,s the n-th eigenvalue of (−∆)sΩ,D and λΩ,N
n,s

the n-th eigenvalue of (−∆)sΩ,N . Then

0 ≤ λΩ,N
n+1,s ≤ λ

Ω,D
n,s .
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